荼明光学仪

仪器信息网荼明光学仪专题为您提供2024年最新荼明光学仪价格报价、厂家品牌的相关信息, 包括荼明光学仪参数、型号等,不管是国产,还是进口品牌的荼明光学仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荼明光学仪相关的耗材配件、试剂标物,还有荼明光学仪相关的最新资讯、资料,以及荼明光学仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

荼明光学仪相关的厂商

  • 共赢、合作、携手、同创。欢迎上门参观。东莞市瑞明光学有限公司,是专业代加工非球面光学模仁粗车、代加工TV入子精车外观。 公司有着超高精度单点金刚石车床,加工设备有:海普超精, ULC-100、UPX-200。可加工粗车、外径、精车外观,加工精度可达0.2um以内,面粗糙度3nm以内。基于对全球光学行业市场竞争态势的深刻理解和把握,瑞明光学有限公司把握客户需求趋向,帮助光学行业各个企业完成产品量产,以在产品工艺 加工、生产领域的核心技术为企业核心竞争力,围绕品牌打造全过程,优化资源配置,形成修模试模解决方案,建立起自己在光学行业代加工领域的竞争优势。帮助企业解决机台不足的困难!苹果、三星等关联客户有效解决产能问题。欢迎各界朋友莅临参观、指导和业务洽谈。
    留言咨询
  • 400-860-5168转2055
    美国Labsphere Inc.公司(国内注册商标:蓝菲光学)于1979年成立,是生产积分球及以积分球为核心的光电仪器厂商,总部位于美国新英格兰地区的新罕布什尔州,在40余年的发展历程中labsphere致力于在全球光源计量、照明测量、辐射标定、反射率透射率测试及光学漫反射涂料领域内的技术发展,Labsphere已为众多光学领域客户专业设计并提供多种用途的积分球系统,此外Labsphere还具备极其丰富的定制经验,以满足不同用户的特殊需求。 Labsphere通过了ISO9001:2008的认证,每一个生产流程都严格按照ISO标准,每个生产环节都会设置独立的质控人员,严格控制产品质量。Labsphere在美国拥有高精度的综合加工车间、化学物混合及喷涂车间、光学和机械设计实验室以及2个符合美国国家标准与技术研究院(NIST)标准的校准实验室和光学材料标定实验室等,2011年,该实验室通过美国国家实验室认可程序(NVLAP)认证,获得了SO/IEC 17025检测和校准实验室资质。这些设施保证了Labsphere设计、制造、加工和装配的产品的极高水准。2010年3月,Labsphere收购了美国另一积分球系统供应商Sphere Optics,将成功将整合到Labsphere的品牌和团队之中。 为了更好服务亚洲市场,Labsphere已于2009在上海设立了全资子公司——上海蓝菲光学仪器有限公司(shanghai Labsphere Optical Equipments Co.,Ltd.), 其在中国的业务量已在过去的4年间增长了10余倍。目前Labsphere产品包括针对 LED、半导体照明产品、通用照明光源和激光器的光测量系统、反射率透射率测试组件,成像设备校准用均匀光源等,广泛应用于光学计量,光学检测,照明领域测试及研究、遥感成像定标,化妆品、纺织品紫外透过率及防晒指数分析等。 Labsphere目前主要产品包括:1) 用于检测LED、SSL及其他光源的光色电测试系统 2) 用于空间研究、遥感、观测、计量等科研机构的辐射标定均匀光源系统 3) 用于大功率密度或大发散角的激光功率测试系统 4) 用于众多行业的反射率及透射率测试系统 5) 用于化妆品及纺织行业的紫外透过率及防晒指数分析仪 6) 光学元件杂散光、雾度、平板显示器特性等专业应用检测仪器 7) 用于光谱测量设备的全球最高漫反射率反射材料www.labsphere.comwww.labsphere.com.cn
    留言咨询
  • 成都艺光仪器有限公司致力于为用户提供优质专业的服务! www.artoptics.com.cn 我们不仅提供国内的光学元件,还提供国外的光电仪器,更能根据客户需求提供综合解决方案。我们的产品,包括光学元件类,光机电类,光电检测仪器类,镀膜测试类等。广泛用于科研院所,高校,平板显示企业,3c,汽车,通讯和半导体等。 我们会努力提高产品品质,完善我们的服务,与用户共同成长!主要产品:一、光学元件(标准光学镜片、高功率激光镜片、定制光学元件、偏振元件)二、红外光学材料、镜片、光学器件三、光机械部件(压电电控平台、光学防震桌、光学调整架、手动位移台、光机组件等)四、光源(氙灯,卤素灯,均匀光源,led灯等)五、光学测量仪器:积分球,反射板,功率计、能量计,光谱仪,电学设备等六、智能智造:提供自动光学检测机,缺陷检测系统,IVL,lifetime测试系统等七、相机及成像镜头(定焦/远心/线扫/变焦变倍/特殊定制镜头)、照明光源 成都艺光仪器有限公司,秉承“全面 准确 高效”的原则,竭诚为国内广大用户提供专业咨询以及快捷、优质、完善的技术支持服务。
    留言咨询

