圆柱测试仪

仪器信息网圆柱测试仪专题为您提供2024年最新圆柱测试仪价格报价、厂家品牌的相关信息, 包括圆柱测试仪参数、型号等,不管是国产,还是进口品牌的圆柱测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合圆柱测试仪相关的耗材配件、试剂标物,还有圆柱测试仪相关的最新资讯、资料,以及圆柱测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

圆柱测试仪相关的厂商

  • HT ITALIA来自于美丽的欧洲小镇——意大利法恩莎,公司自1983年成立以来,产品年销售额超过4000万欧元。并在2009年在中国广州建立办事处,负责中国地区的产品销售和售后服务。 HT ITALIA公司设立专业的研发团队,在1992年研制生产出HT2038,1999年研制生产了世界上第一台带电能质量分析仪功能的便携式多功能电气安全测试仪——GENUIS 5080,在2001推出具有三相电能质量分析仪功能的多功能电气安全测试——GSC系列,刷新了便携式仪器的多功能之最。2007年HT公司开始涉及太阳能光伏系统测试,以提供太阳能光伏电站的现场测试仪表,HT可提供全面的太阳能光伏电站测试仪表:并网太阳能光伏电站性能验证测试SOLAR300N,太阳能电池I-V特性曲线分析测试仪I-V400,离网太阳能光伏电站性能验证测试SOLAR I-V等。近年来,HT公司又基于自身的设计现场测试理念,推出自主品牌的全新系列红外热像仪产品,以充分满足客户的个性化需求,HT品牌的红外热像仪家族包括:THT41/42/44的经济型系列,THT49的专业级红外热像仪和THT50专家型红外热像仪。现在HT公司拥有:红外热成像仪,电气安全测试仪(含:绝缘电阻测试仪,接地电阻测试仪,漏电保护开关-RCD测试仪,耐压测试仪和多功能电气安全测试仪)、电能质量分析仪、通用测试仪表(含:数字万用表,数字电流钳表,红外测温仪,数字测温仪,数字噪声计,激光测距仪等)、GEF专业绝缘工具(含:绝缘镙丝批,各种绝缘剪钳,各种型号的工具套包,工具箱等)等系列产品。
    留言咨询
  • 400-860-5168转4077
    上海华龙测试仪器有限公司是智能化、数字化、自动化试验机产品专业生产企业,是经国家批准授权的“中华人民共和国进出口企业”。 1999年通过 ISO9001(1994版)国际质量体系认证,2002年通过 ISO9001(2000版)中国和美国国际质量体系认证。2000年被上海市政府认定批准为“上海市高新技术企业”。2008年被国家科学技术委员会等部委认定批准为“国家高新技术企业”。2002年起连续被上海市浦东新区质量技术监督局授予企业 “质量管理先进集体”称号。2007公司研发中心年被上海市浦东新区人民政府认定批准为“浦东新区企业技术开发机构”和2004-2006年度“浦东新区先进集体”,被上海市政府授予2004-2006年度“上海市劳模集体”, 2007年公司被浦东新区人民政府考核评定为“浦东新区科技创新基地”在全国各省区重点城市设置26个营销技术服务中心,在美国、法国、西班牙、新加坡、马来西亚、香港设立了国外营销代理机构。