液相色谱氰基柱硅胶柱

仪器信息网液相色谱氰基柱硅胶柱专题为您提供2024年最新液相色谱氰基柱硅胶柱价格报价、厂家品牌的相关信息, 包括液相色谱氰基柱硅胶柱参数、型号等,不管是国产,还是进口品牌的液相色谱氰基柱硅胶柱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相色谱氰基柱硅胶柱相关的耗材配件、试剂标物,还有液相色谱氰基柱硅胶柱相关的最新资讯、资料,以及液相色谱氰基柱硅胶柱相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

液相色谱氰基柱硅胶柱相关的厂商

  • 天津市倍思乐色谱技术开发中心专业从事高效分离产品的研发、生产和销售。秉承“创新微球科技,打造色谱精品,促进科技转化,提升生活品质”的宗旨,中心致力于硅胶微球及其相关产品的开发和药物/生物应用研究,已成功开发了液相色谱柱/填料系列产品、固相萃取柱/填料系列产品、磁性微球/生物提取试剂盒产品、单分散聚合物微球产品、荧光量子点荧光微球产品和胶体金生物检测试剂产品。在产品研发和应用过程中,中心注重培养由材料科学,药物分析,生物技术等专业背景的科研队伍,不仅为产品的升级换代,中心的可持续发展打下基础,也为客户提供优质专业的技术支持和售后服务。
    留言咨询
  • 无锡加莱克色谱科技有限公司成立于2009年,是由美籍华人色谱专家和中科院科技管理人员共同创立的高科技企业,位于无锡(马山)国家生命科学园,致力于生产生物工程、制药、食品安全和环境检测等领域所急需的以聚合物和硅胶为基质的专用色谱填料,色谱柱、装柱系统、纯化设备以及分离纯化工艺和检测方法开发;是一家专业提供完整的生物医药分离纯化解决方案及设备、产线的集成商。加莱克公司拥有在美国知名企业从事20余年液相色谱填料研发和产业化的资深色谱专家团队,具有很强实战和创新能力,加莱克公司经过十多年的深耕细作,形成蛋白与抗体纯化、天然产物纯化和硅胶色谱填料三大技术平台,拥有10项发明专利、8项实用新型专利和近百种产品;并向市场推出四十余种产品,逐渐在生物医药纯化领域崭露头角;产品与技术已在国内众多药企广泛使用,并出口美国、俄罗斯、日本、印度和台湾地区等地区。为更好的解决客户需求,无锡加莱克色谱科技有限公司牵头国内知名厂商,大学研究机构,多个国内知名研究团队组成了战略合作联盟,为客户提供完整的生物医药解决方案,涵盖生物医药产品的工艺开发与优化、中试放大、工业级生产线设计等不同阶段、自动化控制、公用工程需求等方案的设计,相应生产设备提供、生产线的安装施工等,同时提供配套相关符合GMP要求的认证文件的制作和编写。希望通过加莱克的专业知识和技能,以及始终秉承“创新、专注、高效、诚信、责任、奉献”的企业理念,力求服务再多一点,质量再高一点,给客户和企业带来更优质的产品和服务,为我国生物医药产业的健康快速发展贡献一份力量。
    留言咨询
  • 赛谱锐思(北京)科技有限公司是一家专业的色谱仪器和色谱消耗品的生产商和供应商。我们一直致力于色谱和流体相关技术研究,公司产品包括分析型液相色谱,半制备、制备型液相色谱,同时推出了自己的品牌:SEP 反相树脂填料、SEP保护柱、SEP 样品瓶和SEP内衬管。 赛谱锐斯(北京)科技有限公司与德国迈克Dr Maisch色谱柱、全球最大的硅胶生产企业日本富士硅化工、著名的液相仪器生产企业美国Thermo公司和最早从事氘代试剂生产的美国CIL公司正式签署代理。赛谱锐思独立开发设计的色谱纯化系统有着广泛客户基础,自己生产的SEP保护柱和最小体积在线过滤器、二醇基硅胶、中压玻璃柱和中高压一体机在相关应用领域里赢得广大科研工作者一直好评和青睐。同时代理以下:Waters、YMC、三菱化学、DAISO、TOSOH、Agilent、 GE Sephadex LH-20、DAICEL手性柱、MERCK、岛津液相色谱仪、贺力氏替代灯和伊尔姆隔膜泵等相关色谱产品。 自创建以来,赛谱锐斯(北京)科技有限公司在“以诚信求发展,以质量求生存”的宗旨指导下凭借着自身强大的科研背景和专业细微的服务,始终提供优质的产品,积极进取,精益求精,不断拓展新产品、新项目,为客户全方位着想,在生产企业和客户之间建立了很好的合作关系。
    留言咨询

