色谱提纯植物色素实验

仪器信息网色谱提纯植物色素实验专题为您提供2024年最新色谱提纯植物色素实验价格报价、厂家品牌的相关信息, 包括色谱提纯植物色素实验参数、型号等,不管是国产,还是进口品牌的色谱提纯植物色素实验您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱提纯植物色素实验相关的耗材配件、试剂标物,还有色谱提纯植物色素实验相关的最新资讯、资料,以及色谱提纯植物色素实验相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

色谱提纯植物色素实验相关的厂商

  • 400-860-5168转4265
    “苏州汇通色谱分离纯化有限公司”是一家以自主知识产权技术和产品为核心,具有独立研发能力的高技术企业,主要以药厂、生物制品企业、高纯度化学制品企业、质量鉴定单位、大学、科学研究机构和生物技术公司为目标客户,提供高效、高选择性制备色谱分离柱产品;高纯度产品色谱纯化工程设计以及高纯度产品纯化服务。与市场上现存公司相比,本公司拥有高科技(特殊设计)的专利分离介质,高纯度色谱纯化工程设计核心能力,已发展高通量、高选择性、高分离效率的模块式分离系列产品及配套的相应方法;公司除为企业提供高性能的色谱分离柱系统系列产品外,还可以直接为企业提供复杂样品体系的纯品,为企业“工程化”提供一条龙服务;既结合色谱分离专家的理论与实践,为客户发展复杂样品体系的分离、分析、纯化制备方法和有效的工具,同时为市场提供色谱纯度的试剂级产品。
    留言咨询
  • 我公司是以色谱(层析) 纯化技术的技术开发、技术转让、技术服务、技术培训、工厂纯化的交钥匙工程及各种样品纯化委托加工为主要经营内容的高科技公司。 公司销售高、中、低压大型制备色谱系统及DAC色谱柱,中型制备色谱柱及分析型色谱柱和装柱机。是Grace、Tosoh 等国外著名品牌纯化介质和填料的一级授权代理商。同时,也委托国外有实力的工厂代理加工有特色的填料,以自主品牌销售,获得广大客户认可。 我们的产品主要应用于基因工程药物,血制品,多肽,天然产物及其他小分子药物。合作的客户有:哈药集团、通化东宝、沈阳三生、华北制药、无锡药明康德、江苏恒瑞、上海中信国健、上海新兴血液、深圳翰宇等。 我司位于上海市漕宝路500号上海生命科学院内,建有色谱柱装填及检测实验室,可为用户装填25mm、50mm、100mm内径MODcol 弹簧制备柱。 我司享有中科院的网络信息资源,有大量技术资料可供选用,欢迎来电索取。
    留言咨询
  • 同田生物技术有限公司1999年2月成立于深圳,总投资人民币 6000 万元,随着国家“聚焦张江”的深入,为了更好的利用“中国• 张江药谷”的发展平台,公司主体技术力量整体搬迁至上海张江高科技园区. 公司致力于高速逆流色谱仪( HSCCC )等实验室仪器及其高纯度天然产物有效成分单体的的研究开发、生产和销售。作为多分离柱高速逆流色谱仪国家新型专利的拥有者,高速逆流色谱领域的行业领导者,公司研制并批量生产拥有自主知识产权的TBE系列新型多分离柱高速逆流色谱仪,占据中国逆流色谱85%的市场份额。 公司目前已开发了分析型、半制备型、制备型等三大系列七种型号的高速逆流色谱仪,集提取、分离、纯化、制备于一体,能为各高等院校、科研院所、医药企业的提供先进的分离纯化设施。公司已成功提取了近100种单一有效成分,纯度均达到 99% 以上。在高速逆流色谱应用技术产业化开发方面,公司现已建成石杉碱甲原料药生产线并投入使用,可以根据市场需求扩大生产规模。目前,公司的 《多分离柱高速逆流色谱仪》、《天然植物(银杏、大豆)单体提取物》、 《石杉碱甲》 项目均已获得上海市高新技术成果转化项目认定,在逆流色谱研究与应用中,我们处于世界领先地位, 公司产品性能优越,质量稳定, 通过了世界知名国际权威认证机构DNV的ISO 9001:2000质量管理体系认证以及SGS的CE认证,同时我们与通用电气医疗生物科学中国有限公司(GE Healthcare Bio-sciences co.,ltd)保持着良好的合作伙伴关系,我们的产品远销美国、日本、韩国、瑞士、德国、香港、台湾、新加坡、越南、泰国等地。 公司注重分离纯化技术的基础研究和产品开发,与国家中药制药工程技术研究中心、 中国科学院过程工程研究所、 国家质量监督检验检疫总局 国家标准物质研究中心、 上海交通大学、第二军医大学、沈阳药科大学等单位建立了长期的项目合作关系。 秉承“与人为善、诚信服务、开拓创新、追求卓越”的经营理念,遵循“坚持内部完善,不断研发创新,达到顾客满意,创造顾客价值”的质量方针,我们将朝着生化技术领域的更高层次迈进。我们期望广泛地与国内外同行合作,用现代先进技术发扬传统中药,促进中医药尽快走向世界,为人类健康事业作出贡献。
    留言咨询