产品广泛应用于航空航天、国防军工、机械制造、车辆船舶、钢铁冶金、电线电缆、塑料橡胶、建筑建材、大专院校、科研院所、商检质检等国民经济各领域,对各类金属、非金属、构件、成品、新材料的各项物理力学性能测试、分析和研究。企业现有员工300余人,其中大专以上学历员工为161人,16年来,企业共研发完成79大系列800余个产品种的试验机,先后有四大系列产品荣获“上海市重点新产品”,两大系列产品荣获“国家重点新产品”,八大系列产品被市科委评定为“上海市高新技术成果转化项目”。产品遍布国内各省区,并远销美国、德国、西班牙、南非、韩国、巴基斯坦、巴布亚新几内亚、马来西亚、泰国、新加坡等国际市场。上海华龙测试仪器有限公司位于上海市浦东新区川沙经济园区,企业占地23500 m2,建筑面积16800m2,绿化面积3800 m2,企业资产总计9600余万元,具有科研办公大楼、电装调试楼、工装工艺楼、总装车间、机加车间、下料车间、冷作车间、计量室、样机室等齐全的生产和办公设施。本公司拥有大型精密镗床、微控线切割、龙门刨床、数控铣床、卧式数控车床、高精外圆磨床、平面磨床、数控氩弧焊、剪板机、折弯机等各类精密加工设备和检测设备386台套。企业年产试验机生产能力可达1500余台。我公司研发的所有产品均具独立自主知识产权,拥有38项“中华人民共和国专利”。在提高产品质量,提升品牌价值的同时,公司注重工艺、工装设计,提高标准化、系列化、规范化能力,将产品研制生产的全过程纳入ISO9001质量体系,全面进行受控管理。公司将竭诚为国内外客户,为世界计量检测工作的发展,做出新的贡献。
    留言咨询
  • 山东领创测试仪器有限公司是集试验机、分析仪器等仪器仪表研发、制造、销售、服务于一体的高科技创新型企业。山东创领与山东省科学院强强联合,凭借着强大的技术研发团队,每年都有十几项新产品推出,现产品涵盖电子万能试验机、液压万能试验机、材料分析仪器 、无损检测仪器、生命科学仪器 、计量校验仪器、环境监测仪器 、石油化工检测仪器等八大系列500多个品种。并成为国内外许多知名检测仪器品牌的山东代理。山东领创测试仪器有限公司借助雄厚的技术实力,可以承接实验室整体设计及资质认定咨询。山东领创一流的产品质量、周到的售后服务得到了国内外知名院所和各界企业的信赖与支持,并与山东大学、山东省科学院、中国科学院工程研究所、中国建筑科学研究院等多家科研院所建立了长期的战略合作关系。山东领创以“诚信为本、引领创新”为宗旨,全面贯彻科学的管理体系,并成为国内为数不多的高精度仪器仪表生产及代理企业之一。公司秉承“专业创造品质、服务传递价值”的经营理念,不断对产品进行完善、创新,最大限度满足客户需求。公司谨遵“接到故障信息1小时内回应,2小时提供解决方案,专业工程师24小时内到达现场”的服务承诺,可随时为客户提供全方位的服务。山东领创测试仪器有限公司愿与社会各界朋友精诚合作,共展宏图!
    留言咨询