液相色谱氰基柱硅胶柱相关的仪器

  • 仪器简介:纳升(Nl)进样的NanoLC--适用于与质谱联机的液相色谱 随着现代分析水平的发展,对分析仪器的要求越来越向着微量、准确、快速发展,对仪器的检测手段及结果的要求越来越严格,对液相色谱来说,其检测器从紫外、视差、荧光发展到二极管阵列,而与质谱联机则是目前的时尚。色-质联机集高效分离、多组分同时定性和定量为一体,是分析混合物(主要是有机物)最为有效的工具,但由于液/质衔接的技术较为复杂,主要是高压液相和低压气相之间的矛盾,随着窄孔柱、毛细管柱等技术的出现,LC流量加给MS的负担有所减轻,但对于常规的液相,如何去掉液相的流动相仍然是液/质的主要问题。赛默飞向您介绍两种最新的技术,可以轻松地解决您的液相与质谱的联机问题。1、 如果您的实验室还没有液相色谱,请考虑戴安公司的UltMateTM技术。UltMate是一台集微量、毛细和纳升(Micro、Capillary and Nano)为一体的具有GLP功能的液相色谱,由微量泵、Famos自动进样器、柱箱(可选温控式)、带扫描能力的高灵敏度紫外检测器组成。2、 如果您的实验室已有了常规的液相色谱,希望与质谱联机使用,可选用戴安公司的LC/MS TOOLS,包括:①各种分流器,有用于Micro、Capillary 和 Nano HPLC的柱前分流器,有用于直接与MS、NMR和ELSD等检测器连接使用的柱后分流器。②具有双波长、Z型毛细流通池的高灵敏度UV/VIS检测器。③适用于Micro、Capillary 和 Nano HPLC的U型或Z型流通池,可用在多种标准HPLC紫外检测器上,④升级套件,可将标准流量的HPLC升级至Micro、Capillary 和 Nano HPLC,套件包括分流器、进样环、进样器、微孔柱、U-Z型流通池部分应用文献目录LC Packings毛细管/纳升级液相技术AN01LCP 用毛细管液相/质谱/质谱对药物代谢产物的快速确定AN02LCP 用超高流速的毛细管液相/质谱/质谱对血浆中的药物进行直接分析主要特点:1.提供各种惰性流路,试用于敏感生物样品分析2.是HTS理想设备,并适用于各种质谱二级质谱3.自动在线进行样品前处理脱气、消解、浓缩等4.适用于药物分析基因分析
    留言咨询
  • 作为岛津LC家族新成员,Nexera Mikros在流量范围(1 - 500 μL/min)上完美补充了现有产品线。相比半微流量液相色谱(流速100 μL/min至500 μL/min范围),Nexera Mikros在与LCMS联用检测目标化合物时可以获得更高的灵敏度;与纳流LCMS系统(流量范围在100 nL/min至1 μL/min范围)相比,可以获得更短的分析时间和更好的稳定性。另外,Nexera Mikros提升了可操作性,同时通过更小的系统死体积实现更高的灵敏度。便捷的UF-Link技术,可以一键连接和断开LCMS离子源接口和分析色谱柱。在低浓度成分的药代动力学分析、血液中的激素及其他痕量组分分析中,用于微流量液相色谱LCMS联用系统的Shim-pack MC分析柱和Shim-pack MCT捕集柱可以抑制样品吸附和色谱峰拖尾现象,提高检测灵敏度。Nexera Mikros满足各种用户需求,例如节省新药研发周期及成本,缩短分析时间,便捷维护。同时,与LCMS联用时,还能展现良好的灵敏度和便捷性。 产品特点: 1. 卓越的灵敏度相比半微量系统,该产品提供了高达数倍至数十倍的灵敏度,通过优化适用于低流速下的ESI喷针相对于进样部分(脱溶剂管,DL)的位置,将离子化效率和离子通过率最大化。CTO-Mikros设计为可以安装在MS主机单元上,色谱柱和ESI喷针直接相连以减少死体积,以及由于峰展宽带来的灵敏度损失。2. 良好的耐用性和稳定性优化后的喷针和DL夹角提高了离子的通过效率,同时去除了过量的溶剂分子。这样可以减少污染的影响,并能进行稳定的分析。3. 优异的可操作性该产品是基于现有的离子源的设计,由于其便于更换、拆卸附件和维护,已经受到用户的好评。我们还开发了UF-Link,可以零死体积一键连接色谱柱和ESI毛细管。与常规半微流量液相色谱相比,在微流量液相色谱中,样品在管路连接等处的死体积中会出现显著的样品扩散。由于这个原因,没有死体积的连接是必要的,这样可以稳定地提供高灵敏度。使用UFLink,用户可以通过简单的倾斜来连接色谱柱和ESI毛细管,确保无死体积。UF-Link可以广泛用于岛津和其他公司的多种色谱柱。通过高分辨率的相机,可以方便地从电脑上检查喷雾状态和位置,必要时可以通过简单的程序进行优化。 4. 宽的流速设定范围由于精确的压力反馈控制、内置的主动入口单向阀和溶剂输送管路的自动切换控制,脉动流量值显著降低。因此,溶剂流速范围可以在1 μL/min到500 μL/min之间广泛地设置。 5. 在微流量区域的高通量分析该系统可以从进样过程带来的压力下降中快速恢复,从而提高了微流量区域的分析通量。 6. 追求分析稳定性通过自动压缩算法可以自动测量溶剂的压缩性,并在压力波动过程中提供修正函数来优化流量。此外,在分析开始时,LC-Mikros柱塞操作是同步的,因此分析总是从相同的柱塞位置开始,从而提高分析稳定性。
    留言咨询
  • 高效液相色谱是使用范围最广泛的分析仪器,大多数实验室都配备高效液相色谱以满足不同化学品的分析需求。面对市面上各种高效液相色谱,如何选购一款既能满足自身检测需求,又具有超高性价比的产品,成了令很多用户关心和头疼的问题。如果你还在犹豫不决,那么您可以尝试这款CLC-3200高效液相色谱系统。CLC-3200高效液相色谱系统是由专注离子色谱20年的青岛盛瀚色谱专门为国内不同用户倾力打造的高性价比液相色谱。搭配盛瀚离子色谱通用的智能软件工作站,将会给您非凡的体验。  典型配置  二元高压系统+自动/手动进样器  1.搭配多溶剂管理体统,每个流路搭配两种流动相,可根据需要一键切换流动相。  2.双泵精准输液,搭配微体积混合器,具有卓越的梯度精度和稳定性,且延迟体积较小,维护简单。  3.广域控温柱温箱,最高65度稳定控温,数据重现性好。  4.搭配自动进样器,摆脱人工进样烦恼,二十四小时不间断进样,更快完成检测数据。  5.搭配手动进样器,超高性价比的不二选择,适合少量样品检测。  6.适配所有检测器,可搭配质谱联用,根据检测项目随意搭配适合检测器,满足各种常规分析需求。  检测示例  中药分析-HPLC法测定吴茱萸中的吴茱萸内酯、吴茱萸碱和吴茱萸次碱含量  吴茱萸为芸香科植物吴茱萸、石虎或疏毛吴茱萸的干燥近成熟果实。味辛、苦,性热,归肝、脾、胃、肾经。有散寒止痛,降逆止呕,助阳止泻的功效。用于厥阴头痛,寒疝腹痛,寒湿脚气,经行腹痛,脘腹胀痛,呕吐吞酸,五更泄泻。  食品安全-HPLC法测定食品中苏丹红的含量  苏丹红主要有苏丹红Ⅰ、苏丹红Ⅱ、苏丹红Ⅲ、苏丹红Ⅳ四种物质,属于偶氮类化合物,具有致突变性和致癌性。我国禁止在食品及入口接触材料中添加。苏丹红是一种染料,颜色鲜艳且不易褪色,有不法生产者将苏丹红添加到食品及入口接触材料中,维持产品鲜艳颜色。检测出苏丹红的报道时有发生,选用高效、快速的检测方法是非常必要的。高效液相色谱作为一种重要的检测手段被广泛用于苏丹红含量的检测中来。  环境保护-HPLC法测定环境中多环芳烃的含量  多环芳烃(PAHs)是目前环境中普遍存在的污染物质。此类化合物对生物及人类的毒害主要是参与机体的代谢作用,具有致癌、致畸、致突变和生物难降解的特性。
    留言咨询

