遗传代谢疾病基因检测

仪器信息网遗传代谢疾病基因检测专题为您提供2024年最新遗传代谢疾病基因检测价格报价、厂家品牌的相关信息, 包括遗传代谢疾病基因检测参数、型号等,不管是国产,还是进口品牌的遗传代谢疾病基因检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合遗传代谢疾病基因检测相关的耗材配件、试剂标物,还有遗传代谢疾病基因检测相关的最新资讯、资料,以及遗传代谢疾病基因检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

遗传代谢疾病基因检测相关的仪器

  • SeqStudio基因分析仪专门针对Sanger测序和片段分析应用进行优化 零基础用户即可轻松上手 作为基因分析仪的领导者,我们打造出一款新型的Applied Biosystems&trade SeqStudio&trade 基因分析仪——唯一一款可以在同一块板上同时进行测序和片段分析的产品。该基因分析仪配备集成卡夹系统,简单易用,用户既可远程访问和监控运行,又可浏览数据。这一完全联网的基因分析仪结合简单的卡夹设计,使得实验室的所有研究人员都可轻松分享。 SeqStudio基因分析仪采用最新的触屏技术,使用户能够轻松保持数据连通。该系统非常适合需要简单经济的Sanger测序和片段分析,却又不希望牺牲性能和质量的新老用户。 通用多功能卡夹 — 独创功能,整合了POP-1聚合物、阳极缓冲液、聚合物递送系统和毛细管阵列,使试剂在仪器中的保质期长达四个月。所得结果值得信赖 — 具有Applied Biosystems&trade 基因分析仪一贯的精确度缩短设置时间 — 采用POP-1聚合物和通用卡夹设计,可在同一次运行中同时完成Sanger测序和片段分析反应最大限度利用实验室空间 — 紧凑型仪器,可配置成单机系统或者搭配一台计算机,满足大多数实验室需求通过Thermo Fisher Cloud可随时随地轻松访问、分析和共享数据 — 远程监控运行、在几分钟内分析复杂数据集、安全存储数据、通过云端软件应用程序与同事在线分享数据,以及通过移动设备实时监控运行。综合软件包 — 所购系统内附 Applied Biosystems&trade 测序分析软件、SeqScape&trade 软件、 Variant Reporter&trade 软件、GeneMapper&trade 软件和Minor Variant Finder (MVF)软件。上手快速 – 每个SeqStudio系统都包含一个SmartStart 向导,让您可以在实验室快速上手:此向导涵盖了基本的设置、云端启用和连通、打印机联网、起始试剂评审、软件使用、仪器操作和维护等内容。Sanger测序是测序技术的金标准,具有高精确度、长读取能力,且可灵活支持许多研究领域的不同应用。Sanger测序不仅在DNA测序应用中被广泛认可,同时也可支持RNA测序和表观遗传分析等应用,可确保为癌症及其他遗传疾病研究获得稳定、可靠的标记物检测和定量结果。此外,DNA片段分析还可用于从基因分型到细菌鉴定、从植物筛选到基因表达分析的诸多应用。 从头Sanger测序从头测序指的是为了获得特定生物体的主要基因序列而进行的初始序列分析。 Sanger测序进行靶向测序基因组DNA内的杂合子碱基位置、小片段插入或缺失鉴定常用于定位二倍体生物的突变或多态性;基因重排检测,揭示罕见变异。 质粒测序 亚克隆到质粒中的插入分析 肿瘤学研究保持了检测出肿瘤组织内突变等位基因的金标准质量。 物种鉴定通过“指纹”位点的DNA测序鉴定未知样品所属物种。 新一代测序(NGS)验证我们的基因分析仪拥有超高性能,可进行金标准Sanger测序技术,能够成为验证NGS结果的可靠利器。 CRISPR-Cas9基因组编辑分析验证CRISPR-Cas9编辑事件 人类细胞系鉴定特定基因指纹的高变异短串联重复序列(STRs)分析 Applied Biosystems&trade SNaPshot&trade 基因分型检测单核苷酸多态性(SNPs),帮助理解基因组如何影响生物表型 多重连接依赖性探针扩增技术(MLPA&trade )分析人类拷贝数变异研究由基因座拷贝数变化引起的人类遗传疾病 通过我们成熟的工作流程,生成高质量的Sanger测序数据从DNA模板扩增、PCR纯化、循环测序反应、测序纯化到仪器耗材,我们针对Applied Biosystems&trade 工作流程每一步骤提供了全面的产品。方便使用,有助于提高实验室效率SeqStudio基因分析仪采用卡夹式系统,便于使用和维护。SeqStudio仪器采用多功能卡夹,其中包含毛细管阵列、聚合物存储室和阳极缓冲液 多功能卡夹设计具有以下优势:可在仪器上存储长达四个月可轻松取放内含POP-1聚合物无需重新配置,即可同时进行Sanger测序和片段分析兼容标准96孔板和8孔联管内附4道毛细管陈列带有射频识别(RFID)标签,可追踪进样次数(卡夹)和在仪器上的存放时间(阴极缓冲液存储容器)自动进行运行前校正表1. 服务计划一览AB Maintenance Plan AB Assurance AB Complete 现场响应时间尽量2个工作日*保证2个工作日保证2个工作日安排现场计划维修 √√√远程设备诊断√√√零件、人力和差旅费用√√√优先接通远程服务工程师√√再认证(计划性维护及维修后)√√现场应用科学家故障排查√ *响应时间因地区而异。
    留言咨询