色谱提纯植物色素实验相关的仪器

  • 开创聚合物分离的新纪元以更高分离度的体积排阻分离进行聚合物色谱表征通过实现快速的日常校准提升数据一致性和数据质量利用系统先进的技术实现自动化的方法开发以更快的速度获取目标聚合物的更多信息增强对聚合物化学结构的了解,加速创新如今,聚合物科学家所处的市场环境日趋活跃,对高性能材料、生物材料创新的需求不断增长,愈发激烈的竞争导致产生了更强的紧迫感。有了ACQUITY APC系统,聚合物色谱表征脱去极长运行时间的标签。得益于超高效聚合物色谱的优势,分析人员能以快于传统GPC/SEC技术5-20倍的速度,获取准确且可重现的聚合物分子量信息,从而加快创新速度,同时改善实验室运营环境。缩短聚合物样品实验室检测周期:更快地为研发实验室、生产运营团队以及您的客户提供可供决策的结果。推动创新:更快获取结果并掌握更多信息,帮助整个环节更快速地做出响应,从而缩短开发周期并加快上市步伐。简化工艺监测并灵活实现批次一致性控制,可对工艺和合成优化做出灵活的“动态”决策。显著降低每个样品的分析成本:减少溶剂消耗和废液处理量。通过快速溶剂切换和强溶剂兼容性优化方法开发配备聚合物四元溶剂管理器(p-QSM)的APC系统赋予了化学家和聚合物科学家出众的灵活性,让他们能够在同一套系统上使用标准聚合物色谱、梯度聚合物洗脱色谱(GPEC)和反相LC分析非常复杂的共聚混合物和聚合物添加剂。附加的系统功能支持自动化选择多达六种不同的溶剂。自动化色谱柱切换功能结合ACQUITY APC色谱柱的刚性和可灵活溶剂切换的颗粒配合使用,为体积排阻色谱法分离聚合物的方法开发,率先提供了全世界真正意义上的自动化解决方案。这套解决方案支持在数小时内完成聚合物的方法开发到检测,而无需数天时间。全方位多维色谱细节决定一切 — 更优的细节是我们不懈努力的目标当与PSS Polymer Standards Service GmbH的WinGPC UniChrom&trade 软件结合使用时,沃特世APC系统有助于研究人员使用多维分离方法深入了解复杂的聚合物材料,从而增加单次色谱分析的峰容量。应用多维色谱方法能够通过两种不同的连续保留机制分离分析物。该方法可以使分析物与单维色谱分离中通常发生共洗脱的其它化合物实现分离。这有助于大幅提升多维分离度,并提供有关复杂聚合物样品化学结构和组成的详细信息。始终能满足您研究需求的色谱柱技术BEH色谱柱技术采用亚乙基桥杂化(BEH)技术的颗粒可确保色谱柱在恶劣的运行条件下仍具有高柱效和长使用寿命。先进的反相和HILIC HPLC色谱柱BEH色谱柱适用于常见的反相色谱分析,此外,这款色谱柱在极端pH条件下可保持稳定,并且广泛适用于多种化合物,因此也是方法开发的理想选择。使用先进的检测解决方案获取有关聚合物样品的更多信息ACQUITY APC系统配备先进的检测器,可通过单次分析为聚合物研究人员提供有价值的决策支持信息。将沃特世APC系统与先进的检测解决方案相结合,可通过引入示差折光(RI)检测器、紫外(UV) PDA、光散射(LS)和粘度检测器(IV)显著提升SEC分析的信息获取能力。借助第三方先进检测功能集成,科学家还能对样品进行更全面的表征,从而更好地掌握新型复杂聚合物的结构-性能关系。利用业内率先推出专用校准套件提升数据质量和一致性由于运行时间小于10 min,使用ACQUITY APC校准标准品在30 min内即可校准一套串联ACQUITY APC色谱柱。这些标准品套件与ACQUITY APC色谱柱的分子量范围相匹配,可通过简单的稀释后进样为任何串联色谱柱生成10点校准图。这是一款有助于为特定应用选择理想色谱柱和校准标准品的便捷工具。得益于可对串联色谱柱进行日常校准的优势,数据一致性得到了极大改善,提供批次间测量结果始终如一的可靠性。功能和优势加速创新:亚3 μm刚性大孔径ACQUITY APC色谱柱与ACQUITY APC系统的超低系统扩散优势相结合,实现高分离度的聚合物分离。优化方法开发:快速溶剂切换和强溶剂兼容性,有助于应对聚合物分析中的严苛分离条件。提高分析范围和实验室效率:一套系统支持多种应用,包括基础LC、梯度、等度、反相和GPC分析。更深入地了解您的聚合物样品:可兼容多种检测器技术包括第三方先进的检测器,例如示差折光、紫外/可见光、光电二极管阵列或蒸发光散射检测器,还可兼容多角度光散射和粘度检测器等。缩短聚合物样品实验室检测周期:以快于传统SEC/GPC技术5-20倍的速度为您的研发实验室、生产运营团队和客户提供可供决策的结果。简化并优化串联色谱柱的校准:提供与串联色谱柱分子量范围匹配的标准品。多样化的色谱柱管理功能:可自动从多达两套串联ACQUITY APC色谱柱和多达两套串联传统GPC色谱柱中进行选择 - 所有色谱柱都安装在稳定的恒温环境中。溶剂管理器提供的精确流量:可确保分子量数据的准确性始终如一。
    留言咨询