液相色谱氰基柱硅胶柱相关的资讯

  • 世界主流药典标准中液相色谱柱应用情况分析
    p style=" text-align: center "    strong 液相色谱柱进展及其在药品标准中的应用(三) /strong /p p style=" text-align: right " strong   ——液相色谱柱在药典标准中的应用情况分析 /strong /p p    strong span style=" color: rgb(112, 48, 160) " 3 液相色谱柱在药典标准中的应用情况分析 /span /strong /p p   新颁布的2015 年版《中国药典》自2015 年12月1 日起正式实施。新版药典的最大变化是将原来各部的附录整合成了第四部,形成通则并对通则制定了更为合理的编码,液相色谱法列于2015 年版《中国药典》(四部)中通则0512 中。 /p p    strong span style=" color: rgb(0, 112, 192) " 3.1 《中国药典》中使用的各类色谱柱 /span /strong /p p   液相色谱方法在新版《中国药典》中得到了更广泛的应用,使用方法也更加合理。以二部化药为例,在修订的415 个品种中,有的新增了液相色谱检测方法,如本芴醇在有关物质检查项下,采用液相色谱法取代原来的薄层色谱法,规定杂质Ⅰ与主成分的分离度,以及杂质峰面积等要求,并列出了杂质Ⅰ的结构信息,这不仅使杂质的信息更加明确,而且对杂质限量的控制更加准确 有的对流动相进行了修订,如叶酸的含量检测中,通过添加离子对试剂―四丁基氢氧化铵,增加了叶酸的保留,流动相中甲醇的比例也从原来的每升80 mL 增加到270 mL,这样有利于防止色谱柱C18 键合相在高水相比例下产生疏水塌陷。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/01c4db8b-eba9-4447-9396-504936620f73.jpg" style=" " title=" 表1_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 表1 2015 年版和2010 年版中国药典一部中液相色谱柱的使用情况 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/77e42643-539c-48fa-a129-075f52643f0f.jpg" style=" " title=" 表2_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 表2 2015 年版和2010 年版《中国药典》二部中色谱柱的使用情况 /span /strong /p p   但是,与液相色谱柱和填料种类的快速发展相比,在中国药品标准中,包括在《中国药典》中,高效液相色谱柱的应用显得较为单调,缺乏活力。表1、表2 分别列出2015 年版和2010 年版《中国药典》一部和二部使用液相色谱柱的情况。由表2 可以看出,在各类药品分析中,绝大部分方法采用的是反相液相色谱法,色谱柱则是以C18 柱为主 与2010 年版相比,2015 年版《中国药典》中C8 柱的使用数量翻了1 倍 而其他各种类的液相色谱柱使用比例则较少。 /p p    strong span style=" color: rgb(0, 112, 192) " 3.2 各国药典对液相色谱柱规定 /span /strong /p p    strong 3.2.1 关于色谱柱类型描述的差异 /strong /p p   美国药典对色谱柱分类则较为详细,收载的各类液相色谱固定相(柱)类型已经超过80 种,除C18 柱、C8 柱、氰基柱、氨基柱、苯基柱外,还有C6 柱、C4 柱、C1 柱、五氟苯基(PFP)柱等。根据是否化学改性,是否封端,是否增加多官能基团以及是核壳结构还是多孔型结构等不同,以C18 为基质的色谱柱分类为L1、L2、L42 和L67等,以C8 为基质的色谱柱分别有L7、L28、L42 和L44 等。L1 柱对应于目前使用的各种C18 分析柱,L2柱常作为保护柱使用。由此可知,美国药典提供的可选择的色谱柱比较丰富。 /p p   不过,尽管各厂家或品牌C18 在分离效果上存在一定差异,美国药典却没有对各种商品化C18 再进一步细分。 /p p   在英国药典中,当用到特定色谱柱时,色谱柱信息描述会具体到色谱键合相类型、尺寸、键合相官能团描述、是否封端、是否通过碱性脱活处理等。团描述、是否封端、是否通过碱性脱活处理等。 /p p   和欧美药典相比,《中国药典》对液相色谱法的色谱柱描述过于简单粗放,色谱柱的种类明显偏少。方法中仅描述色谱柱填料种类的主要大类:如十八烷基硅烷键合硅胶(C18 柱)、辛烷基硅烷键合硅胶(C8柱),氰基硅烷键合硅胶(氰基柱)、氨基硅烷键合硅胶(氨基柱),苯基硅烷键合硅胶(苯基柱)等。使用者无法根据不同性质的化合物选择适合分离的色谱柱。 /p p   为解决这一矛盾,满足某些特殊分析目的,或为了简化色谱柱选择的过程,新版药典在某些品种的标准正文中对色谱柱给出了具体描述及品牌的信息。 /p p   如在新颁布的2015 年版《中国药典》新增品种拉米夫定及片剂中,含量测定及有关物质测定项对所使用的色谱柱描述为“用十八烷基硅烷键合硅胶为填充剂(Zorbax XDB-C18,4.6 mm× 250 mm,5 μm 或效能相当的色谱柱)”。检测人员可直接选择对应色谱柱进行检测,避免进行盲目的大量色谱柱筛选工作。但详细列明色谱柱信息描述似乎从一个极端走到了另一个极端,从完全的粗放转到特定的选择。在一定程度上,这种具体至色谱柱厂家或品牌仍不是很客观的方法。因为某种色谱柱并不一定仅有1 家公司生产或提供,除非经过同类型不同厂家多根色谱柱的充分研究和实验对比,才能规定具体的色谱柱品牌,否则就意味着可能放弃了使用分离更好的色谱柱。 /p p   表3列举了中国药典与英美药典中几个色谱柱使用实例,以便比较各药典对色谱柱分类及应用情况。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/b9c5dbd6-b7db-4675-8dc1-e4583a4f4ce2.jpg" title=" 表3_副本.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 表3 中国药典与欧美药典中几个色谱柱使用实例的比较 /span /strong /p p   由表3可以看出,美国药典列出了色谱柱的尺寸、填料类型编号 而英国药典不仅列出了色谱柱的尺寸和颗粒粒径,还对固定相进行了详细的描述,如封端的十八烷基键合硅胶,适合高比例水为流动相的烷基键合硅胶,碱去活封端十八烷基硅烷硅胶,二异丙基氰基柱等。 /p p   另外,以埃索美拉唑(esomeprazole)缓释胶囊为例,表4 列出在美国药典(USP 35-NF 30)官方网站中可以查询到分析用到的色谱柱信息。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/4620d675-45bb-4f17-8713-e21264ea69f6.jpg" title=" 表4_副本.jpg" / /p p style=" text-align: center "    strong 表4 美国药典中埃索美拉唑使用的色谱柱信息 /strong /p p   从表4 可见,美国药典对方法中用到的色谱柱进行了归类和详细描述,也列出了替代的色谱柱。对于分析人员来说,提供了色谱柱选择方面的便利性。