  • 动物疾病模型主要用于实验生理学、实验病理学和实验治疗学(包括新药筛选)研究。人类疾病的发展十分复杂,以人本身作为实验对象来深入探讨疾病发生机制,推动医药学的发展来之缓慢,临床积累的经验不仅在时间和空间上都存在局限性,而且许多实验在道义上和方法上也受到限制。而借助于动物模型的间接研究,可以有意识地改变那些在自然条件下不可能或不易排除的因素,以便更准确地观察模型的实验结果并与人类疾病进行比较研究,有助于更方便、更有效地认识人类疾病的发生发展规律,研究防治措施。(一)手术诱导模型心肌缺血动物模型、冠状动脉压迫大鼠模型、胰脏切除大鼠、胆总管结扎术诱导大鼠、肾动脉狭窄大鼠等 (二)物理诱导模型心肌缺血动物模型:麻醉后用弱、强电(弱为0.8-1.6毫安,强为4-6毫安)交替刺激右侧下丘脑背侧核肿瘤模型:放射线照射诱导高血压模型:寒冷、噪音、电刺激(三)化学诱导模型肿瘤模型:利用化学品通过注射、喂养等途径使动物发生肿瘤肝癌:二乙基亚硝酸、二甲基偶氮苯胃癌:甲基硝基亚硝基胍结肠癌:二甲基苄肼糖尿病模型:STZ诱导大鼠肺动脉高压模型:MCT诱导大鼠(四)自发性动物模型动物自然条件下产生疾病,并通过遗传育种稳定繁殖高血压模型:SHR、SHRSP大鼠糖尿病模型:GK大鼠、OLETF大鼠、NOD小鼠肥胖模型:Zucker大鼠、db/db小鼠肿瘤模型:C3H小鼠乳腺癌、AKR自发性白血病免疫缺陷动物模型:裸小鼠、Scid小鼠等早老化模型:SAM小鼠 (五)基因工程动物模型转基因模型基因敲除模型基因敲入模型(六)常用疾病动物模型代谢系统疾病模型:糖尿病模型,肾病模型,肥胖模型等;心脑血管系统疾病模型:心肌埂死模型,小鼠脑缺血再灌注模型;呼吸系统疾病动物模型:大鼠烟熏模型,哮喘模型等;肝、胆、胰、胃等消化道疾病模型:酒精肝,非酒精性脂肪肝类,溃疡性结肠炎模型(急性),慢性结肠炎等;眼科类疾病模型:高氧损伤视网膜疾病模型,激光损伤眼视网膜疾病模型;皮下接种肿瘤模型:结肠癌,肺癌等。武汉贝赛模式生物科技有限公司提供基因编辑(转基因、基因全敲、条件性敲除、基因敲入、点突变等)大小鼠模型,提供定制的基因编辑细胞系构建服务(基因敲除,点突变,基因敲入),进行动物相关实验(大小鼠净化、精子及胚胎保种等),提供模式动物繁殖供应和药物药效评价以及新药研发服务等。
    留言咨询
  • Maestro Edge/Pro 高通量微电极阵列系统-早发性帕金森体外模型研究 帕金森病 (PD) 的发病机制已被证实是由遗传和非遗传因素共同影响的。该研究者利用同卵双胞胎的iPSC进行PD疾病体外建模,并使用了Maestro MEA系统评估了健康组和患病组多巴胺能神经元的电生理功能表型特征。 Day30:正常组样本显示出频繁的神经元放电,帕金森病人样本则放电稀疏。Day52:正常组样本有清晰的同步性簇放电,表明其已经发展出有功能的神经网络。疾病样本放电率虽较Day30有所增加,但未发展出网络功能。 以上的结果提示我们PD可能与细胞自身可兴奋性缺陷或者缺乏来自周围细胞的突触驱动有关。神经网络功能实时检测攻略◆ ◆ ◆ ◆PART I 原理介绍为什么要检测神经电活动?研究证明构建体外神经元疾病模型是研究神经元功能和神经系统复杂疾病的一个有效策略。细胞成像、基因表达分析或者蛋白印迹这些方法能够全面地反应神经疾病模型的复杂性吗?神经网络功能又是怎样的?科学家们很难得到一个完整的答案。而使用Maestro MEA技术,任何科学家都能够快速简单地高通量检测活细胞的网络电活动。 什么是高通量微电极阵列? Axion的MEA板底部紧密嵌合了呈网格状的电极阵列。科学家们可以在电极上贴附培养神经元等可兴奋性细胞,它们会逐渐成熟并形成网络,并最终生成网络功能。这样MEA板上每个电极就都可以捕捉到毫秒级的神经元自发放电,为您在时间和空间两个维度提供精准的实验数据。您还可以通过电刺激或者光刺激进一步拓展实验设计。适用样本原代神经元细胞,iPSC衍生神经元,脑片,iPSC衍生神经球/类器官/迷你大脑三个层面了解神经网络功能神经细胞(橙色)经培养覆盖于固定在MEA板底部的电极(灰色)上。Maestro MEA系统检测神经网络的功能,包括电活动、同步性和网络震荡。Activity 电活动 如何判断神经元有没有功能?动作电位是一个重要标志。动作电位发放频率高表明其放电频繁;发放频率低意味着神经元电生理功能可能已受损。Synchrony 同步性 如何评判神经元间突触的功能?突触的存在使得神经元之间的联系成为可能。一个神经元的动作电位藉此得以影响到另一个神经元发放的可能性。同步性检测能够反映出突触连接的强弱,及不同的神经元在毫秒级别时间范围内产生同步放电的可能。Oscillation 网络震荡 如何确定样本的网络功能?有功能的神经网络是由兴奋性和抑制性神经元共同构成的。它的一个重要特征就是神经震荡,即不断变化中的神经活动高潮-低谷周期。而一个MEA孔内检测到的所有神经元电发放在时间轴上的规律就是该样本的震荡数据。PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。仅需三步:A将神经元培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地从三个层面(电活动、突触功能、网络震荡)定量分析神经元电活动。配套的其他分析软件,还能自动计算出多于25种类别的二级参数,供您进行数据深度挖掘。Maestro平台优势提供关键答案 与常规方法间接检测可兴奋性不同,Maestro MEA系统的测试直接反映神经元的动作电位。比较常见的间接技术如钙成像,无法捕获微小却重要的神经网络信号变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪细胞的可兴奋性,您才能回答这个关键问题:样本是否在以您期待的方式放电?无标记分析 Maestro MEA系统无创地检测神经元群落的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获神经元细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录神经元电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介神经疾病细胞模型,药物神经毒性筛选,神经细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控,神经球、脑类器官研究帕金森神经肌肉接头病脆性X综合症智障癫痫化合物神经毒理检测星形胶质细胞对神经元功能的影响精神分裂孤独症/自闭症脑瘫偏头痛蛇毒腺类器官前额叶痴呆精神类药物滥用/成瘾神经元代谢干细胞治疗/修复注意缺陷多动障碍/多动症高通量微电极阵列+光遗传的强大组合Axion公司创新的高通量光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询