  • 对于聚合物和塑料产业而言,研发各种聚合物和开拓可持续发展道路至关重要。 当前GPC/SEC 方法分辨率低,分离时间长并且溶剂消耗量大。沃特世 ACQUITY APC&trade (Advanced Polymer Chromatography)超高效聚合物色谱系统是基于体积排阻色谱分离基本原理的突破性技术产品,以前所未有的分析速度为您提供更详尽的聚合物材料信息。 这就意味着可以更好的表征、提高资产利用率,为企业创新和可持续发展目标提供卓越的解决方案。主要特性新色谱柱技术 &ndash ACQUITY APC色谱柱采用小颗粒的大孔径亚乙基桥杂化颗粒,显著提高了稳定性、多用性和分离速度。稳定的示差检测器 &ndash 针对低扩散进行了优化,即便在低聚合物浓度时也能达到精确表征所需的低噪音和漂移性能。精确的溶剂管理器 - 等度溶剂管理器精确流速确保经校准的系统日复一日地提供准确分子量数据。先进的色谱柱加热模块 - 确保 ACQUITY APC色谱柱所需的温度环境的重现性。配有GPC 选项的Empower® 3软件 &ndash 快捷方便地浏览、比较和报告聚合物分析数据。主要优势聚合物表征 - 提供无与伦比的聚合物峰值解析度,尤其适用于低分子量的低聚物。加快分析速度 - 获得可重复的精确聚合物分子量信息的速度比传统 GPC/SEC 方法快5到20倍。降低成本 - 通过减少溶剂消耗量和废液处置量从而降低分析成本。系统多用性 - 在单一系统中运行不同聚合物分析工作。使用 ACQUITY APC 系统分析聚苯乙烯与传统 GPC 相比分离度更高、速度更快,(100K、10K、1K)。注意:本页面内容仅供参考,所有资料请以沃特世官方网站()为准。
    留言咨询
  • MPM-100 GPS多色素测量仪测量:l 叶绿素含量l 花青素含量l 黄酮醇含量&l NFI(氮-黄酮醇指数)MPM-100多色素测量仪使用成熟的技术组合方式能同时测量以上不同参数。仪器标准二极管波长配置如下,也可定制测量其他参数如CCI或SPAD二极管波长。叶绿素含量:T850nm/T710nm花青素含量:F660nm/F325nm黄酮醇含量: F660nm/F525nmNFI: (T850nm/T710nm)/( F660nm/F325nm)优势:l 使用成熟的技术同时测量不同植物的色素l 使用比率荧光测量花青素含量和黄酮醇含量l 使用叶片在远红外和近红外波段的透射光谱来测量叶绿素含量l 使用测量叶绿素含量和黄酮醇含量结果测定氮-黄酮醇指数l 测量模式包含离散单次测量和平均测量(2-30个样品),软件支持平均和中值选择。l 1GB非易失性测量数据内存l USB输出:数据文件逗号分隔&Excel直接打开l 触屏彩色界面&数据显示叶绿素含量叶绿素含量对检测植物氮和硫胁迫非常灵敏,通常使用测量叶绿素含量来管理氮施肥。叶绿素含量也用于衡量很多植物其他类型的胁迫,当测验植物的测量值为正常施肥植物的90%时,需要施氮肥。这个系统的测量波段不同于大多数叶绿素测量仪,同时能测量氮平衡指数。叶绿素含量 : T850nm/T710nm黄酮醇含量黄酮醇在植物中呈现黄色。 有证据表明,它们有助于在紫外线光谱中对植物进行光保护,并清除活性氧,从而保护植物的光合作用。黄酮醇能很好的指示植物氮状况,同时呈现的黄色能吸引传粉昆虫。黄酮醇含量 : 荧光比值F660/F325花青素含量依据植物中pH不同可显现为红色,蓝色,紫色或者无色。研究表明花青素在极端植物温度保护起重要作用,吸引传粉昆虫和促进动物对种子分布。花青素含量 : 荧光比值F660/F525NFI(氮-黄酮醇指数)叶绿素和黄酮醇是植物氮状态的很好指示剂,在最优条件下植物生产叶绿素和少量黄酮醇,在氮不足时植物生产更多的黄酮醇或者碳基化合物,NFI对叶龄和叶厚的敏感性低于标准叶绿体。氮-黄酮醇指数:叶绿素与黄酮醇测量比值 (T850nm/T710nm)/( F660nm/F325nm)比率荧光方法有很多优势,可用于测量很小样品以及不透明的样品,花青素和黄酮醇测量方法都是比率荧光法。叶绿素含量测量使用叶片吸收两种波长的光,所以不适用测量不透明或者宽度小于6mm样品。测量浆果盖MPM-100测量葡萄相对成熟度,用刀片把薄皮的浆果盖取下,可以用仪器测量葡萄相对成熟度。技术参数: l 测量参数: 相对叶绿素含量值,相对黄酮醇含量值,相对花青素含量和氮-黄酮素指数。l 测量面积: 6mm直径的圆l 重复性: ± 1%l 噪声: ±2%l 光源:l 叶绿素含量-医疗级LED光720nm&近红外LED 850nml 黄酮醇含量-LED 325nm&660nml 花青素含量-LED 525nm&660nml 检测器: 固态高灵敏度检测器,支持带限过滤设置l 检测: 调制光信号控制减少背景干扰,光源和检测器温度补偿。l 内存: 1GB非易失性测量数据内存l 测量模式: 测量模式包含离散单次测量和平均测量(2-30个样品),软件支持平均和中值选择。l 仪器界面: 240×320彩色触屏l 输出: USB 1.1l 工作温度: 0-50℃l 电源: 2个AA可充电电池,配备充电器l 自动关机间隔: 0-20minl 大小: 12cm×9cm×3cml 重量: 275gl 测量时间: 5sl GPS: 定位准确度可高达0.3m,可记录经度,纬度,卫星数量和DOPl 设备配置: MPM-100 GPS测量仪,样品夹,电池充电器,4个AA NiMH可充电电池,USB线,便携箱,说明书和校准板。
    留言咨询