总之,在中国药典中,无论是色谱柱填料种类,还是色谱柱填料粒径和孔径等方面的描述,均显得较为简单、粗放,科学性和严谨度均有待提高。 br/ /p p    strong 3.2.2 关于使用不同色谱柱时的方法转化 /strong /p p   为满足系统适用性的要求,当选择1 根合适的色谱柱时,其尺寸应在一定要求的范围内。根据待分离分析药品的特性和实际分析需要,当使用的色谱柱填料尺寸规格发生变化时,各国药典对色谱柱柱径和填料粒径分别有相应的限定。美国药典(& lt 621& gt CHROMATOGRAPHY)在色谱适应性要求中对色谱柱长度、粒径、内径等变化范围作了限定。在USP 36及以前的版本中,无论是等度还是梯度条件,色谱柱的粒径可以减小50%,不能增大 柱长有70% 的变化选择余地,流速也可有50% 的变化范围,色谱柱的内径以及进样量可根据情况调整。不过,从USP 37 起,在等度条件下,色谱柱尺寸发生变化的范围采用柱长与粒径的比值(L/dp)或柱效N 来进行限定,要求L/dp 保持恒定,或者N 的值介于-25%~+50% 之间。在梯度条件下,则色谱柱尺寸不宜发生变化,否则需要做方法的验证,见表5。 !--621-- /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/51f50c94-cd62-4ae5-a52a-d6da0390e989.jpg" title=" 表5_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 表5 美国药典对色谱柱尺寸及条件变化的限定 /span /strong /p p   中国药典虽然对色谱柱柱径和填料粒径也有相应规定,但是仅仅区分亚2 微米柱和常规柱(中国药典现在实际上使用的几乎都是常规柱)。某些特殊分析中,如复杂组分、指纹图谱和有关物质的分离,常对色谱柱有更苛刻的要求,即使明确了色谱柱填料具体种类,常规柱的柱内径和填料粒径范围定义太宽,会由于色谱柱的内径和填料粒径的差异,无法实现理想的分离和重现性的效果。 /p p   按照仪器公司商业化的概念,采用亚2 微米色谱柱的方法为超高效液相色谱法,采用常规柱的方法为高效液相色谱法。但是,简单地根据粒径的不同将色谱填料分为亚2 微米填料与常规柱填料(3~10 μm)并不是一种科学的分类法,至少未能涵盖粒径为2~3 μm 的色谱填料柱。以美国药典要求的色谱柱粒径变化要求,当选择粒径2.7 μm 的色谱住替代5 μm的色谱柱时,其变化的范围是允许的,只要保持L/dp或N 值在-25%~+50% 范围内。实际上,填料粒径对色谱分离的影响是一个量变过程,粒径在限制性范围内改变不会引起分离机理的改变。但是,量变到一定程度必然引起质变,质变是量变的必然结果,当粒径降低到一定程度时,高效液相色谱仪到超高效液相色谱仪的质变归因于填料粒径大小降低到一定程度引起的压力突变,进而可导致分离机理的改变和各成分峰的保留时间变化。因此,使用常规柱填料或亚2 微米填料的色谱方法转化时,方法验证是必要的,但是,中国药典还没有明确规定应如何验证以及选择何参数进行验证。 /p p   尽管中国药典2015 年版没有将超高效液相色谱法作为一个新方法单独收载,并不是否认此技术革新,而是在高效液相色谱法中作了系统的、科学的、实事求是的描述。这样既解决了概念上混乱的问题,也是对这一技术革新在药物分析,特别是在标准中应用的一种认同,对这一技术在药物分析、药品检验中的广泛应用将起着一定的积极推动、引导作用。毫无疑问,亚2 微米填料以及表面多孔型填料技术将是高效液相色谱发展的一个重要方向。 /p p    strong 3.2.3 对药典或药品标准中使用和描述色谱柱的建议 /strong /p p   由于商品化的色谱柱填料种类、粒径尺寸、颗粒类型或选择性差异等非常丰富,为了避免方法描述中的不确定性,建议对中国药品标准中包括中国药典使用的色谱柱种类进行归纳总结,国家药典委员会适时对各种可在药品中获得应用的色谱柱进行科学的归类划分,建立相应的色谱柱列表,以便药品标准工作者或检验人员参照使用 各色谱柱生产商或供应经销商应对归类划分工作积极密切配合,提供必要、准确、科学、可靠的相关信息和全面的技术支持。同时,为建立方法提供了更多的选择,应鼓励在建立分析方法时,药物分析工作者应大胆尝试使用各种有利于提高选择性的色谱柱,不要仅限于常规C18 柱等。 /p p   从欧美药典对固定相描述或提供的信息来看,细化色谱柱的分类能给色谱分离分析带来积极影响:一方面,由于可从一大类填料中选择到最适合的色谱柱用于分析,从而可获得最佳的分离效果 另一方面,在复杂体系分离时,如中药成分分析或化学药有关物质测定中,如在药品标准中明确规定了色谱填料性质参数的描述信息,有利于克服复杂基质的干扰,提高方法的可靠性,或提高色谱柱的选择性。 /p p   在建立相关药品标准时,应适当增加色谱柱尺寸如长度、内径、粒径等的描述 必要时,在充分比对验证的前提下,是否对使用何种色谱柱品牌予以具体规定也是可以探讨的。 /p p   为了提高色谱柱的使用寿命,当进行一些具有复杂基质或辅料的原料药或制剂分析时,建议尽可能地使用保护柱,并在方法中说明。在许多品种分离分析中,美国药典都采用了预柱,这对保护色谱柱不受污染,提高色谱柱寿命是极为有利的。 /p p   建议中国药典适时在相关的通则中增加对方法转化的描述,提出方法转化的要求,这样有利于分析人员在方法转化时有据可依。 /p p    strong span style=" color: rgb(112, 48, 160) " 4 结语 /span /strong /p p   液相色谱柱技术的发展趋势是高效快速分离,亚2 微米填料色谱柱及亚3 μm 的表面多孔型填料在近年来得到了飞速的发展和应用,各种选择性的色谱固定相和多种分离模式解决了许多分离难题。色谱柱填料类型和种类繁多,在制定药典或相关药品标准时,有必要细化色谱柱的分类,从而有利于更科学、更高效地选择和利用恰当的分离技术实现药物中复杂组分的可靠分析。 /p p    span style=" font-family: 微软雅黑, " microsoft=" " strong 注:近年来,液相色谱柱技术发展的非常迅速,这同时也促进了高效液相色谱法在药物分析中更为广泛的应用。据统计,一个典型的制药企业甚至可能会拥有成百上千支液相色谱柱,在一种药物分析方法的开发过程中,如何选择适当的色谱柱往往会给实验人员带来很多困扰。 /strong /span /p p span style=" font-family: 微软雅黑, " microsoft=" " strong   本文献原文刊登于《药物分析杂志》2017年37卷第2期,作者为洪小栩、石莹、宋雪洁等八人,分别来自国家药典委员会、扬子江药业、安捷伦科技和江苏省食品药品监督检验研究院等单位。本文为该文献的最后部分,详细介绍了世界主流药典及中国药典中液相色谱柱的使用情况,为广大色谱柱用户以及色谱柱供应商提供了相关参考。 /strong /span /p p br/ /p
  • SGLC:浅谈液相色谱柱现代史