遗传代谢疾病基因检测相关的方案

遗传代谢疾病基因检测相关的论坛

  • 【原创大赛】质谱技术应用于中国遗传代谢性疾病现状及防控对策

    [align=center]质谱技术应用于中国遗传代谢性疾病现状及防控对策[/align]出生缺陷已成为我国重大公共卫生问题,防控形势严峻。1、出生缺陷不仅导致胎儿的结构异常,还导致出生后的功能异常,包括先天畸形、先天性代谢病、染色体异常、先天性宫内感染所致的异常,以及先天发育残疾如盲、登、智力障碍等;2、出生缺陷总发生率为5.5%,由于我国出生人口多,导致出生缺陷总数远远高于其他国家;3、随着人口政策的调整,高龄、高危孕产妇带来了更大的挑战。而其防控对策受到仪器方法的限制,无法准确的对体内内源性物质定性定量。出生缺陷的特点有:1、疾痛种类繁多且复杂,达上万种;2、病因复系,可由遗传因素,环境因素或两因相互作用所致;3、有些出生缺陷根据临床将征即可诊断,但有些缺陷需要的诊断手段要复杂些,需要特殊检测手段和方法;4、有的出生缺陷可于出生时表现,有些出生缺陷则在生后一段时间才显示出来;5、疾病负担重,保障体系尚待进一步的提高。出生缺陷防控可分为三个级别,一级预防最佳时机为婚前和孕前,目的是预防出生缺陷的发生,措施有法律法规,孕前增补小剂量叶酸,婚前医学检查,孕前健康检查,孕前筛查,健康教育,营养干预,出生缺陷咨询,遗传咨询等。二级预防最佳时机为孕期,目的是避免致死,严重致残缺陷儿出生。措施为产前超声筛查与诊断,PCD,产前Dowm综合征血清学筛查/NIPT,产前诊断技术(CVS, AC, FISH, BOB, CMA, CGH等)。三级预防最佳时机为新生儿时期,目的为先天性疾病早筛查及早诊断并及时有效治疗,措施有新生儿疾病筛查及诊断(包括听力筛查) ,出生缺陷的疾病治疗。出生缺陷防控标志性事件:1994年《母婴保健法》颁布;1996年出生缺陷检测机构达460家;2002年颁布《新生儿筛查技术规范》;2003年颁布《产前诊断管理办法》;2019年健康中国行动2030年计划。2018年中国出生缺陷精准防控的进展:2018年8月国家卫生能康委颁布《关于印发全国出生缺陷综合防治方案的通知》(国卫办妇幼发2018) 19号,总目的:构建覆盖城乡居民,涵盖婚前、孕前、孕期、新生儿和儿童各阶段的出生缺陷防治体系,为群众提供公平司及、优质高效的出生缺陷综合防治服务,预防和减少出生缺陷,提高出生人口素质和儿童健康水平。具体目标(到2022年)出生缺陷防治知识知晓率达到80%,婚前医学检查率达到65%,孕前优生健康检查率达到0%产前筛查率达到70%。新生儿遗传代谢性疾病缩查率达到90%,新生儿听力筛查率达到0%,确诊病LI治疗率均达到80%先天性心脏病、唐氏综合征、耳聋、神经管缺陷、地中海贫血等严重出生缺陷得到有效控制。2018年中国出生缺陷精准防控的进展金国出生缺陷防治人才培训项目:2018年正式启动, 2020年到2万人, 2019年扩展到3500人。首批启动12个省(山东、山西、辽宁、浙红、河南、湖南、湖北、福建、四川、贵州、甘肃、广西)。2019年扩展到24个省,国家投入2600 万+3780万,培训2400-3500人,集中培训一周,临床进修七周,线上学习四周。而质谱串联液相色谱技术应用于遗传代谢性疾病的筛查率逐年增加,各省均加大投入对我国遗传代谢性疾病的防控。新生儿遗传性疾病遇到空前的挑战与机遇:1、新生儿筛查的病转扩大,市场的规范;2、在关挂确在服务的同时,还需更加关挂诊断、治疗的后续服务;3、新生儿遗传代谢性疾病筛查、诊断与治疗的人才培养;4、新生儿筛查技术规范化的修订与出台;5、咨询与技术发展同步提高;6、基因筛查与诊断受到关注。