色谱提纯植物色素实验相关的资讯

  • 薄层色谱质谱联用,可以30秒得到质谱信息?—是的,这个可以有!
    薄层色谱法是化学实验室中最常用的色谱分析方法。色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。科学家们在色谱法基础上,发明了薄层色谱法,该法现已广泛用于化学实验室中,如有机合成,天然产物分析等领域。 进行2-24小时的合成反应点板,展开紫外灯下看样品斑点薄层色谱法应用于有机合成实验室时,在紫外灯下确定样品斑点后,需要手动刮板、溶剂洗脱、浓缩提纯、合适溶剂溶解、注入质谱仪鉴定化合物结构,这一系列步骤,操作繁琐、耗时长。美国Advion公司自主研发的plate express薄层质谱接口,实现了薄层色谱与质谱联用技术,30秒得到样品质谱信息,极大提高了科研效率。使用plate express,样品通过薄层分离后无需进一步处理,取样步骤简单,30秒得到样品质谱信息。薄层色谱质谱联用不到一分钟获取质谱信息:不论您是何种应用,都可以让您用最少的步骤在最短的时间得到最优的结果。Step 1:选择方法Step 2:放置薄层色谱板,点击“运行”Step 3:直接读取样品质谱信息 想进一步了解薄层色谱质谱联用技术,请报名参加3月29号上午9:30“薄层色谱-质谱联用及ASAP固液体直接进样技术在有机合成实验室中的应用”网络讲座吧,Advion资深应用工程师,郝常彤博士将解答您的所有疑问;还可以关注博晖公司微信公众号,了解更多相关知识。报名地址:http://www.bohui-tech.com/info/2016-03-02/news_531.html
  • 发明色谱法的他竟是一名编外杂工(图)
    瑞士美丽的春天到了,万物复苏,一名少年舒舒服服地躺在草地上,痴痴地望着河边垂柳依依,那片随风掀起的嫩绿色海洋,仿佛在召唤着他投入自然的怀抱。  是什么让这些美丽的植物们是绿色的呢?一枚科学的种子深深扎根在了少年的心中,尚读中学的他立志要成为一名出色的生物学家,探索大自然的秘密。他就是后来发明了色谱法的植物生物化学家茨维特。  色谱法是现代科技领域最重要最有效的分离提纯手段之一,通过这种手段,可以将复杂的混合物质逐一分散、提纯并有规律地排列成一条条色带。  1891年,19岁的茨维特考入了瑞士日内瓦大学物理系,1893年,他继续留在这所著名大学的植物实验室攻读博士学位,作为一个不折不扣的学霸,远在国外的他完全痴迷在了研究植物结构中,第一篇有关解剖学的论文获得日内瓦大学授予的“戴维”奖章。为了研究叶绿体,他开始研究一种可以将叶绿体内部不同物质染色的技术,可是当初从细胞生理学的角度研究,茨维特一无所获。直到1896年,茨维特以论文《细胞的生理学研究》完满地结束了毕业答辩,带着回国继续研究的美好愿望,他踏上了返回故土的道路。日内瓦大学前身是日内瓦学院,1873年建立医学系后,正式更名为大学。(网络图)  可是事实根本没有想象的那样顺利,沙皇俄国迂腐的政府根本不认同他辛辛苦苦在国外获得的博士学位,华沙工学院的权威都是一群德国人,他们非常看不起这个从瑞士大学毕业的博士。学校不仅不给他安排任何可供实验的研究环境,连一席教职也不提供给他,只给他一个编外杂工的身份。  偏见与压制根本没有使茨维特放弃对色谱法的研究,1896年,他走出了重要的一步,开始尝试将物理化学手段运用到叶绿体中的绿色色素的研究中。很快,他便发现这种能呈现绿色的色素不是一种简单的物质,而是叶绿素与清蛋白的复合物,他将其命名为“叶绿蛋白”。1901年,茨维特决定将吸附技术作为探索分离叶绿蛋白色素的方法,使色素能从溶液中分离出来而不改变形式与性质。显微镜下的叶绿体(网络图)  1903年,茨维特终于成功了,他从植物的绿叶中成功分离色素。他先制作了一个碳酸钙吸附柱,然后将其与吸滤瓶连接,使绿色植物叶子的石油醚抽取液自柱通过。结果植物叶子中的几种色素便在玻璃柱上展开:留在最上面的是两种叶绿素 绿色层下面接着叶黄质 随着溶剂跑到吸附层最下层的是黄色的胡萝卜素。如此则吸附柱成了一个有规则的、与光谱相似的色层,最后他用醇为溶剂将它们分别溶下,得到了各成分的纯溶液。  1903年3月21日,在华沙自然科学家协会生物学家分会举行的会议上,茨维特作了“一种新型吸附现象及其在生物化学分析中的应用”的演讲,公布了他对100多种无机和有机吸附剂的研究结果。这是世界上首次有关色谱法的演讲报告,于是,后人把1903年3月21日作为色谱法的诞生日。可惜的是,这次演讲当时却并没有引起科学界的重视。  即使他取得了这样的成就,在华沙工学院执教的一群德国人还是照样看不起他。他也曾多次申请植物系的教授职位,可得到的回应只有官僚们的冷嘲热讽。生活的辛酸没有击倒茨维特对科学的执念,他多年夜以继日地研究。1906年,茨维特在德国《德意志植物合志》上连续发表了《叶绿素的物理化学研究》和《吸附分析与色谱法》两篇论文,详细讲述了他创立的方法和叶绿素在化学上的应用,并将此方法正式命名为“色谱法”,这种技术不仅适用于植物色素,还可利用于有机物与无机物的分析中。