    p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 色谱是一种分离分析手段,分离是核心,因此担负着分离工作的色谱柱是色谱系统的心脏。目前市场上色谱柱种类和规格繁多,在制药、食品、环保、石化、农林、医疗卫生等领域有应用广泛,相关从业人数不断增长。 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 以往大家比较关注色谱柱的应用情况,为使大家更全面的了解色谱柱类别、相关技术及最新应用进展等内容,仪器信息网特别策划了 strong “ /strong /span a href=" https://www.instrument.com.cn/zt/spzfl" target=" _self" strong span style=" font-family: 楷体, 楷体_GB2312, SimKai text-decoration: underline " i 走近色谱的‘心脏’——色谱柱新技术新应用 /i /span /strong /a span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong ” /strong 专题,并邀请色谱柱主流厂商来分享对色谱柱类别、技术发展及最新应用进展的看法。以下为岛津(上海)实验器材有限公司市场部(SGLC)相关负责人分享的对液相色谱柱现代史的看法。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体, SimSun " “千锤万凿出深山,烈火焚烧若等闲”,于谦的《石灰吟》用来记述硅胶填料的生产、制作过程,也恰如其分。从最初的硅酸岩原材料处理成水玻璃,进而通过溶胶-凝胶等方法制备成多孔性硅胶微球,最后在硅胶表面进行化学修饰,键合特定的基团,这其中每一道工艺的优化都凝聚了色谱柱相关从业人员数十年来不懈的努力。 /span /p p style=" text-indent: 2em " span style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun " strong 填料基质:硅胶vs聚合物 /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 在过去的五十年中,高效液相色谱(HPLC)色谱柱的开发与HPLC仪器开发并行,有时甚至超过了仪器的进步。 随着色谱分离技术的发展,对固定相填料也有了更高的要求,现有HPLC填料大部分为硅胶基质,其次为聚合物基质。硅胶因原材料经济、高机械强度、高比表面积、化学修饰简单等优点而应用广泛,但同时也存在从原材料、制作过程中继承的缺点——金属残留、硅醇基残留以及Si-O键在碱性条件下(pH& gt 8)断裂的问题。相较于硅胶填料,聚合物基质的优势在于无碱性吸附、无金属离子残留,pH值稳定性好,但也存在柱效低和溶胀的问题。80年代,色谱研究人员创造性的将硅胶和有机聚合物的优势结合,通过在硅胶表面包覆一层聚合物薄膜,使内部的硅胶基体不受影响,具有高机械强度和分析效率;同时表面的聚合物层保护颗粒在碱性条件下不会溶解(耐pH=10),阻隔硅胶中残留的金属及硅醇基与化合物的相互作用(图1)(比如岛津Shim-pack GIST 系列,ACE Super系列,大阪曹達Capcell pak MG-III系列等)。进入21世纪后,研究人员又开发了“杂化颗粒技术”,用烷基桥来取代连接在碱性条件下不稳定的Si-O键,使其pH耐受范围拓宽到1-12(图2,3)(比如岛津Shim-pack Scepter系列, 沃特世XBridge系列等)。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/25eb2763-8d26-4313-9301-26847e4aa249.jpg" title=" 1_副本.png" alt=" 1_副本.png" / /p p style=" text-align: center " span style=" font-size: 12px font-family: 宋体, SimSun " strong 图1 聚合物包被硅胶 /strong /span /p p span style=" font-family: 宋体, SimSun " strong span style=" font-family: 宋体, SimSun font-size: 14px " /span /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/9f8cbcd6-2fcb-44eb-b47e-351c9e14e79e.jpg" title=" 2_副本.png" alt=" 2_副本.png" / /p p style=" text-align: center " span style=" font-family: 宋体, SimSun font-size: 12px " strong 图2 有机杂化硅胶 /strong br/ /span /p p span style=" font-family: 宋体, SimSun " strong span style=" font-family: 宋体, SimSun font-size: 14px " /span /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/22c959b8-51ab-4d72-8956-e859ea991aaf.jpg" title=" 3_副本.png" alt=" 3_副本.png" / /p p style=" text-align: center " span style=" font-family: 宋体, SimSun " span style=" font-family: 宋体, SimSun font-size: 12px " strong 图3& nbsp 在不同的pH 流动相条件或者不同的流动相添加剂条件下, 岛津Shim-pack Scepter LC 色谱柱都表现出了优异的稳定性 /strong /span strong span style=" font-family: 宋体, SimSun font-size: 14px " /span /strong br/ /span /p p style=" text-indent: 2em " span style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun " strong 色谱发展趋势之一:快速液相 /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 快速液相体现在表面多孔硅胶的发展和小粒径短柱日益广泛的应用两个方面。20世纪60年代在高效液相发展的初期,便已出现了薄壳型硅胶固定相,使液相色谱实现了高效和快速分离。但受低的样品负载量限制,未能推广使用。直到2007年,一种新研制的2.7um(1.7um熔融硅核和 0.5um的多孔层薄壳)表面多孔粒子的出现,总体积约75%为多孔结构,解决了早期薄壳粒子负载样品容量低的问题。而柱性能的突破来自2013年,亚2um 表面多孔硅胶粒子的使用,实现了更高的柱效(比如岛津Shim-pack Velox系列,安捷伦Poroshell系列,沃特世Cortecs系列等)。QA-QC部门、LCMS和LCMSMS分析对高通量的需求,以及组合化学领域对提高灵敏度的需求,都在驱使向小粒径短柱和表面多孔硅胶柱的转变。但受现有仪器技术的限制,短期内不会出现小于1um填料的应用。 /span /p p style=" text-indent: 2em " span style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun " strong 色谱发展趋势之二:丰富的固定相选择 /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 以C18为代表的高效反相液相色谱柱一直被描述为药物发现、方法开发的心脏,常规HPLC方法的开发几乎总是从C18作为出发点。