  • 基因芯片技术在疾病耐药性检测中的应用

    基因芯片技术对于疾病耐药性检测可从两个方面加以实现:1.在肿瘤中,通过检测肿瘤耐药基因的表达变化来分析对药物的抗性;2.在感染性疾病中,病原体的耐药性检测可通两种方式:表达谱芯片检测药物诱导的表达改变来分析其耐药性;寡核苷酸芯片检测基因组序列的亚型或突变位点从而分析其耐药性。一、多药耐药基因的表达检测肿瘤治疗中对细胞毒素药物的抗性是引起治疗失败的重要原因,是限制化疗的重要因素。机制是复杂的,由肿瘤的综合特征决定,如存活细胞的比例、血液的供给是否充分、特殊的细胞机制及多药耐药表型,多药耐药是指当肿瘤细胞暴露在某一化学治疗药物后会产生对此药及其他结构上没有联系的药物的交叉抗性,可由不同的机制引起,如MDR1、MRP、LRP等基因的过度表达,拓扑异构酶II和谷胱甘肽代谢的改变等,另外,其他促进DNA修复和抑制细胞凋亡的基因表达改变也可能导致多药耐药。检测多药耐药基因表达的变化不但可以研究恶性肿瘤的不同耐药机制,还可以用于临床诊断,以指导制定治疗方案。目前已建立了几种多药耐药检测方法,在RNA水平上有:Northern blot、Slot blot、RT-PCR、Rnase protection assay和原位杂交,从蛋白水平上的检测方法有免疫组化、Western blot及流式细胞仪等。这些方法一次只能对一个基因进行研究,效率低,难以定量检测耐药基因表达增加的幅度。基因表达谱芯片可同时对成千上万的基因表达进行检测,可以大大加速这方面的研究,在设计芯片时,可以将已知肿瘤相关基因及标记基因都点到芯片上,同时,芯片上还包含目前所有报导过的耐药基因。这样可以同时得到肿瘤的各个方面的信息。另外基因芯片还可以帮助发现新的耐药基因。二、病原体耐药性检测细菌对三种以上不同类抗菌药物耐药者即可称为多重耐药菌(multi-drug resistant bacteria, MDR)。MDR感染在全球的状况十分严重,对婴幼儿、免疫缺陷者和老年人的威胁巨大,1992年美国疾病控制中心(CDC)的资料表明,有13300例住院患者,是因为对所使用的抗菌药物耐药,细菌感染得不到控制而死亡。MDR感染已成为治疗上的难点和研究上的热点。MDR大多为条件致病菌,革兰阴性杆菌(GNR)占较大比例,如肠杆菌科中的肺炎杆菌、大肠杆菌、阴沟杆菌、粘质沙雷菌、枸橼酸菌属、志贺菌属、沙门菌属等,以及绿脓杆菌、不动杆菌属、流感杆菌等。革兰阳性菌中有甲氧西林耐药葡萄球菌(MRS),尤以MRSA和MRSE为多;万古霉素耐药肠球菌(VRE),近年来在重症监护室(ICU)中的发病率有明显增高;青霉素耐药肺炎链球菌(PRSP),常引起肺炎、脑膜炎、菌血症和中耳炎,人结核分支菌等。此外尚有淋球菌、脑膜炎球菌、霍乱弧菌等。耐药性又称抗药性,一般是指病原体的药物反应性降低的一种状态。这是由于长期应用抗菌药,病原体通过产生使药物失活的酶、改变原有代谢过程,而产生的一种使药物效果降低的反应,因而作用的剂量要不断增加。细菌对抗菌药物的耐药机制可有多种,最重要者为灭活酶的产生,如β-内酰胺酶、氨基糖苷钝化酶等;其次为靶位改变如青霉素结合蛋白(PBPs)的改变等;其他尚有胞膜通透性改变,影响药物的进入;细菌泵出系统增多、增强,以排出已进入细菌内的药物;以及胞膜主动转运减少、建立新代谢途径、增加拮抗药物等,两种以上的机制常可同时启动。耐药菌及MDR的发生和发展是抗菌药物广泛应用,特别是无指征滥用的后果。找到耐药菌的耐药基因,从而根据这些耐药基因设计新型抗生素,或将耐药菌分成不同的亚型,针对不同的亚型在临床上使用相应的抗生素,达到改善治疗效果的目的。国外采用基因芯片技术,检测耐药菌基因的改变,即检测耐药基因。如Michael Wilson就曾使用此方法检测到肺结核杆菌中脂肪酸合成酶II、fbpC、efpA、fadE23、fadE24和ahpC基因发生改变与耐药性有关。提供了新药物作用的靶目标,并指导抑制这些靶目标试剂和药物的合成。在感染性疾病中,病原体的耐药性检测可通过两种方式:1.表达谱芯片检测药物诱导的基因表达改变来分析其耐药性;2.寡核苷酸芯片检测基因组序列的亚型或突变位点从而分析其耐药性。用基因芯片不仅可以同时检测耐药菌的多个耐药基因,还可以同时对多个耐药菌的多个耐药基因进行检测。对临床上用药和新药物的合成均具有指导作用。