苦苦研究数十载,他终于获得了学术界的认可,茨维特也终于升职为讲师了。  为了使这项技术能更加广泛地应用,茨维特先后试验了126种粉末吸附剂对植物叶绿素的分离效果,在1910年,汇集了他十几年心血的专著《植物界和动物界的色素》终于完稿出版,茨维特在此论著中描述了他对叶绿素的全面研究,以及有关色谱法详尽无遗的讲解。高中生物教材中对色谱法分析叶绿素的讲解(网络图)  尽管茨维特所创立的方法是当时世界上最简便最有效率效果最好的分离方法,可是由于所谓权威人士的偏见和抵制,这种方法却一直沉寂在科学的角落,没有受到它应有的关注和推广。  受到压制的茨维特倒是没有过多抱怨,尽管他万分希冀世人能听到他的呐喊,可是这个世界实在太过喧嚣了。就在他努力奋斗,希望能取得更大成就让世人注意这个极有前景的色谱法的时候,第一次世界大战爆发了。他如一片凋零的落叶,随学校的辗转搬迁而飘荡。辛劳与奔波摧毁了他的身体,1919年6月26日,年仅47岁的茨维特带着无尽的遗憾悄然离世。  近20年后,科学家卡勒、库恩等人偶然间发现了默默无闻的色谱法。在几位科学家的精心擦拭下,色谱法仿佛一块灰头土脸的金子重新散发出耀眼的光芒。他们用色谱法成功地分离出了非常多前所未见的提纯物质,如各种维生素,激素与酶。卡勒与库恩分别于1937年,1938年荣获科学界的巅峰之奖——诺贝尔化学奖。  卡勒在1947年世界有机化学协会举行的会议上说:“没有哪种像茨维特的色谱吸附分析那样对有机化学产生如此巨大的影响,他极大拓宽了有机化学的研究领域。如果不使用这种新方法,则在维生素,激素、类胡萝卜素和其他大量天然化学物质的研究方面,就绝不可能取得如此巨大的进展和丰硕的成果。”  终于获得了世人的认可与赞美,对于九泉之下的茨维特,也许太晚,也许并不晚。他辛勤耕耘的一生,哪怕如此不起眼,如此默默无闻,却给世界带来了一个更为美好的明天。  人物小档案:  米切尔什莫诺维奇茨维特(1872~1919),俄国近代植物生理学家、植物生物化学家、色谱技术创世人,首创的“色谱分离法”极大推动了20世纪有机化学,生物化学,医药学的研究发展。  里夏德库恩(1900年12月3日-1967年8月1日)奥地利-德国化学家,1934年,库恩与卡勒合作,合成维生素B2,1937年合成维生素A。1938年,库恩荣获诺贝尔化学奖,但因纳粹的阻挠而被迫放弃领奖。  保罗卡勒(Paul Karrer),瑞士化学家,由于对类胡萝卜素、黄素,以及维生素A和维生素B的结构研究,1937年获诺贝尔化学奖。
  • 关于举办“2024精细化工高纯化学品分离提纯精制 技术应用与装备开发论坛”的通知
    关于举办“2024精细化工高纯化学品分离提纯精制技术应用与装备开发论坛”的通知各有关单位:精细化工高纯化学品是我国现阶段化工生产高质量、高端化发展的关键,是化学工业中最具活力的新兴发展领域之一,是国内外产业界和学术界抢占的战略制高点。分离提纯精制技术是其生产工艺过程中的核心环节,是产品质量的重要保证。为了进一步促进国内精细化工高纯化学品领域的技术交流,我单位将于2024年6月28日-30日在南京召开“2024精细化工高纯化学品分离提纯精制技术应用与装备开发论坛”。本次大会将围绕精细化工高纯化学品的分离提纯、智能优化、分析检测、节能降耗及其关键设备等研究方向,涵盖精馏、结晶、吸附、膜分离、萃取、吸收、检测等分离技术在基础理论研究、工艺流程、工业化生产等相关进展,通过产学研用的结合,助力企业实现转型升级高质量发展,解决我国面临的“卡脖子”技术难题,推动精细化工高纯化学品和高端材料及下游应用。诚邀全国高等院校、科研院所、企事业单位在高纯化学品及相关领域工作的专家学者、科研人员、工程技术人员、管理人员等参会交流。现将有关事项通知如下:论坛主题: 展示最新应用成果助力行业高质量发展一、会议组织:主办单位:中国化工企业管理协会医药化工专业委员会中科凯晟(北京)化工技术研究院协办单位:招募中(欢迎来电咨询洽谈)赞助单位:北京日新远望科技发展有限公司宁波信远膜工业股份有限公司浙江汇甬新材料有限公司会议形式:专家演讲、案例分析、互动交流、仪器设备展示二、时间地点:时间:2024年6月28日—30日(28日全天报到)地点:南京市(具体地点通知给已报名人员)三、会议费用:会务费:2500元/人(含会议费、资料费等);同一企业报名2人以上2200元/人,高校科研单位1800元/人,收费住宿统一安排,费用自理。四、会议日程6月28日(全天):会议酒店报到;展商布展;6月29日(全天):论坛开幕、大会特邀报告、展览展示;6月30日(08:30-11:30):大会特邀报告、展览展示;6月30日(11:30-12:00):闭幕式!大会结束!