C18固定相主要利用疏水性保留和分离化合物,因此当遇到在C18柱上保留弱的化合物(如:极性化合物)和疏水作用力相似的物质(如:同分异构体)的分离问题时,实在是力有未逮。近年来色谱柱研究人员开发了键合相迵异的色谱填料以增强色谱柱的选择性,从而满足实际样品分离过程的需要。如针对极性化合物及其杂质的分析项目而开发的五氟苯基(PFPP)色谱柱,由于含有五个氟,因此具有较强的氢键作用力和阳离子交换作用力,对芳香族化合物和含硝基、卤素的化合物,具有强大的分离能力,保留能力甚至可以达到接近HILIC模式的强度(如岛津Shim-pack Scepter PFPP系列, 岛津Shim-pack Velox PFPP系列)。另一类无法用反相C18柱解决的分离难题就是异构体的分离。二苯基柱就是针对这一类难题而开发的色谱柱(如岛津Shim-pack Biphenyl系列,图4),键合的两个联苯具有十字交叉结构,立体选择性很强,因此对位置异构体的识别度较高,适合用来做诸如基因毒性杂质的分析项目。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f87756b8-cff9-48c6-82c0-0c08211a1ce0.jpg" title=" 4_副本.png" alt=" 4_副本.png" / /p p style=" text-align: center " span style=" font-size: 12px font-family: 宋体, SimSun " strong 图4& nbsp 二苯基柱分离维生素D3及其3种同分异构体,展现了优于普通C18固定相的空间选择性 /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun " strong 色谱发展趋势之三:特定解决方案色谱柱 /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 随着生物制药行业的持续增长,新兴的生物仿制药在生物制药领域也越来越受欢迎。然而,生物仿制药可在制造过程中经历各种翻译后修饰,影响产品的生物活性和稳定性。准确表征和监测生产过程中如蛋白质聚集、电荷异构等关键质量属性(CQAs),是确保药物研发稳定性和过程一致性的重要环节。专为解决此类问题而此设计的液相色谱柱也应运而生(图5,6)。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f1b2e341-23b5-4c58-a329-2221fc9f5313.jpg" title=" 5_副本.png" alt=" 5_副本.png" / /p p style=" text-align: center " span style=" font-size: 12px font-family: 宋体, SimSun " strong 图5& nbsp 盐梯度方法,用岛津Shim-pack Bio IEX分离贝伐单抗生物仿制药的电荷异质 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c13665cd-a00d-4a96-8015-944434c12eb8.jpg" title=" 6_副本.png" alt=" 6_副本.png" / /p p style=" text-align: center " span style=" font-size: 12px font-family: 宋体, SimSun " strong 图6& nbsp 岛津Shim-pack Bio Diol 分离贝伐单抗生物仿制药的单体和二聚体 /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 从60年代第一台商品化的高压液相色谱仪器的面世,液相色谱已经历了50多年的发展历程,在这过程中,针对小分子的分离问题,衍生了全多孔颗粒和表面多孔颗粒的技术。近年来,更多的兴趣转向了大分子的分离项目,可用于表征复杂系统的色谱技术具有广阔的应用前景。在不久的将来,可以预见,表面多孔的反相色谱柱将成为市场上的主导产品,同时,具有不同选择性的苯基柱的发展趋势也日渐明晰。 /span & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p
  • 十问十答|关于液相色谱柱使用中的常见问题解答(二)
    第三期关于液相色谱柱使用中的常见问题解答(二)上一期的十问十答液相柱篇主要给大家总结了最常见液相柱使用中的问题与解答。本期小编继续为大家讲解的是关于特殊色谱柱使用上的常见问题。Q1、ShimNex HE SAX/SCX以及WP SAX/SCX色谱柱怎么活化?1. 需要使用至少20倍柱体积的流动相平衡色谱柱。2. 当流动相中缓冲盐浓度较高时候,为了防止盐在色谱柱或系统中析出,可使用20%的乙腈水溶液冲洗5倍以上柱体积作为缓冲,再过渡到流动相。3. 因为SCX色谱柱键合的基团是磺酸基团,容易与醇类物质发生酯化反应,所以流动相应当避免醇的使用。Q2. ShimNex HE CN 色谱柱的活化?氰基柱既可以用在正相模式,又可以用于反相模式。考虑到色谱柱寿命,推荐使用过程中固定为其中一种模式。因色谱柱出厂时使用庚烷:乙酸乙酯=90:10进行质控,所以如需要使用反相模式,请先使用异丙醇等将柱内的溶剂进行充分置换后再用相应的流动相进行活化操作。Q3. C4 色谱柱怎么活化?一般C4色谱柱的活化参照C18色谱柱,首次使用色谱柱前,应先用20倍柱体积以上的甲醇/乙腈充分活化。为确保数据的质量,分析前应使用至少 10 倍柱体积的流动相平衡色谱柱。 若流动相中缓冲盐浓度较高, 为了防止盐在色谱柱或系统中析出,应先使用与流动相构成比例相同或有机相比例较低的水溶液冲洗至少 5 倍柱体积,再过渡到流动相。Q4. ShimNex HE SAX/SCX以及WP SAX/SCX怎么冲洗?硅胶基质的离子交换色谱柱一般流失比较严重,寿命一般不是很好。所以色谱柱的清洗维护非常重要。色谱柱的污染可能会导致峰形的变化、峰分裂、肩峰、柱效的变化或背压增加等问题。请参考以下方法进行清洗:Q5. 硅胶基质色谱柱的保存 有什么注意事项?Q6. 氨基酸分析仪中,使用的Amino Na/Li型色谱柱,色谱柱怎么活化?在使用长期停止使用的色谱柱之前,用0.2M氢氧化钠水溶液冲洗数小时。Q7. 氨基酸分析仪中,使用的Shim-pack Amino Na/Li型色谱柱,色谱柱脏了的时候怎么冲洗?Q8. 使用的Amino Na/Li型色谱柱,色谱柱怎么保存?如果色谱柱超过半年不使用,建议使用以下流动相冲洗保存:使用0.2M的氢氧化钠(氢氧化锂)水溶液清洗色谱柱,用0.01%的辛酸的10%乙醇溶液置换色谱柱,最后将色谱柱保存在阴暗地方。Q9. Shim-pack Amino系列色谱柱有什么注意事项?有机相比例不高于10%,避免高温停泵(0.1-0.3 ml/min降至室温后再停泵)。Q10. Shim-pack Amino Na型和Li型色谱柱有什么区别?Shim-pack Amino-Na:大概可分析19个化合物,一针分析时间为90分钟,分析速度快,化合物少;Shim-pack Amino-Li:大概可分析38个化合物,一针分析时间为180分钟,分析速度慢,化合物多。课后小惊喜各位小伙伴如有更多关于液相柱选型相关问题或有更多相关知识补充,欢迎留言与我们交流。入围的精选留言的小伙伴我们将送出电脑支架一支!往期推荐十问十答第1期:关于液相色谱柱使用中的常见问题解答十问十答第2期:气相色谱柱的选型入门实验小妙招|关于气相毛细管柱的维护与保养探索抗体蛋白的质控奥秘|疏水作用色谱柱,让药物分析更高效