  • 以生物路径丛概念从事复杂疾病之基因分析

    在后基因体时代,基因芯片 (microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。在许多努力和资源投入到寻找新的疾病基因后,许多单基因疾病已成功地找出致病基因。然而,在复杂疾病 (例如高血压、糖尿病及一些常见癌症) 的研究上,收获却不如期待中的丰富。大多数复杂疾病的研究中都可找出分布在不同染色体上的致病基因,但其与疾病仅有小至中等的连结 (linkage) 或关联性 (association),且只有极少数的致病基因能在大量人口资料中,仍对疾病的连结或关联性具有显着性。目前从复杂疾病研究找到的致病基因,大多数在跨研究的报告中皆不具重现性。 复杂疾病具异质性、多源性以肥胖为例,在2004年Dr. Perusse1的研究发现:与人类肥胖相关的113个候选基因 (candidate gene) 在50个全基因扫描研究中,仅有18个基因在五个以上的研究提出一致的正面相关报导。另外,2005年Dr. Agarwal2 的评论提到 (如图一所示),25个高血压基因在不同的连结或关联性研究中,有9个基因在连结性研究中负面相关的报导多于正面相关的报导。而25个基因中,多数在关联性研究中正面相关和负面相关的报导不相上下。 http://img.dxycdn.com/trademd/upload/userfiles/image/2012/12/A1354777030_small.jpg图1:2005年Dr. Agarwal 的评论中针对25个高血压基因在不同的连结或关联性研究中的统计报导 文献中将复杂疾病的致病基因在跨研究间缺乏重复性的现象,归纳出了几点解释。其中一个最广为接受的看法是这些多因子疾病的异质性 (heterogeneous)。另外,因在不同研究中,对各种表型 (phenotype,如血压、血糖) 定义上的不同和量测的不精确、对环境危险或保固因子 (如抽烟量,对污染物的摄取量) 的不同暴露程度以及不同人口之间基因背景的差异等因素,皆会遮蔽、加强或改变基因的作用并造成不同程度的疾病外显率 (penetrance)。 简而言之,由于复杂疾病患者病因的多源性,稀释了任何一个基因变异的效果。所以,当我们将许多病患集中在一起,试图比较他们的基因和正常人有何不同时可能会发现不同的致病基因,甚至亦会发现跟疾病无关而是与病患其他特性相关的基因。 生物路径丛 (Pathway Clster) 概念目前在复杂疾病的研究上,一般以使用类似的表型以减少样本间的异质性。然而,表型的同质化并不等于基因型的同质化。再者,一个疾病可能只是多种表型类似,但起源(基因)不同的病征组合。这个概念虽曾在文献中被提出过,但科学家所使用的简化表型方法并不尽理想。譬如在精神疾病领域,许多学者提出 ”endophenotype”,也就是「内在生物表型」这个概念。但他们所提出的操作方法,仅只是简单化(或减化)表型,譬如:以解剖学、影像学,或症兆定义上来减化,而没有着眼在减化「参与病征发展的生化路径」上。 这个问题的主要瓶颈在于科学家对于疾病发展的机制还不够了解。因此,中研院潘文涵教授3 提出以下建议:在现今大量产生的基因表现数据上,运用「数据探勘 (data mining)」的方法,进行群组分析 (cluster analysis);将这些资料分成若干个群组内相关,但群组间不相关的多个群组,每一个群组可能代表一两个少数源头基因、和一些他的下游基因的表现状态。所得群组同构型高且接近病原的潜在基因,因此可视为「生物路径丛」的指针。