五、出席嘉宾:龚俊波 天津大学教授——高纯化学品结晶技术李群生 北京化工大学教授——高纯/超高纯化学品精馏关键技术与应用姚克俭 浙江工业大学教授——高纯化学品分离工艺过程、装备和控制的研究和应用陈建新 河北工业大学——高纯精细化学品高效结晶精制与过程强化关键技术开发赵亚平 上海交通大学教授——基于超临界CO2的萃取精馏和模拟移动床分离技术及其应用陶金亮 河北工业大学教授——工业全逆流立体传质塔板在反应及催化精馏领域的特性及应用研究张 扬 华南理工大学教授——高纯化学品结晶分离过程中基于PAT优化结晶过程控制晶形与粒度的工业实例研究王荷芳 河北工业大学教授——高纯度电子级溶剂绿色催化精馏节能工艺开发与应用杨立斌 天津科技大学教授——熔融结晶技术在高纯产品中的实践应用魏玉峰 浙江华海药业股份有限公司高级总监——制药过程结晶工艺开发、转移中的常见问题马鹏程 中国科学院新疆理化技术研究所研究员 ——聚集诱导油水分离工艺张鹏伟 俱力(北京)科技发展有限公司总经理——超高压(HPP)在植物萃取上的优势张庆武 北京日新远望科技发展有限公司教授级高级工程师——高品质活性碳纤维膜在精细化工分离纯化中的应用王作荣 宁波信远膜工业股份有限公司总工程师 ——渗透汽化有机溶剂脱水技术应用案例分享张立峰 浙江汇甬新材料有限公司总经理——微波法第二代分子筛膜在高纯化学品提纯精制中的应用张春芳 江南大学化学与材料工程学院教授报告主题:正在确认中(更多专家报告正在确认中,敬请关注……)六、主要交流内容:一)、高纯化学品分离纯化技术研究与装备1、高纯化学品分离纯化技术工艺研究思路2、高纯化学品分离纯化过程中存在的共沸、近沸和热敏损失问题3、新能源电子化学品痕量杂质分离技术4、精密精馏和层式熔融结晶耦合纯化技术及成套工艺包开发5、吸附-精馏-结晶耦合分离技术研究开发与应用6、连续色谱分离填料、装备和优化成套技术开发与应用7、二元醇系列高难物系产品分离过程与装备8、集成分离技术在多项光学级产品分离中应用9、高纯度化学品精馏过程强化关键技术开发应用及节能减排10、高纯/超高纯化学品精馏关键技术装备研发与工业应用11、熔融结晶技术在锂电化学品的提纯中应用二)、新型分离材料的开发与应用1、新型陶瓷膜材料的研究开发与应用2、高效分离有机溶剂的新型膜材料开发与应用3、有机功能性膜材料开发与应用4、分子筛膜分离技术的研究与应用5、功能性吸附分离材料研究及产业化6、高性能色谱分离材料和色谱柱的研制与应用7、无机离子交换材料的开发与应用8、新型高分子膜材料的开发与应用三)、高效分离设备的开发与反应分离耦合技术1、分离提纯过程节能装备及高效精馏装备开发与应用2、膜过滤系统和模拟移动床系统设备的开发与应用3、连续离交系统和浓缩干燥技术的开发与应用4、超级浮阀塔板装备与高效S型填料的装备的开发与应用5、多级萃取设备和结晶设备的开发与应用6、膜分离设备及固液分离装备的开发与应用7、多相氧化组合反应器与耦合分离新技术应用8、膜分离及膜反应分离一体化技术开发与应用9、LC高效层析分离技术设备开发与应用10、反应-膜分离耦合强化技术的研究与应用11、反应-渗透蒸发耦合技术与无机膜反应器的应用12、超临界流体技术与膜分离耦合技术★新装备与新仪器科技创新成果展示:会议期间将举办新装备与新仪器成果展示活动,欢迎各仪器、装备开发单位积极参加展台展示及技术推广报告。(详情请联系会务组咨询)七、参会对象:全国制药、精细化学品和有机合成产品的生产企业;从事分离纯化技术与工艺放大优化研究领域的相关科研院所、大专院校;分析检测、质量标准等部门的研究和工作人员;为企业提供分离纯化、工艺优化设计和技术服务的单位;与分离纯化、分析检测相关设备与仪器仪表生产企业及贸易公司等。八、论文征集:本次会议面向全国征集与主题相关的学术报告、论文、调研成果,印刷会刊(论文集)作为会议资料,提交人员于6月20日前将论文发送至邮箱zghg2012@126.com。要求论文字数不超过5000字,文件格式为word文档。九、联系方式:联系人:赵老师 电话:13001080157(同微信) 电子邮箱:zghg2012@126.com附 件:参会回执表中国化工企业管理协会医药化工专业委员会 二○二四年五月附件: 2024精细化工高纯化学品分离提纯精制技术应用与装备开发论坛参会回执表单位名称邮 编通讯地址联 系 人部 门职 称手 机电 话传 真参会代表 登记 姓 名性 别职务/称 手 机 电 子 邮 箱发票事宜发票单位名称:发票项目: □培训费 □会务费问题征集(以便报告专家在备课时更有针对性):银行汇款至:户 名:北京邦凯企业管理咨询有限公司开户行:中国工商银行北京玉泉路支行账 号:0200063009200050454签名/盖章:日 期:1、请您准确填写上表各项信息,以便我会制作代表证等相关培训资料。2、请您在回传此确认表后3个工作日内办理付款,汇款注明:南京纯化分离注册费用3、请您付款后把汇款底单发给联系人,款到后我们会给您邮寄正式发票。4、我们在会议前一周左右给您发第二轮报到通知。联系人:赵老师 电话:13001080157(同微信) 电子邮箱:zghg2012@126.com