荼明光学仪相关的仪器

  • 进入光学测量的世界ZEISSO-DETECT直观的操作、高质量的相机和灵活的照明,瞬间实现精确测量。适合各类不同部件,特别适用于那些最好不轻易触碰的部件。探索新一代光学测量技术:ZEISSO-DETECT。您将得益于:出色的光学元件应用广泛,易于升级部件导航简单,且可视化稳定的精度软件界面直观且易于使用专业和可指导行动的报告特点入门级高端相机全景相机:快速、精确、直观蓝色和白色LED顶灯适合各种任务的照明光源易于使用和设置:ZEISSZAPHIRE软件ZEISSO-DETECT的一个关键部件是高质量相机。先进的软件和新的自动对焦功能,相机拍摄的图像可以转换为精确的测量结果。ZEISSO-DETECT的另一个重要组件是同类产品中的首创:内置5百万像素相机传感器的全景相机。该设备自动定位待测量部件,无需用户干预。这样就可节省时间,提高测量机的工作效率。与其他应用一样,本测量机的控制也非常简单和直观。高质量照明对实现精确测量结果起着关键作用。通用型且易更换的ZEISSO-DETECT顶灯为此提供了良好条件。顶灯根据用户定义的设置自动工作。针对某些需测量的部件,您可能会面对各种挑战,ZEISSO-DETECT提供了不同照明光源。环形光适用于普通零件的顶部照明,并可用于光亮工件的照明,对于具有挑战性的边缘,也可优化照明效果。ZEISSZAPHIRE是一款全3D软件包,工作流程简单,通过2天培训,即可轻松掌握。结合全彩全景相机,ZEISSO-DETECT上的ZEISSZAPHIRE使得工件导航等任务更加符合人体工学且更直观。
    留言咨询
  • 日本SIGMA KOKI柱面平凸透镜圆柱面平凸透镜(柱面平凸透镜)是在垂直方向具有凸透镜的曲率,在水平方向没有曲率的透镜。用于将激光聚光成细线形状的实验中,或用于流体测量等需要的较宽的线状光束。 有从可见光到近红外用的BK7材料的透镜,和可用于350nm以下紫外光的高激光损伤阈值的合成石英透镜这两种类型。 BK7材料的透镜中,备有可见光近红外红外三种类型的防反射膜的透镜。 光学系统中使用柱面透镜时,可以改变光束形状或照明光的纵横比。柱面平凸透镜共同指标注意:?柱面平凸透镜有色差,焦距随波长变化。各波长的焦距请参考网页上的“焦距随波长变化特性数据”确认。?射入柱面平凸透镜的光线有方向性。请务必从凸面一侧射入平行光。否则球差会变大,聚光线条会变宽。?由于无镀膜透镜的正面和反面都存在反射损失,所以透过率为90%左右。功能说明图柱面平凸透镜外形图 柱面平凸透镜透过率波长特性(参考数据)
    留言咨询
  • DLP/DMD光刻照明光源 400-860-5168转2831
    DLP/DMD光刻照明光源昊量光电新推出LumiDLP光刻照明光源通过大面积提供高度均匀的通量密度为紫外DLP应用提供前所未有的速度和分辨率。模块化设备结合了密集封装的UV-LED阵列成为一种高效、非成像采集光学设备,集成了远心成像光学优化DLP芯片组。这款DMD光刻光源为基于DLP技术的具有挑战性的曝光应用提供出色的UV-LED照明。特别是要求蕞高强度和多波长光谱的设置非常适合。数值孔径为0.2(光束角度±12°)和非常高的照明均匀性、这些构成DLP-芯片曝光的完美解决方案。DLP/DMD照明器提供高达30W的光辐射功率。单波长和多波长设置可供选择(365nm、385nm、395nm、405nm)。这款DLP/DMD光刻照明光源提供的辐射功率与汞放电灯相当、但具有LED技术的寿命和总成本优势。此外、DLP/DMD光刻照明光源还可以很好地替代基于单色激光二极管(例如、LD405nm)的照明器。LumiDLP光刻照明光源是专为DLP9000和DLP9500芯片设计的、可以轻松集成到基于DMD的系统中。DLP/DMD光刻照明光源产品亮点:专为DLP9000和DLP9500设计包括高性能LED驱动器、便于控制和编程高强度性能能够缩短/减少处理时间由于频谱宽广、可以使用多种类型的抗蚀剂不会过时的无汞光源DLP/DMD光刻照明光源产品规格:辐射输出功率DLP9500蕞高30WDLP7000蕞高20W波长配置365nm、385nm、395nm、405nmSingle and multi-wavelength setups available光出口角±12°匹配DLP微镜倾斜角度照明均匀性和DMD芯片溢位90%均匀性10%溢位热管理液体冷却设置快速连接、无泄漏耦合所需入口温度≤25℃ 25°使用寿命3000h模块化、易于更换系统、蕞大限度减少停机时间LED-驱动器每个通道0-3A、每个LED阵列18个通道恒流、可调光、脉宽调制外部接口USB 2.010/100Mbps以太网RS-232 (TIA-232-F)程序串行(USB)和远程登录(以太网)通信命令集尺寸和重量照明器:27.5cm×8cm×8.5cm驱动器:23cm×29cm×4.5cm重量照明器:~1.5kg驱动器:~2kg更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的网站了解更多的产品信息,或直接来电。
    留言咨询