遗传代谢疾病基因检测相关的耗材

  • 科研用BD PAXgene TM 全血RNA管 762165
    BD PAXgene TM 全血RNA管提供一份最接近人体内状态的RNA标本-血细胞RNA相关的RT-PCR检测-人类疾病基因转录谱的研究-其他RNA转录相关的检测
  • 呋喃它酮代谢物残留化学发光检测试剂盒
    呋喃它酮代谢物(AMOZ)检测试剂 盒(化学发光免疫分析法)使用说明书【产品名称】 呋喃它酮代谢物检测试剂盒(化学发光免疫分析法) 【包装规格】 100T/盒 【概述】 硝基呋喃类药物因有非常好的抗菌作用和药动力学的特性, 曾被广泛应用,作为禽类、水产和猪促生长的添加剂。但在长时 间的实验研究过程中发现,硝基呋喃类药物和代谢物均可以使实 验动物发生癌变和基因突变,正因为如此才导致此类药物禁止在 治疗和饲料中使用。 由于硝基呋喃类药物在体内很快就能被代谢,而在组织中结 合的代谢产物则能存留较长的一段时间,所以在分析此类药物的 残留时经常要分析其代谢后的产物,管理部门就以检测代谢产物 为手段达到检测硝基呋喃类残留的目的。呋喃唑酮代谢产物 AOZ; 呋喃它酮代谢产物 AMOZ;呋喃妥因代谢产物 AHD;硝基糠腙 (呋喃西林)代谢产物 SEM。 【检测原理】 试剂盒采用竞争法进行检测,温育结束后,加磁场沉淀,去 掉上清液,用清洗液清洗沉淀复合物,并吸干废液,除去未与磁 性微粒结合的物质,再将反应杯送入测量室中。仪器自动泵入两 种激发液,使复合物产生化学发光信号,通过光电倍增器测量发 光强度。仪器自动通过工作曲线计算得出检测结果。 【适用范围】 可定性、定量检测组织样品中呋喃它酮代谢物的残留量。 【检测方法】 1.试剂盒为即用型,不能分开使用。 2.使用本试剂盒前请仔细阅读试剂说明书以及全自动化学发光 免疫分析仪的使用说明书,按照相关要求进行测定操作。试剂使 用时,测定仪会自动搅拌磁性微粒,使其处于悬浮状态,如果想 快速进行检测,上机前请手动摇匀磁性微粒。试剂的相关信息可 以自动读取,一次读取相关信息即存入测定仪器,不需反复读取。 3.定标:通过测定高、低值校准品,将预先定义的主曲线上的每 个定标点调整(重新定标)为一个新的、仪器特异的测量水平, 即工作曲线。 4.定标频率:每天进行一次定标,更换不同批号试剂或者激发液 需要重新定标。 【注意事项】 1.使用前请详细阅读说明书,并将试剂水平摇匀。 2.请按照储存方法保存试剂,避免冷冻,冷冻后的试剂质量会发 生变化,请勿使用。 3.避免试剂接触皮肤、眼睛和粘膜,一旦接触,应立即用清水冲 洗接触部位。 4.不同试剂盒中各组分不能互换。 【储存条件及有效期】 1.试剂盒于 2~8℃避光未拆封状态下竖直保存,禁止冷冻。 2.有效期为 12 个月,在 2~8℃环境下保存时,稳定性可持续至所 标示的日期;开瓶后低温避光(2~8℃)可保存 1 个月。
  • 新羿 人EAR基因联合检测试剂盒
    人EAR(EGFR/ALK/ROS1)基因联合检测试剂盒(数字PCR法)用于体外定性检测非小细胞肺癌(NSCLC)患者组织样本中EGFR基因突变、ALK基因融合和ROS1基因融合。其中EGFR基因突变可检测19外显子缺失突变(Ex19Del、共检测29种基因型)、21外显子L858R突变及20外显子T790M突变、18外显子G719X突变(3种突变型)、20外显子插入突变(5种基因型)、S768I突变、21外显子L861Q突变、20外显子C797S突变(2种突变型)。ALK基因融合和ROS1基因融合检测采用融合诱导的不平衡转录法(Fusion-induced asymmetric transcription assay, FIATA),根据目标基因的5’端和3’端转录本数量差异,来确定目标基因是否发生融合。该方法不受融合伙伴和融合位点影响,既可检测已知融合,又可检测未知融合,有效避免假阴性结果。灵敏度高,准确性好,结果客观,实验操作简单快速。试剂盒采用新羿生物自主专利的微液滴数字PCR技术,具有准确、简便、快速、特异性高等优点,灵敏度高达0.1%。本试剂盒参照了FDA伴随诊断试剂标准,是高品质、严格质控的基因检测产品,可用于筛选适合EGFR酪氨酸激酶抑制剂(TKI)或ALK/ROS1抑制剂进行治疗的NSCLC患者,同时可辅助对肺癌患者进行高灵敏度早期复发监测,及用药期间疗效与耐药监测。订购信息 产品名称目录号规格 人EGFR 41位点突变检测试剂盒1221724测试 人ALK融合基因检测试剂盒 1225324测试 人ROS1基因融合检测试剂盒1225524测试