色谱提纯植物色素实验相关的方案

色谱提纯植物色素实验相关的资料

色谱提纯植物色素实验相关的试剂

色谱提纯植物色素实验相关的论坛

  • 植物色素类药物

    植物色素(phytochromes)在植物中广泛分布,有脂溶性色素与水溶性色素两类。脂溶性色素多为四萜类衍生物,这类色素不溶于水,难溶于甲醇,易溶于乙醇、乙醚和氯仿等溶剂。常见的脂溶性植物色素有叶绿素、叶黄素、胡萝卜素、番红花素和辣椒红素等。其中胡萝卜素不溶于乙醇。有些色素有一定的生物活性,如叶绿素有一定的抑菌作用。  水溶性色素主要为花色甙类,又称花青素,普遍存在于花中。可溶于水与乙醇,不溶于乙醚与氯仿等有机溶剂,其色泽随pH的不同而改变。医学教.育网搜集整理  植物色素类常作为杂质除去,如在制备生物制剂或提取有效成分时加水稀释而使叶绿素析出,水溶性色素可用醋酸铅试剂沉淀或活性炭吸附除去。随着科学研究的深入,已发现不少色素具药用价值,如紫草的萘醌类色素能抑菌,红花中的红花红素与红花黄素能活血化瘀与抗氧化,姜黄中的姜黄素(curcumin)能降血脂和抑菌,栀子中的栀子黄色素(gardenin)能抑菌。

  • 【讨论】—农残检测中植物色素如何净化的问题

    【讨论】—农残检测中植物色素如何净化的问题

    [B]农残分析中净化是最麻烦,但是又是必要的一个环节;特别是在处理植物样品时,植物色素的干扰是一个较为麻烦的问题,常见的净化方法有磺化方法、凝胶色谱(GPC)法或利用吸附剂如活性炭、PSA、石墨化炭黑、氧化铝、弗洛里硅土等进行SPE净化,由于农残目标物的不同及样品的差异,各个净化方法会有不同的适用性。[/B][color=#DC143C]下面就针对不同的样品、分析的目标物等用何种净化方法较为适用,请大家结合自己的实验经验或个人观点发表一下看法、分享一下经验![/color]下面简单的介绍一下色素的相关知识(以下资料均来源于网络)植物色素类(Phytochromes)主要有脂溶往色素与水溶性色素两类。脂溶性色素主要为叶绿素、叶黄素与胡萝卜素,三者常共存。此外尚有藏红花素、辣椒红素等。除叶绿素外,多为四萜衍生物。这类色素不溶于水。难溶于甲醇,易溶于高浓度乙醇、乙醚、氯仿、苯等有机溶剂。胡萝卜素在乙醇中也不溶。叶绿素等在制备中草药制剂或提取其他有效成分时常须作为杂质去除,以使药物纯化,中草药(特别是叶类、全草类)的乙醇提取液中含有多量叶绿素、可在浓缩液中加水使之沉出,也可通过氧化铝、碳酸钙等吸附剂而除去。水溶性色素主要为花色甙类,又称花青素,普遍存在于花中。溶于水及乙醇,不溶于乙醚、氯仿等有机溶剂,遇醋酸铅试剂会沉淀,并能被活性炭吸附,其颜色随pH的不同而会改变。[B]叶绿素[/B]叶绿素是二氢卟酚(chlorin)色素,结构上和卟啉(porphyrin)色素例如血红素类似。在二氢卟酚环的中央有一个镁原子。叶绿素有多个侧链,通常包括一个长的植基(phytyl chain)。以下是自然界中可以找到的几种叶绿素:[img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808022308_101290_1613333_3.jpg[/img]以下是叶绿素的结构:[img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808022310_101291_1613333_3.jpg[/img]叶绿素a、b、d[img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808022312_101294_1613333_3.jpg[/img]叶绿素c1、c2