荼明光学仪相关的资讯

  • 明光市中医院272.00万元采购核磁共振
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 核磁共振 开标时间: 2022-04-15 00:00 采购金额: 272.00万元 采购单位: 明光市中医院 采购联系人: 高丽 采购联系方式: 立即查看 招标代理机构: 安徽恒盛捷工程咨询有限公司 代理联系人: 陈洁 代理联系方式: 立即查看 详细信息 明光市中医院64排CT维保服务、1.5T核磁共振维保服务采购项目 安徽省-滁州市-明光市 状态:公告 更新时间:2022-03-25 招标文件: 附件1 附件2 序号 标段编号 标段名称 招标文件下载 1 czcg202203-151-01 明光市中医院64排CT维保服务、1.5T核磁共振维保服务采购项目 点击下载 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:核磁共振 开标时间:2022-04-15 00:00 预算金额:272.00万元 采购单位:明光市中医院采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:安徽恒盛捷工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 明光市中医院64排CT维保服务、1.5T核磁共振维保服务采购项目 安徽省-滁州市-明光市 状态:公告 更新时间: 2022-03-25 招标文件: 附件1 附件2 序号 标段编号 标段名称 招标文件下载 1 czcg202203-151-01 明光市中医院64排CT维保服务、1.5T核磁共振维保服务采购项目 点击下载
  • 安徽省发布第三次全国土壤普查试点方案 将在明光市开展试点
    按照《国务院关于开展第三次全国土壤普查工作的通知》(国发〔2022〕4 号)要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1 号),为保障安徽省第三次全国土壤普查(以下简称“土壤三普”)工作科学有序开展,安徽省第三次全国土壤普查领导小组办公室制定印发《安徽省第三次全国土壤普查试点工作方案》。目标任务:通过试点为全省全面推开普查工作积累经验、探索路径;检验和完善普查工作流程、技术规程和方法,明确成果要求,探索运行机制,总结工作经验。2022 年,试点县按期完成样点规划布设核对工作;6 月底前完成外业调查采样工作;8 月底前完成内业测试化验工作;9 月补充样品及分析化验;10 月审核上报数据,汇总分析;12 月底前实现对辖区耕地、园地、林地、草地等土壤的“全面体检”,摸清土壤质量家底,并形成试点工作总结上报国务院土壤三普办公室。试点对象和内容:试点对象。经省、市农业农村部门推荐,并报农业农村部同意,明光市为安徽省第三次全国土壤普查工作试点单位。试点对象为明光市辖区内的耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地等。试点内容。包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇交汇总等。国家层面负责统一构建工作平台、制作工作底图和布设采样样点等,省、市、县共同推进外业调查采样、内业测试化验、质量控制校核、数据整理分析和成果汇交汇总等工作。1.外业调查采样。外业调查采样包括任务认领、立地与生产信息调查、表层土壤样品采集、剖面样品采样、土壤类型校核与完善等。省土壤三普办公室认领试点外业调查与采样任务并分发至明光市土壤三普办公室。明光市成立外业调查队,负责现场确认样点位置,样点的地形地貌、水文地质、植物类型、化肥农药使用等立地与生产信息调查以及采集表层样品、土壤剖面样品。其中采集土壤剖面的调查采样,由省土壤三普办公室安排熟悉土壤分类与制图的专家带队,在明光市外业调查采样队的协助下,重点对挖掘土壤剖面、观察与记载剖面形态、采集剖面土壤样品与标本,开展土壤类型校核完善与边界勾绘等。