圆柱测试仪相关的仪器

  • 圆柱型反应瓶加热套 适合于常见的圆柱型反应瓶 , 可实现平滑的加热曲线和均匀的热量分布 标配 1.2m 长的 3 线制电线及锁定插头 底部开孔加热套特别适用于带底阀的单层圆柱形反应釜配套使用 技术参数标准订货号TM561TM563TM565TM567TM569底部开孔订货号TM561 holeTM563 holeTM565 holeTM567 holeTM569 hole适用烧瓶容积 mL5001000150020003000z大适用烧瓶直径mm117117117117117功率 W250300380450600内部深度mm64143168226254外部直径 mm191191191191191外部高度 mm127191229279318重量 kg1.41.71.82.22.7
    留言咨询
  • 产品介绍圆柱形轴弯曲试验仪TQC圆柱形轴弯曲试验仪符合ISO 1519,用于测试金属板上涂料的弹性附着力和延展性。测试板(尺寸150x100mm)在某一直径的圆柱形轴上弯曲,圆柱形轴的直径越小则张力越大。最终通过检查测试板上涂层的开裂和破坏情况来评估涂层性能。 随货配套的精美的桌面型圆柱轴支架亦可安装在墙上 另配套的14个圆柱形轴的直径为2,3,4,5,6,8,10,12,13,16,19,20,25和32mm。TQC圆柱形轴弯曲试验仪通过QUALICOAT,QIB,GSB实验室的认证。规格参数: 型号:SP1820 锥形轴直径范围:3.1mm~38mm 标配芯轴直径:2,3,4,5,6,8,10,12,13,16,19,20,25,32mm 测试板尺寸:100*180mm 最大测试板厚度:0.8nn 仪器尺寸:110*250×150mm 重量:4200g 符合标准:ISO6860和ASTM D522
    留言咨询
  • C660M端盖脱离力测试仪_圆柱形复合罐检测仪器Labthink兰光生产的端盖脱离力测试仪,C660M泄漏与密封强度测试仪,采用正压法的测试原理,可专业用于食品复合纸桶的底部和盖的脱离力检测。例如:薯片纸桶包装、纸铝塑复合的茶叶罐包装等。端盖脱离力测试仪技术特征:1、多重试验模式 ,全自动测试:正压法测试原理提供破裂测试、蠕变测试、蠕变到破裂测试、保压等多种试验模式提供膨胀抑制、膨胀非抑制双重试验方法,根据需要自行选择(需选购测试附件)试验曲线实时显示,试验数据智能统计试验量程可选,轻松实现非标测试采用世界知名品牌进口元器件,性能稳定可靠2、创新的进气流量实时监测技术:解决高压下监测气体流量的技术难题,业内率先实现进气流量实时监控,保证试验条件一致性有助于获得测试数据的高重复性3、全新&bull 专利&bull 智能,全触控操作系统:工业级触屏、一键式操作、直观的操作界面,可远程升级与维护中英双语操作界面,满足不同语言要求全球通用的试验单位可自由切换具有数据自动存储、掉电自动记忆功能,防止数据丢失内置数据存储可达1200条,满足大数据量存储的需求多级用户权限管理,密码登录微型打印机和USB通用数据接口,方便数据输出和传递(可选)符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选) 执行标准:GB/T 10440-2008 圆柱形复合罐 端盖脱离力测试仪技术指标:测试范围:0~600 KPa / 0~87 psi(标配);0~1.6 MPa / 0~232 psi(可定制)分辨率:0.1 KPa / 0.01 psi压力精度:±0.25%FS充气头:Φ10 mm(标配);Φ4 mm、Φ1.6 mm (可选)充气流量:0.01~10L/min保压时间:0.1秒~999999.9秒气源:空气(气源用户自备)气源压力:0.6MPa~0.7MPa(87psi~101psi)气源接口:Φ8 mm聚氨酯管外形尺寸:334mm(L)×230mm(W)×200mm(H)测试架尺寸:305mm(L)×356mm(W)×338mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:主机:8kg; 测试架:16kg 欲了解详情,请致电0531-85068566济南兰光机电技术有限公司。
    留言咨询