色谱提纯植物色素实验相关的耗材

  • 4L酸纯化系统高纯酸提纯器CH系列纯化装置
    酸纯化器一、 产品简介: NJ-ZH酸纯化器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,实验室工作中常常由于酸的纯度不够,造成分析结果的偏差与错误。市售的纯酸往往由于价格贵,很难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,为经济可行的途径,我厂的酸纯化器可用于实验室如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。二、工作原理:酸纯化器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,应用于样品处理及分析实验中。温度控制:经实验证明HCl:110℃、HNO₃+HF:175-180℃温度高、效率高,温度低酸的纯度会较好我厂高纯酸蒸馏纯化器优势:1、密闭环境下提纯酸,不受环境污染,确保酸纯度;2、节约成本、方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求;3、可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸;4、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求还高,可增加提纯次数;5、可拆卸清洗,避免腔体里面长期提纯,造成金属杂质含量沉积越来越多,影响提纯的质量;
  • CLNpak EV-200系列GPC农残提纯柱
    样品提纯柱 对于成分复杂的样品如食品的成分分析,可以用GPC柱预处理样品,以除去其中的油脂及其它高分子物质和色素等杂质,Shodex CLNpak是一种GPC清洗柱,以低收缩的刚性聚合物凝胶填充,流动相的选择范围很广。可以用于食品中农残样品分析的前处理。 EV系列柱的填料为苯乙烯与二乙烯苯共聚物,主要用于分析食品中农残等物质时的GPC提纯,柱内溶剂为乙酸乙酯/环己烷或丙酮/环己烷。 PAE系列柱的填料为聚乙烯醇,主要用于沉淀物、生物样品和血液中邻苯二甲酸酯等物质的GPC提纯,柱内溶剂为乙腈或丙酮。CLNpak EV-200 2.0 × 150(岛津在线GPC-GC/MS配套)CLNpak EV-2000AC 20.0 × 300 CLNpak EV-G 20.0 × 100 CLNpak EV-2000 AC 20.0 × 300 CLNpak EV-G AC 20.0 × 100CLNpak PAE-800 8.0 × 300 CLNpak PAE-2000 20.0 × 300 CLNpak PAE-G 8.0 × 50 CLNpak PAE-800 AC 8.0 × 300 CLNpak PAE-2000 AC 20.0 × 300 CLNpak PAE-G AC 8.0 × 50更多产品信息,欢迎来电咨询021-64959872!
  • 欧罗拉自动化植物RNA纯化系统试剂盒
    MagPure纯化技术介绍MagPure(磁珠法)纯化技术是专门为自动化核核酸提取设计的。该技术采用超顺磁性粒子为基质, 在其表面包被硅醇基或羧基基团,使得微粒与核酸发生特异性的吸附作用,从而达到纯化核酸的目的。 MagPure技术配合自动化核酸提取工作站,可将核酸分离纯化,从手工变成机械自动化操作,可大大 提高实验的准确度和通量,并减少操作人员接触危险样品的机会。MagPure Plant RNA Kit (自动化植物RNA纯化系统)从50mg植物样品中提取高纯度的总RNAMagPure Plant RNA Kit采用磁珠纯化技术,适用从50mg植物样品中提取高纯度的总RNA。得到的RNA可直接用于RT-PCR、荧光定 量RT-PCR、Nouthern杂交等实验。该产品可成功在VERSA 10,VERSA 1100,VERSA HT等设备上运用。不同的植物叶片样品(50mg)经MagPure Plant RNA Kit提取后,取5%纯化RNA上样于1%琼脂糖凝胶电泳结果)。取纯化的RNA测量结果结果表明,MagPure Plant RNA Kit可处理常规的植物样品,也可以处理多酚类和多糖类的植物样品。可兼容液体处理系统VERSA 10 PCR/NAP 自动化核酸提取-PCR建立工作站VERSA HT 高通量自动化液体处理工作站VERSA 1100 NGLP 下一代测序工作组VERSA 1100 4ch Independent 独立四通道液体处理工作站VERSA 1100 PCR/NAP 自动化核酸提取-PCR建立工作站Aurora在核酸分离纯化领域拥有完整和先进的技术,MagPure试 剂盒为不同样品提供不同粒径或不同官能基团的磁性粒子,以达到 最佳的纯化效果。在满足产品精确性及可重现性的要求,实现高通 量自动化核酸纯化的同时 保证产品绝对的兼容性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制