外业调查采样队通过手持终端 APP 完成任务认领、实地采样、数据保存和上传等,及时完成样品包装与寄送等工作。2.内业测试化验。内业测试化验主要包括样品制备、流转、检测等。省土壤三普办公室组织初筛检测实验室、确认省级质量控制实验室,报送国务院土壤三普办公室,并从国务院土壤三普办公室公布的实验室名录中择优选择承担明光市试点任务的检测实验室。省土壤三普办公室组织实验室开展样品制备、流转、检测等工作。省级质量控制实验室负责样品转码、流转等工作。检测实验室负责样品风干、粗磨等制备工作,严格按照统一的检测指标和检测方法开展检测工作,加强内部质量控制。3.全程质量控制校核。全程质量控制包括外业调查采样、样品制备保存流转、样品检测、数据审核等 4 个环节质量控制。省土壤三普办公室负责组织开展明光市外业调查采样任务的监督检查,资料检查不低于采样任务 5%、现场检查不少于 5‰;组织省级质量控制实验室对所有制样实验室开展样品制备任务的监督检查,检查数量不少于样品总量 5%;对承担检测任务实验室开展留样抽检,抽检量不低于检测样品量 5‰,同时配合国家层面开展能力验证和飞行检查。省土壤三普办公室负责组织专家及质量控制实验室开展数据审核工作,范围覆盖所有入库数据。4.数据整理分析。数据整理分析包括数据汇总整理和数据分析,主要对基础地理信息和历史土壤调查资料、土壤三普调查的土壤立地与利用信息以及检测的土壤物理化学性状等数据开展汇总计算、分析模型构建等。试点县要将相关数据与第三次全国国土调查耕地资源质量分类、农用地质量分等定级等相关成果进行校核比对,并对异常数据进行排查。省土壤三普办公室负责组织通过全国土壤普查信息化工作平台填报普查数据,组织专家对上报普查数据进行审核,开展数据系统整理分析。5.成果汇交汇总。成果汇交汇总包括形成土壤普查试点成果报告,包括相关数据资料、土壤类型图、土壤属性图、以及文字报告和技术报告等,初步构建数据库和样品库。明光市土壤三普办公室负责完成本区域内普查工作数据汇总、土壤质量专题评价报告、土壤类型图和土壤属性图制作以及试点总结报告撰写,初步建成省级土壤普查数据库。省土壤三普办公室组织专家对明光市上述成果进行论证,2022 年底将试点相关成果及2023年工作安排按要求报送国务院土壤三普办公室。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.

荼明光学仪相关的方案

荼明光学仪相关的资料

荼明光学仪相关的试剂

荼明光学仪相关的论坛

  • 【求助】有关光学显微镜的照明光源问题

    常用的光学显微镜的照明光源有什么要求?如测量显微镜、金相显微镜、体式显微镜等,分别选用什么照明,看到有LED、卤素灯、疝气灯等另外,照明光源的功率多少合适?

  • 帮忙下载一篇文献“科勒照明光路系统的研究与应用”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=&][size=13px][color=#0066cc]周菲菲[/color][/size][/font][b][b][/b][/b][/b][font=&]【题名】:[/font][b][b][url=http://www.eope.net/EN/abstract/abstract17664.shtml][b][b]科勒照明光路系统的研究与应用[/b][/b][/url][/b][/b][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=44d548ceda7647026248a7152eb966fc&site=xueshu_se&hitarticle=1][font=&][size=13px][color=#0066cc]周菲菲[/color][/size][/font]科勒照明光路系统的研究与应用 - 百度学术 (baidu.com)[/url][/b][font=&][size=13px][color=#0066cc]周菲菲[/color][/size][/font]