液相色谱氰基柱硅胶柱相关的方案

液相色谱氰基柱硅胶柱相关的资料

液相色谱氰基柱硅胶柱相关的试剂

液相色谱氰基柱硅胶柱相关的论坛

  • 正相液相色谱硅胶柱能用丙酮做流动相吗?

    分析条件:正相液相色谱,硅胶柱,正己烷做流动相,因为试样对正己烷溶解性不好,考虑在流动相中加入一定比例的丙酮(考虑过醇类,但加醇类效果不好),但看到有文章中说硅胶柱不能进带醛基、羰基的物质,究竟正相液相色谱硅胶柱能用丙酮做流动相吗?

液相色谱氰基柱硅胶柱相关的耗材

  • 恒谱生(氰基柱/腈基柱)超高效液相色谱柱CN反相/正相硅胶柱
    CN(氰基)填料具有中等极性氰基键合固定相,既可用于正相色谱,又可用于反相色谱。 恒谱生CN(氰基)液相色谱柱在使用正己烷等低极性流动相条件下显示正相色谱保留性质。固定相表面极性低于裸硅胶,分析物保留时间一般也比裸硅胶短。对样品在裸硅胶保留太强时分析十分有效。相反,在使用甲醇和水等极性高的流动相条件下,显示出反相色谱的保留性质。键合相种类CN粒径1.8、2、3、5、10、20、30μm孔径70、100、150、200、300?等含碳量6%PH稳定值2-8是否封端是分离模式正相 反相恒谱生CN高效液相色谱柱性能优点: (1) 在正相和反相中都能有应用 (2) 稳定的高覆盖率的单键合相,充分封端球型 (3) 较低的疏水性,由于氰基的存在,具有独特的选择性 (4) 与裸硅胶不同的选择特性;与裸硅胶柱相比,色谱柱的平衡时间快。 注意:为了延长柱子的使用寿命, 应尽量避免正反相系统交替使用。 uHPLCs色谱柱具有各种尺寸,满足您应用的需要。由恒谱生专门生产,键合相具有1.8μm、2 μm、3μm和5μm的小粒径,提供高分离度,通过使用更短的色谱柱,提供更有效和快速的色谱分离,减少溶剂损耗,或者使用更长的色谱柱分离复杂混合物。可重复使用柱接头的不锈钢色谱空柱有30、50、75、100、150、200、250和300mm等多种长度。恒谱生生产设施严格的QC过程确保批次之间的重现性。 恒谱生色谱柱柱管由不锈钢制成,不锈钢柱内壁多经过抛光,减小管壁效应,提高柱效,柱中填充键合硅胶或聚合物填料。液相色谱柱基于高纯硅胶,采用独特键合技术,具有优异的峰形,灵敏性好。基质金属含量低,对所有类型的分析物均表现完好峰形。机械强度高,稳定性好,质控严格,确保色谱柱性能和色谱柱的使用寿命。有多种尺寸规格可供选择以适应色谱工作者及其使用的不同需求。我们有专业的技术工程师团队为您的需求提供解决方案,欢迎前来咨询了解! 通常色谱柱寿命在正确使用时可达2年以上。以硅胶为基质的填料,只能在pH2~9范围内使用。柱子使用一段时间后,可能有一些吸附作用强的物质保留于柱顶,特别是一些有色物质更易看清被吸着在柱顶的填料上。新的色谱柱在使用一段时间后柱顶填料可能塌陷,使柱效下降,这时也可补加填料使柱效恢复。色谱柱的正确使用和维护十分重要,稍有不慎就会降低柱效、缩短使用寿命甚至损坏。所以要用正确的方法使用,每次工作完后,需用洗脱能力强的洗脱液冲洗,以延长色谱柱的寿命。
  • Hypersil BDS CPS液相色谱柱/Hypersil BDS 氰基柱/Hypersil 液相氰基柱 货号:28805-254630
    Thermo Hypersil 已有近30年的硅胶键合相生产历史,Hypersil硅胶以其高质量,良好的重复稳定性,优异的柱效及长寿命得到了世界范围的认可。基于粒度为3、5和10um,孔径120A硅胶基质生产的Hypersil键合相填料,其生产过程的质量控制非常严格。确保产品质量稳定可靠。 Hypersil BDS 硅胶担体键合前经过专门的碱钝化处理,将残余硅羟基降至极限,这种改善的表面,使得键合后的硅胶具有很高的配位度,大大降低了硅羟基与分析物之间的相互作用,改善了色谱峰型,降低了色谱峰的拖尾程度,提高了峰的对称性。 由于化学共价键的重现性,是Hypersil BDS色谱柱即使在强酸条件下也有很长的柱寿命。Hypersil BDS色谱柱填料有粒度为3和5&mu m 两种,其中3&mu m和5&mu m柱效高25%。由于分离度的提高,使用短的快速分析柱也可获得同样的分离,窄孔柱可提高灵敏度. Hypersil ODS(C18) Hypersil ODS(C18)是硅胶基质上键合了C18为官能团的色谱柱填料,是典型的高效液相色谱柱用填料,适合于分析非极性和中性样品,包括酸性、中性及亲酯性化合物。 Hypersil SAX Hypersil SAX是高度稳定的强阴离子交换的硅胶为基质材料的色谱填料,专门为使用含水和低pH值流动相时设计,适合分析小分子的有机酸。 Hypersil BDS色谱柱键合相有C18、C8、苯基和氰基四种,广泛用于酸、碱和中性样品的分析,对于酸和碱可得到相似的结果,且峰形均很好。 Hypersil BDS CPS(CN)为氰丙基官能团硅胶键合填料,该色谱柱可应用于正相和反相色谱。Hypersil CPDS-2为封尾固定相。正相色谱模式时,Hypersil CPS色谱柱与Hypersil Silica和Hypersil APS的选择性相反,并且平衡速度快,不会被少量的水钝化;反相色谱模式时,氰基柱的选择性可补偿烷基键合相和低疏水性。 28105-254630 原装进口Hypersil BDS C18 液相色谱柱 250× 4.6mm,5um 28105-204630 原装进口Hypersil BDS C18 液相色谱柱 200× 4.6mm,5um 28105-154630 原装进口Hypersil BDS C18 液相色谱柱 150× 4.6mm,5um 28205-254630 原装进口Hypersil BDS C8 液相色谱柱 250× 4.6mm,5um 28205-154630 原装进口Hypersil BDS C8 液相色谱柱 150× 4.6mm,5um 28805-254630 原装进口Hypersil BDS CPS液相色谱柱/HypersilBDS氰基柱 250× 4.6mm,5um 28805-154630 原装进口Hypersil BDS CPS液相色谱柱/HypersilBDS氰基柱 150× 4.6mm,5um 28905-254630 原装进口Hypersil BDS phenyl柱(Hypersil BDS 苯基柱) 250× 4.6mm,5um 28905-154630 原装进口Hypersil BDS phenyl柱(Hypersil BDS 苯基柱) 150× 4.6mm,5um 31605-254630 原装进口Hypersil ODS2液相色谱柱 250× 4.6mm,5um 31605-154630 原装进口Hypersil ODS2液相色谱柱 150× 4.6mm,5um 31605-152130 原装进口Hypersil ODS2液相色谱柱 150*2.1mm,5um 30305-254630 原装进口Hypersil MOS2液相色谱柱(Hypersil C-8柱) 250× 4.6mm,5um 30305-154630 原装进口Hypersil MOS2液相色谱柱(Hypersil C-8柱) 150× 4.6mm,5um 30105-254630 原装进口Hypersil ODS液相色谱柱 250× 4.6mm,5um 30105-154630 原装进口Hypersil ODS液相色谱柱 150× 4.6mm,5um 30105-152130 原装进口Hypersil ODS液相色谱柱 150× 2.1mm,5um 30205-254630 原装进口Hypersil MOS液相色谱柱(Hypersil C-8柱) 250× 4.6mm,5um 30205-154630 原装进口Hypersil MOS液相色谱柱(Hypersil C-8柱) 150× 4.6mm,5um 30705-254630 原装进口Hypersil APS2液相色谱柱(Hypersil 氨基色谱柱) 250× 4.6mm,5um 30705-154630 原装进口Hypersil APS2液相色谱柱(Hypersil 氨基色谱柱) 150× 4.6mm,5um 31805-254630 原装进口Hypersil CPS2液相色谱柱(Hypersil 氰基色谱柱) 250× 4.6mm,5um 31805-154630 原装进口Hypersil CPS2液相色谱柱(Hypersil 氰基色谱柱) 150× 4.6mm,5um 31905-254630 原装进口Hypersil