遗传代谢疾病基因检测相关的资料

遗传代谢疾病基因检测相关的资讯

  • NIH出资$3.13亿用于疾病基因组测序研究
    p   美国国立卫生研究院(NIH)将资助一些基因组测序分析中心,致力于破解人类常见病和罕见病的基因信息。NIH下属的国家人类基因组研究所(NHGRI)14日宣布成立“常见疾病基因组学中心(CCDG)”,该中心将利用基因组测序技术,从基因水平研究心脏病、糖尿病、中风以及自闭症等常见疾病产生的原因。NHGRI同时也宣布了其互补项目“孟德尔基因组学中心(CMG)”的下一阶段工作,将继续研究罕见遗传疾病(例如囊性纤维化和肌肉萎缩症)的基因致病机制。 /p p   NHGRI所长Green博士表示:“DNA测序的发展可帮助我们进一步探索人类疾病产生过程中基因是如何发挥作用的。我们将持续关注常见疾病和罕见疾病,希望能够揭示一些重要的基因信息。” /p p   CCDG的研究人员计划先对一组疾病、15万~20万个患者进行基因组测序,在基因组水平研究常见疾病产生的原因,及基因组的差异是如何影响患病风险的,同时也将开发出一套研究模型用于今后常见疾病的研究。CMG研究者将建立一个国际研究合作网络,对世界范围内存在的罕见疾病进行基因组测序。这两个项目通过研究引发疾病的基因以及基因组变异,有助于对疾病的诊断和潜在治疗。 /p p   NHGRI将在未来四年内分别资助CCDG和CMG项目2.4亿美元和4千万美元,同时出资约400万美元资助一个新的协调中心,促进这些项目者之间的合作、数据的分析和项目的推广。 /p p   除此之外,美国国家心脏、肺和血液学研究所(NHLBI)将同时资助CCDG和CMG项目,美国国家眼科研究所(NEI)将为CMG项目提供资助,这两个机构同属于NIH。 /p p   CCDG项目的开展代表着NHGRI的基因组测序计划(GSP)又向前迈出了一大步。最早期阶段,GSP是NIH对人类基因组计划的重要贡献。随着DNA测序成本的降低,GSP开始将重心转移到大规模基因组测序项目上,并组织成立 了“大规模基因组测序和分析中心”。这些测序中心进行了一系列开创性的基因组学研究,包括千人基因组计划,对世界各地不同人群中数千人进行基因组测序,记录不同个体的基因组差异性 和癌症基因组图谱(TCGA)计划,由NHGRI和美国国家癌症研究所合作,记录癌症相关的基因组变异信息。 /p p   常见疾病基因组学中心(CCDG) /p p   高血压、糖尿病以及精神疾病等常见疾病影响世界范围内数亿的人群,然而到目前为止我们都无法解释这些疾病产生的根源,因为它们的发生往往源自基因和环境因素的双重作用。 /p p   CCGD研究人员将首先关注心血管/代谢疾病以及神经精神性疾病,同时考虑研究其他疾病包括炎症/自身免疫病、骨骼疾病,阿兹海默症等。每一种常见疾病都代表着一系列的健康问题,从发病年龄到潜在的生物学改变都各不相同。对于每一种疾病,CCDG研究人员都将对数万个患者及正常对照人群进行基因组测序,NHGRI也将挑选一些其他疾病用于该中心后续的研究。 /p p   NHGRI基因组测序计划负责人Felsenfeld博士说:“该中心的研究人员计划利用基因测序,尽可能广泛地检测出与常见疾病相关的基因和基因组变异。这些基因信息将在我们的临床管理中起到非常大的作用。” /p p   NHGRI将在未来四年中为四个中心提供约2.4亿美金,NHLBI则额外提供2000万美金,具体资助情况如下: /p p   1. 圣路易斯华盛顿大学 6000万美元,4年 /p p   主要研究人员:Richard Wilson, Ph.D. /p p   2. 麻省理工学院-哈佛大学博德研究所 8000万美元,4年 /p p   主要研究人员:Eric Lander, Ph.D., Mark Daly, Ph.D., Stacey Gabriel, Ph.D.和Sekar Kathiresan, M.D. /p p   3. 休斯顿贝勒医学院 6000万美元,4年 /p p   主要研究人员:Richard Gibbs, Ph.D. /p p   4. 纽约基因组中心 4000万美元,4年 /p p   主要研究人员:Robert Darnell, M.D., Ph.D. /p p   孟德尔基因组学中心(CMG) /p p   NHGRI自2011年启动了CMG计划,总体目标是从基因组学角度系统地分析孟德尔遗传病产生的原因,这类疾病通常是由单基因突变引发的罕见疾病。