  • 【分享】光学显微镜的使用

    一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写N• A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。 ③、工作距离是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。 3、物镜的作用是将标本作第一次放大,它是决定显微镜性能的最重要的部件——分辨力的高低。 分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的最小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。 显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。 当用普通的中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/N• A 式中d——物镜的分辨距离,单位 nm。 λ——照明光线波长,单位 nm。 N• A ——物镜的数值孔径 例如油浸物镜的数值孔径为1.25,可见光波长范围为400—700nm ,取其平均波长550 nm,则d=270 nm,约等于照明光线波长一半。一般地,用可见光照明的显微镜分辨力的极限是0.2μm。

荼明光学仪相关的耗材

  • 海洋光学比色皿用支架1-cm
    CUV- UV比色皿支架可以用于1-cm光程试管,可以通过SMA接头的光纤耦合到海洋光学高灵敏度微型光纤光谱仪和光源,组成小型化的分光光度计系统,用于各种 水溶液的绝对吸光度测量。这种紧凑的比色皿支架被优化用于UV-VIS-NIR (~200 nm-2 µ m)的应用。 两个74-UV透镜被固定,穿过为1-cm比色皿设计的支架,从比色皿底部到采样区域的&rdquo Z&rdquo 尺寸,为15mm。试管被弹簧塞固定,支架底座配备了管道,可以连接水浴,用于温度控制。 1-cm光程比色皿支架配有以下关键组件: 两个可调5-mm直径f/2石英透镜 精确固定试管位置的弹簧球塞 内置1/4"滤光片插槽 连通恒温水源的内置管道(加热和冷却底座和比色皿,采用对流方式) SMA905接头,耦合光纤 1-cm比色皿支架可以选配黑色阳极氧化铝材质的外罩,用于屏蔽环境光,以及在采集暗背景时截止光路。 使用1-cm比色皿支架很简单:将两个准直透镜分别连接SMA接头光纤,其中一根光纤&mdash 照明光纤&mdash 耦合到光纤输出光源,另一根&mdash 读取光纤&mdash 连接到光谱仪。某些情况下,你可以调节准直透镜,将光纤精确地定位在透镜的焦点,或者调解弹簧球塞,以适应不同型号的1-cm比色皿。 CUV-UV-FL CUV-UV-FL 是一个1-cm光程比色皿支架,所连接的两根光纤成直角耦合。这个试管直角被专门设计用于荧光测量(200-2000nm) 用户小贴士 每台74系列准直透镜皆配有比色皿支架,也可以将其旋出支架并且单独使用于任何需要将自由光束耦合到光纤的装置,例如在线透射或者反射测量。 "Z" 尺寸 所有海洋光学提供的比色皿和比色皿支架的"Z"方向尺寸为15mm。 规格 光程: 1 cm 准直透镜(UV-VIS-NIR): 石英透镜,优化用于200nm-2um m 5mm直径 f/2 准直透镜接头: SMA 905 采样间尺寸: 2.0" x 1.5" (LW) 滤光片插槽: 容纳滤光片,最大¼ " (6 mm)厚度 主要材料: 铝 基本长度: 5.5" 底座连接: 进水和出水口,额外的连接端口 进水口装置: 1/8" NPT导管螺纹 到达样品的光束尺寸: ~5 mm (圆形) 透镜中心到样品的距离 ~0.575"
  • 海洋光学比色皿用四通支架1-cm