圆柱测试仪相关的资讯

  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 【百年传承】安东帕表面力学测试仪器开放日
    开放日活动周2022年,正值安东帕100周年,已推出一系列【百年传承】活动,今天,给大家推荐的是:表面力学测试仪器开放日活动周~免费测试样品安东帕压痕、划痕、摩擦磨损、涂层厚度测试免费开放一星期!(9月5-9日)。安东帕表面力学测试仪可测量各种材料的表面力学性质,从最硬的类金刚石 (DLC) 膜到最软的水凝胶。应用领域覆盖工业和科研:切削工具、汽车、航天、电子器件、生物医学、半导体、聚合物、光学部件、玻璃、装饰物等。压痕仪:硬度、弹性模量、粘弹性、蠕变、断裂韧性等符合工业标准:ISO 14577、ASTM E2546等仪器化压痕技术 (IIT) 是将已知几何形状的压头压入样品表面,同时监测压入深度和法向载荷。可以从载荷-位移曲线中获得压痕硬度(HIT)、弹性模量(EIT)以及其他力学特性。安东帕的压痕仪采用独特的表面参比技术(欧洲专利 1828744,美国专利 7685868),实现低热漂移,具有极高的稳定性。“快速点阵”压痕模式可实现最高每小时600 次的测量速度,并获得完整的压痕曲线。动态力学分析 (DMA)可测量力学性质随深度变化曲线(硬度/模量vs.深度),表征材料粘弹性 (存储及损耗模量、tan δ)。多物镜视频显微镜可以清晰显示样品,并且利用电动工作台精确定位。划痕仪:涂层附着力、摩擦力、耐划伤性等符合工业标准:ISO 20502、ASTM C1624等划痕测试仪技术可以在待测样品上用金刚石划针形成可控的划痕。达到一定的载荷时,涂层会开始脱落。通过集成的光学显微镜观察,结合摩擦力、划痕深度、声发射传感器等多种信号,可以精确地检测临界载荷,量化不同的膜-基材组合的结合性能。安东帕的划痕仪拥有独一无二的全景成像模式(美国专利 8261600,欧洲专利2065695),可直接观测整条划痕。获专利的深度前扫描和后扫描(美国专利6520004,欧洲专利1092142),可得到真实的划痕深度和残留深度,还可研究样品的弹性恢复。主动力反馈系统使得仪器可测量曲面及不平整样品。摩擦学测量:摩擦系数、磨损率、润滑符合工业标准:ASTM G99、G133、DIN 50324等安东帕的销盘式摩擦磨损试验机(TRB3)采用可靠的静加载,包括旋转、旋转往复和线性往复三种运动模式。通过两个LVDT摩擦力传感器和对称弹性臂最大限度地减少热漂移。使用集成的温度和湿度传感器实时监测环境状况。可配置加热、液体测试等多种选件。涂层厚度符合工业标准:ISO 26423:2009、ISO 1071-2、VDI 3198等球坑磨损测试法:使用已知尺寸的球在涂层上磨出一定尺寸的冠状球坑,利用光学显微镜观察并测量球坑尺寸,通过几何模型推导计算涂层厚度。适用于单层或多层涂层,可以测量平面、圆柱面或球面。测量方法简单快速,只需1到2分钟即可测量出涂层厚度。参与方式识别下方二维码,参与活动预约预约时间:即日起至9月2日免费测试周:9月5-9日请尽量详细填写样品信息及测试需求,方便我们判断安东帕上海实验室的仪器配置是否满足您的测试需求最终解释权归安东帕测试预约测样地点测试地址:安东帕(中国)有限公司上海市闵行区合川路2570号 科技绿洲三期2号楼11层
  • 新品│马尔新一代圆柱度仪MarForm MMQ 500
    三本是一家综合性的测量仪器公司,提供一站式测量解决方案,是德国蔡司和德国马尔公司官方授权代理商,帮助客户高效测量解决方案,马尔公司推出新的产品来满足客户多样化的测量需求。针对客户对测量速度和重型工件测量的需求,推出了新一代的MarForm MMQ 500圆度仪。本期内容,我们将给大家解读这一款全新的测量利器。MarForm MMQ 500MarForm MMQ系列历代成员们马尔的圆柱度仪系列,从入门级的圆度仪 MMQ 100到高精密的圆度测量仪 MFU 100,几乎可以涵盖客户所有的测量需求。马尔圆度仪 MMQ 100 到 MMQ 400系列如今,新款的MMQ 500 在此基础上,又增加了一些新的特点。MMQ 500圆柱度仪的优点• 直径300 毫米的工作转台;• 工作转台可承重 80 公斤;• 更大的调心调平范围;• X轴和Z轴更高的直线度;• 更快的调心调平时间;正是由于以上这些优点,马尔新一代 MMQ 500 圆柱度仪可以测量更重、更大的零件,而且测量的结果更加精确。同时,MMQ 500 快速的调心调平和定位时间有效的缩短测量时间,提高了测量效率,对于如今不断增加的人力成本而言,无疑是增效降本的一个重大利好。 快速调整和定位,可以缩短30%的测量时间此外,MMQ 500 的评价软件依然是基于 MarWin 这个卓越的软件平台,可以沿用MarForm所有的评价设置和软件选项,如活塞测量、扭纹测量、速率分析、快速傅立叶分析这些工业测量中常用的测量选项。