到目前为止,已经发现了7400多种孟德尔疾病,并阐明了其中4300种疾病的潜在致病基因变异信息。 /p p   在过去的四年中,CMG研究人员对超过2万个人的蛋白编码区进行测序分析,发现超过740种致病基因,同时开发出一种分析工具可快速查找这些致病基因。 /p p   CMG计划负责人Wang博士介绍说:“罕见疾病为我们进行罕见和常见疾病的生物学研究提供了重要资源。CMG研究人员将继续利用基因测序和分析寻找孟德尔疾病产生的致病基因,尤其是发现新的致病基因。” /p p   NHGRI将资助4000万美元支持CMG计划,同时NHLBI和NEL也将分别资助800万美元和100万美元用于该计划实施。具体资助情况如下: /p p   1. 麻省理工学院-哈佛大学博德研究所 1340万美元,4年 /p p   主要研究人员:Daniel MacArthur, Ph.D.和Heidi Rehm, Ph.D. /p p   2. 耶鲁大学 1200万美元,4年 /p p   主要研究人员:Richard Lifton, M.D., Ph.D., Murat Gunel, M.D., Shrikant Mane, Ph.D.和MarkGerstein, Ph.D. /p p   3. 西雅图华盛顿大学和休斯顿贝勒医学院,1200万美元,4年 /p p   主要研究人员:Deborah Nickerson, Ph.D. (华盛顿大学), Michael Bamshad, M.D. (华盛顿大学) and Suzanne Leal, Ph.D. (贝勒医学院) /p p   4. 约翰霍普金斯大学和贝勒医学院,1160万美元,4年 /p p   主要研究人员:David Valle, M.D. (约翰霍普金斯大学) 和 JamesLupski, M.D., Ph.D. (贝勒医学院) /p p   GSP协调中心 /p p   GSP协调中心将促进项目者间的合作并进行项目推广活动,提升测序数据的利用率,并引导进行各种不同的数据分析工作。 /p p   NHGRI将提供以下资助: /p p   1. 美国罗格斯大学 400万,4年 /p p   主要人员:Tara Matise, Ph.D.和Steven Buyske, Ph.D. /p p br/ /p
  • 英国斥资3亿英镑启动癌症和罕见疾病基因组测序项目
    8月1日,英国首相卡梅伦宣布英国将投资3亿多英镑从事全球开创性癌症和罕见疾病基因研究,以革新疾病的诊断和治疗方法。   在该笔一揽子投资中,医学研究理事会将投入2400万英镑,以提供正确分析和解读患者数据的强大计算能力,为医生和研究人员提供参考。   在历时四年的该项目中,科学家将从事前沿性研究,破解10万个人类基因组。英格兰基因组学有限公司(Genomics England)和基因测序龙头公司Illumina将为此形成新的伙伴关系,提供基础设施和专长,以把计划变为现实。   对癌症和罕见疾病患者的基因进行测序能帮助研究人员和医生更好地了解疾病的发病状况。通过全新的测试、药物和疗法对医疗的未来进行革新,该项目有望为成千上万的罕见遗传疾病以及癌症患者家庭带来福音。
  • 博奥生物将参加第二届疾病基因组学研究国际论坛
    近年来,全基因组关联研究(Genome Wide Association Study,GWAS)被广泛应用于人类遗传学研究,发现了众多疾病的大量遗传易感基因/位点。对前期GWAS发现的遗传易感基因/位点进行精细定位,应用测序等技术搜寻疾病的罕见变异和突变,同时深入开展功能学研究,揭示出其在疾病发生、发展中的作用机制,进而推动转化医学的发展,显得尤为重要。为进一步探讨疾病基因组学研究,加深人类对自身疾病的认识,推动疾病发病机制研究,《自然遗传》(Nature Genetics)与安徽医科大学再度共同主办&ldquo 第二届疾病基因组学研究国际论坛&rdquo ,兹定于2012年5月17-19日在杭州黄龙饭店举行。   博奥生物凭借高质量的全方位服务平台,为研究人员提供了GWAS的一站式解决方案,支持客户发表了多篇高水平研究文章。其中2011年已发表SCI文章142篇,影响因子在5分以上的高档次文章达30篇。在此次疾病基因组学研究国际论坛中,博奥生物将全面展示在基因组关联研究中雄厚的科研实力,为国内外研究人员提供一流的服务。

遗传代谢疾病基因检测相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制