    1cm 比色皿可置CUV-ALL-UV 4-WAY比色皿支架配有四个光圈f/2的石英准直透镜,每个准直透镜上配备有光纤连接器,通过其与光纤相连来读取或照亮样品。当与Ocean Optics的模光谱仪和光源配套使用时,CUV-ALL-UV 能够测量吸光度、荧光度、散射或以上光学现象的任何组合性能的测量。 CUV-ALL-UV准直器是测量200 nm-2 µ m的最佳选择。透镜能够用来进行 "直通" 测量,以及散射或荧光测量。(有时用户可能希望调整准直透镜,从而在透镜的焦距内准确定位光纤。) CUV-ALL-UV 试管支架可以放置1-cm 的试管,CUV-ALL-UV 试管支架有可调弹簧活塞,试管放置在可调弹簧活塞中,紧靠着两个参考平面.。CUV-ALL-UV 比色皿支架还有一个内置的滤光片狭缝,在利用高通滤光片进行荧光测量时特别有效。 另外为了达到稳定温度,比色皿支架的底架有内部通道,与一个循环的、恒温的水源连通。 "Z" 尺寸 所有ocean optics公司提供的比色皿和比色皿支架的Z尺寸均为15mm。 可变定位 CUV-ALL-UV 提供几种选择:对一个样品进行吸光度/透光度测量时使用两个准直器。进行荧光测量时也可以使用两个准直器。还可以使用两对准时器同时测量同一个样品的吸光 度/透光度和荧光测量。准直透镜可从支架上卸下,并可单独使用在任何需要光纤进行无光束耦合的固定器上,进行在线透射率的测量。 产品规格 光程: 1 cm 准直透镜(UV-VIS-NIR): 4个石英准直透镜(200 nm-2 µ m 直径5mm,镜头光圈f/2) 准直透镜终端: SMA 905 滤光片狭缝: 可安装厚度最大为6mm的滤光片 底座材料: 铝 底座中的线路: 输入/输出 水输入装置: 1/8" NPT pipe thread 推荐使用的光纤: &bull 照明200mm,读取50mm 到达样品的光束的直径: ~5mm(圆形) 透镜中心到样品的距离: ~0.575" 试管支架的可用范围受制于与其相连的Ocean Optics光谱仪的波长范围。比如虽然透镜的最佳使用范围为2 µ m ,利用我们的光谱仪也可将其调整为能在1100 nm时使用。 一般而言,最好使用一个大直径(50 mm)的照明光纤,让尽可能多的光线通过,但若要获得更高的光学分辨率则最好使用一个小直径(50 mm)的读取光纤。
  • 美国YSI 600OMS V2光学监测仪
    唐海红 13120400643 美国YSI 600OMS V2光学监测仪 美国YSI 600OMS V2光学监测仪 产品介绍YSI 600OMS V2 光学监测仪 外形小巧、轻便耐固、耗电低,一个光学端口,可随时安装、更换YSI出品的光学溶解氧、浊度、叶绿素、罗丹明WT和蓝绿藻中的任一传感器,以满足各种应用需求。 这是一款使用灵活、操作方便的光学监测仪,既是理想的便携测量仪,又可用于长期野外监测。 YSI 600OMS V2传感器规格 参数 测量范围 分辨率 准确度 光学溶解氧1 (%空气饱和度) 0-500% 0.1% 0-200%:读数之± 1%或1%空气饱和度,以较大者为准; 200-500%:读数之± 15% 光学溶解氧1 (毫克/升) 0-50毫克/升 0.01毫克/升 0-20毫克/升:读数之± 1%或0.1毫克/升,以较大者为准;20-50毫克/升:读数之± 15% 温度 -5至50℃ 0.01℃ ± 0.15℃ 深度(浅水) 0-9米 0.001米 ± 0.018米 深度(中水) 0-61米 0.001米 ± 0.12米 深度(深水) 0-200米 0.001米 ± 0.3米 透气式水位 0-9米 0.001米 ± 0.003米 浊度1 0-1,000NTU 0.1NTU 读数之± 2%或0.3NTU,以较大者为准3 罗丹明WT1 0-200微克/升 0.1微克/升 读数之± 5% 或1微克/升,以较大者为准 参数 测量范围 检出限 分辨率 线性 叶绿素1 0-400微克/升 叶绿素a 0.1微克/升 叶绿素a 4 0.1微克/升 叶绿素a;0.1RFU R2>0.99997 蓝绿藻-藻蓝蛋白1 0-280,000细胞/毫升;0-100RFU 220细胞/毫升5 1细胞/毫升;0.1RFU R2>0.99998 蓝绿藻-藻红蛋白1 0-200,000细胞/毫升;0-100RFU 450细胞/毫升6 1细胞/毫升;0.1RFU R2>0.99999 1.所有光学探头的最大测量深度为61米 2.可同时提供比电导度(修正至25℃的电导率)、电阻率和总溶解固体的数据输出,这些参数是根据水和污水测试行业标准(Standard Methods for the Examination of Water and Wastewater)的方程式由电导率计算出来 3.使用AMCO-AEPA聚合物标准 4.通过萃取确定的海洋藻和叶绿素a的值 5.铜绿微囊藻培养的估计值 6.含有蓝绿藻的藻红蛋白培养的估计值 7.与罗丹明WT的连续稀释相关(0-500微克/升) 8.与罗丹明WT的连续稀释相关(0-400微克/升) 9.与罗丹明WT的连续稀释相关(0-8微克/升)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制