圆柱测试仪相关的方案

圆柱测试仪相关的资料

圆柱测试仪相关的论坛

  • 【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    [color=#cc0000][size=18px]摘要:本文特别针对圆柱形锂离子电池的径向导热系数,开展了测试方法研究。在不破坏电池和只有电池圆周外表面的边界条件下,分别采用了恒温和恒流两种测试方法建立了相应的测试模型和解析表达式,并通过有限元仿真来验证了测试模型和解析表达式的准确性,为测试仪器的设计提供了有效指导,为在其他规格锂电池热性能测试中的推广有重大意义。[/size][/color][hr/][size=24px][color=#cc0000]1. 问题的提出[/color][/size][size=18px]  锂离子电池有多种规格和外形尺寸,所以锂电池的热性能参数测量会涉及多种测试方法和测试仪器设备。我们首先选择圆柱形锂离子电池的热性能测试开展研究,特别是针对圆柱形锂离子电池径向导热系数测试技术开展研究,主要出于以下几方面的考虑:[/size][size=18px]  (1)圆柱形锂离子电池是目前最常见的电池类型之一,应用十分广泛,而圆柱形锂电池径向导热系数测试技术并未成熟,国内外都还处于阶段,所报道的各种测试方法误差较大,无法满足电池热模型和热管理的需求。[/size][size=18px]  (2)锂电池的圆柱形结构非常特殊,特别在径向方向上只有一个圆周面,在不破坏电池条件下进行热性能测试,则只有一个圆周外表面能用来进行产生相应的测试边界条件,这往往是热性能参数测试技术中难度最大的测试。如果能够在圆柱形电池径向方向实现热性能参数测试,并能够达到满足的测量精度,则可以将测试技术很容易推广应用到棱柱形和袋装电池。[/size][size=18px]  (3)圆柱形锂离子电池中的自热热量通常是最低的,要低于棱柱形和袋装电池中的热量。同样,所研究的测试方法如果能够在热量较低的圆柱形锂电池上获得满意的测量精度,则可以在棱柱形和袋装电池的高热量测量中得到更高的测量精度。[/size][size=18px]  (4)另外,通过圆柱形锂离子电池径向导热系数测试技术的研究,可以尝试实现锂电池热性能测试仪器的多功能化、模块化、快速化和低造价。[/size][size=18px]  本文将特别针对圆柱形锂离子电池的径向导热系数,开展测试方法研究。在无损电池和只有电池圆周外表面的边界条件下,建立相应恒温和恒流两种测试模型和解析表达式,并通过有限元仿真来验证测试模型和解释表达式的准确性,预期为测试仪器的设计提供有效指导。[/size][size=24px][color=#cc0000]2. 圆柱形锂电池径向导热系数测试解析模型[/color][/size][size=18px]  根据圆柱形锂电池的内部结构和传热方向,圆柱形锂电池的径向传热方式都是一个典型的径向圆周四散方式,因此采用柱坐标形式来描述圆柱形电池的测试模型,如图2-1所示,而其他形式的测试模型都无法准确描述圆柱形电池的传热方式。对于一个半径为R、高度为H的圆柱形锂电池,其径向导热系数测试的边界条件只能产生在r = R处的圆周外表面上。[/size][align=center][size=18px][img=,250,311]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070846574960_9557_3384_3.png!w533x664.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图2-1 圆柱形锂电池径向导热系数测试模型[/color][/size][/align][size=18px]  如果假设圆柱形电池的上下两个端面为绝热面,那么电池外表面上的边界条件无外乎传热学中的三类边界条件,即恒定温度、线性升温和交变温度。由于被测电池尺寸相对较大,而且交变温度这种第三类边界条件的较难实现和解析模型非常复杂,因此我们只针对恒定温度和线性升温这第一和第二类边界条件开展相应的测试方法研究。[/size][size=18px]  对于图2-1所示的柱坐标径向加热情况,热量仅沿径向流动。因此,温度分布在空间上是一维的,热流也是一维热流,并假设径向导热系数是均匀的,并且在较小的温度区间内与温度无关。[/size][size=18px][color=#cc0000][b]2.1. 第一类边界条件:恒温测试解析模型[/b][/color][/size][size=18px]  第一类边界条件是表面温度恒定,也就是在测试过程中,起始温度为T0的电池突然放置在温度Ts的环境中,而且此环境温度要高于起始温度T0,并保持恒定不变,由此热量通过电池径向进行传递,而在电池两个端部处于绝热状态。[/size][size=18px]  以第一类边界条件进行的恒温测试,这里假设圆柱形电池是一个无限长棒传热模型,电池内的热传导方程为:[/size][align=center][size=18px][img=,690,128]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070851382180_6133_3384_3.png!w690x128.jpg[/img][/size][/align][size=18px]  其中T(r,t)是电池内坐标r处在时刻的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。那么方程(1)的解为:[/size][align=center][size=18px][img=,690,100]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852022891_578_3384_3.png!w690x100.jpg[/img][/size][/align][size=18px]  特征值λn由方程J0(λn)的根获得,J0表示第一类0阶贝塞尔函数。[/size][size=18px]  当加热时间足够长之后,方程(2)可以简化为:[/size][align=center][size=18px][img=,690,75]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852313819_8684_3384_3.png!w690x75.jpg[/img][/size][/align][size=18px]  其中αr=kr/(ρCp)为径向热扩散系数。