phenyl2原装色谱柱(Hypersil苯基色谱柱) 250× 4.6mm,5um 31905-154630 原装进口Hypersil phenyl2原装色谱柱(Hypersil苯基色谱柱) 150× 4.6mm,5um 34105-254630 原装进口Hypersil SAX液相色谱柱(Hypersil强阴离子交换色谱柱) 250× 4.6mm,5um 73205-254630 原装进口Hypersil Biobasic SCX原装色谱柱(Hypersil强阳离子交换色谱柱) 250× 4.6mm,5um (三聚氰胺检测用液相色谱柱,2005版药典二甲双胍检测专用柱) 30005-254630 原装进口Hypersil正相硅胶柱(Hypersil SIL液相色谱柱 250× 4.6mm,5um 30005-154630 原装进口Hypersil正相硅胶柱(Hypersil SIL液相色谱柱) 150× 4.6mm,5um 25305-154630 原装进口Hypersil gold AQ 液相色谱柱 150× 4.6mm,5um 25305-254630 原装进口Hypersil gold AQ 液相色谱柱 250× 4.6mm,5um 25005-254630 原装进口Hypersil gold C18 液相色谱柱 250× 4.6mm,5um 25005-154630 原装进口Hypersil gold C18 液相色谱柱 150× 4.6mm,5um 25205-254630 原装进口Hypersil gold C8 液相色谱柱 250× 4.6mm,5um 850-00 Hypersil通用保护柱套 4.0-4.6mm
  • Hypersil 液相色谱柱/Hypersil BDS CPS液相色谱柱/Hypersil BDS氰基柱
    Thermo Hypersil 已有近30年的硅胶键合相生产历史,Hypersil硅胶以其高质量,良好的重复稳定性,优异的柱效及长寿命得到了世界范围的认可。基于粒度为3、5和10um,孔径120A硅胶基质生产的Hypersil键合相填料,其生产过程的质量控制非常严格。确保产品质量稳定可靠。 Hypersil BDS 硅胶担体键合前经过专门的碱钝化处理,将残余硅羟基降至极限,这种改善的表面,使得键合后的硅胶具有很高的配位度,大大降低了硅羟基与分析物之间的相互作用,改善了色谱峰型,降低了色谱峰的拖尾程度,提高了峰的对称性。 由于化学共价键的重现性,是Hypersil BDS色谱柱即使在强酸条件下也有很长的柱寿命。Hypersil BDS色谱柱填料有粒度为3和5&mu m 两种,其中3&mu m和5&mu m柱效高25%。由于分离度的提高,使用短的快速分析柱也可获得同样的分离,窄孔柱可提高灵敏度. Hypersil BDS色谱柱键合相有C18、C8、苯基和氰基四种,广泛用于酸、碱和中性样品的分析,对于酸和碱可得到相似的结果,且峰形均很好。 Hypersil BDS CPS(CN)为氰丙基官能团硅胶键合填料,该色谱柱可应用于正相和反相色谱。Hypersil CPDS-2为封尾固定相。正相色谱模式时,Hypersil CPS色谱柱与Hypersil Silica和Hypersil APS的选择性相反,并且平衡速度快,不会被少量的水钝化;反相色谱模式时,氰基柱的选择性可补偿烷基键合相和低疏水性。 28805-254630 原装进口Hypersil BDS CPS液相色谱柱/HypersilBDS氰基柱 250× 4.6mm,5um 28805-154630 原装进口Hypersil BDS CPS液相色谱柱/HypersilBDS氰基柱 150× 4.6mm,5um 28105-254630 原装进口Hypersil BDS C18 液相色谱柱 250× 4.6mm,5um 28105-204630 原装进口Hypersil BDS C18 液相色谱柱 200× 4.6mm,5um 28105-154630 原装进口Hypersil BDS C18 液相色谱柱 150× 4.6mm,5um 28205-254630 原装进口Hypersil BDS C8 液相色谱柱 250× 4.6mm,5um 28205-154630 原装进口Hypersil BDS C8 液相色谱柱 150× 4.6mm,5um 28905-254630 原装进口Hypersil BDS phenyl柱(Hypersil BDS 苯基柱) 250× 4.6mm,5um 28905-154630 原装进口Hypersil BDS phenyl柱(Hypersil BDS 苯基柱) 150× 4.6mm,5um 31605-254630 原装进口Hypersil ODS2液相色谱柱 250× 4.6mm,5um 31605-154630 原装进口Hypersil ODS2液相色谱柱 150× 4.6mm,5um 31605-152130 原装进口Hypersil ODS2液相色谱柱 150*2.1mm,5um 30305-254630 原装进口Hypersil MOS2液相色谱柱(Hypersil C-8柱) 250× 4.6mm,5um 30305-154630 原装进口Hypersil MOS2液相色谱柱(Hypersil C-8柱) 150× 4.6mm,5um 30105-254630 原装进口Hypersil ODS液相色谱柱 250× 4.6mm,5um 30105-154630 原装进口Hypersil ODS液相色谱柱 150× 4.6mm,5um 30105-152130 原装进口Hypersil ODS液相色谱柱 150× 2.1mm,5um 30205-254630 原装进口Hypersil MOS液相色谱柱(Hypersil C-8柱) 250× 4.6mm,5um 30205-154630 原装进口Hypersil MOS液相色谱柱(Hypersil C-8柱) 150× 4.6mm,5um 30705-254630 原装进口Hypersil APS2液相色谱柱(Hypersil 氨基色谱柱) 250× 4.6mm,5um 30705-154630 原装进口Hypersil APS2液相色谱柱(Hypersil 氨基色谱柱) 150× 4.6mm,5um 31805-254630 原装进口Hypersil CPS2液相色谱柱(Hypersil 氰基色谱柱) 250× 4.6mm,5um 31805-154630 原装进口Hypersil CPS2液相色谱柱(Hypersil 氰基色谱柱) 150× 4.6mm,5um 31905-254630 原装进口Hypersil phenyl2原装色谱柱(Hypersil苯基色谱柱) 250× 4.6mm,5um 31905-154630 原装进口Hypersil phenyl2原装色谱柱(Hypersil苯基色谱柱) 150× 4.6mm,5um 34105-254630 原装进口Hypersil SAX液相色谱柱(Hypersil强阴离子交换色谱柱) 250× 4.6mm,5um 73205-254630 原装进口Hypersil Biobasic SCX原装色谱柱(Hypersil强阳离子交换色谱柱) 250× 4.6mm,5um (三聚氰胺检测用液相色谱柱,2005版药典二甲双胍检测专用柱) 30005-254630 原装进口Hypersil正相硅胶柱(Hypersil SIL液相色谱柱 250× 4.6mm,5um 30005-154630 原装进口Hypersil正相硅胶柱(Hypersil SIL液相色谱柱) 150× 4.6mm,5um 25305-154630 原装进口Hypersil gold AQ 液相色谱柱 150× 4.6mm,5um 25305-254630 原装进口Hypersil gold AQ 液相色谱柱 250× 4.6mm,5um 25005-254630 原装进口Hypersil gold C18 液相色谱柱 250× 4.6mm,5um 25005-154630 原装进口Hypersil gold C18 液相色谱柱 150× 4.6mm,5um 25205-254630 原装进口Hypersil gold C8 液相色谱柱 250× 4.6mm,5um 850-00 Hypersil通用保护柱套 4.0-4.6mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制