对方程(3)两端去对数后,得:[/size][align=center][size=18px][img=,690,69]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853086401_7706_3384_3.png!w690x69.jpg[/img][/size][/align][size=18px]  由此可见,方程(4)是一个随时间变化的线性方程,通过其斜率m中包含着感兴趣的径向热扩散系数。对于圆柱形电池这种柱状坐标内的热传递,此时A1=1.6021,λ1=2.4048,那么方程(4)的斜率为:[/size][align=center][size=18px][img=,690,53]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853455432_5404_3384_3.png!w690x53.jpg[/img][/size][/align][size=18px]  由此,可以通过测量获得内部温升变化数据,经过对数转换后得到一条直线,由此直线的斜率就可以通过方程(5)计算得到电池的径向热扩散系数。[/size][size=18px]  在测试过程中不允许破坏圆柱形锂电池,因此在实际测试中并不能在电池内部上插入温度传感器获得T(r,t)测量值,但可以采用热流传感器在电池外表面获得热流随时间变化曲线。同样,通过对此恒温加热过程中的热流密度变化曲线取对数,其对数随时间的变化曲线也是一条斜率为方程(5)的直线。具体推导过程不再详述。[/size][size=18px]  在此恒温测试过程中,电池比热容随温度的变化为:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854129544_7533_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px]  其中A代表电池圆周侧面受热面积,q(t)代表热流计检测的热流密度,m代表圆柱形电池的质量,dT/dt代表升温速率。[/size][size=18px]  假设在此温度变化范围内比热容是一个与温度无关的常数,那么在圆柱形电池从起始温度投入到环境温度T0中并最终达到稳定,则有:[/size][align=center][size=18px][img=,690,58]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854434347_7090_3384_3.png!w690x58.jpg[/img][/size][/align][size=18px]  这样,通过得到的径向热扩散系数和比热容,结合圆柱形电池密度ρ的单独测量值,则可以计算得到径向导热系数kr:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854588515_1777_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px][color=#cc0000][b]2.2. 第二类边界条件:线性升温测试解析模型[/b][/color][/size][size=18px]  第二类边界条件是表面温度线性升温,也就是在测试过程中,电池外表面加载恒定热量来加热电池,并假设在整个加热过程中恒定热量不会随时间发生损失。另外由于圆柱形电池是轴心对称结构,电池四周侧面加热形式会使得电池轴心线上是一个绝热状态。由此,电池内的热传导方程和相应的边界条件为:[/size][align=center][size=18px][img=,690,209]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855152111_5660_3384_3.png!w690x209.jpg[/img][/size][/align][size=18px]  其中θ(r,t)是高于起始温度T0的温升θ(r,t)=T(r,t)-T0,T(r,t)是电池内坐标r处在时刻t的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。[/size][size=18px]  由于只有恒定热流进入系统,没有任何热损失,这个测试模型并没有一个稳定的解,从理论上讲,电池温度会随着时间不断上升。实际上,随着加热时间的增大,辐射等效应会限制电池温度的无限升高,而电池的热性能测试只在相对较低的温度范围内进行,辐射等效应可以忽略不计。因此,θ(r,t)的表达式可以通过电池的平均温度(用θm(t)表示)必须随时间线性上升而导出。已经证明,对于这种表面温度线性变化的瞬态问题,由θ(r,t)减去θm(t)得到的子问题有一个解,该解包括稳态分量s(r)和指数衰减瞬态分量w(r,t)。[/size][size=18px]  平均温升θm(t)可通过考虑电池质量的总比热容来确定。通过使用线性叠加和特征函数展开来解决剩余的子问题,最终的解被导出为:[/size][align=center][size=18px][img=,690,155]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855468233_8537_3384_3.png!w690x155.jpg[/img][/size][/align][size=18px]  方程(10)表明,在电池中任意处的温升有三个分量:第一即随时间线性增加的分量,其斜率与比热容成反比;第二是一个随时间不变的空间变化项,与径向导热系数成反比;第三是指数衰减项,其时间常数与径向热扩散系数成反比,当时间常数足够大之后,也就是说加热时间足够长,第三项的指数衰减项可以忽略不计,也就是说此时电池内部温度变化进入了准稳态过程。一般来说,对于第二类边界条件的传热问题,基本上都是一个准稳态问题。[/size][size=18px]  在测试过程中探测的是电池表面(r=R)温度,在进入准稳态过程后,那么方程(10)可以改写为:[/size][align=center][size=18px][img=,690,63]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856126333_2457_3384_3.png!w690x63.jpg[/img][/size][/align][size=18px]  由此可见,在进入准稳态过程后,电池表面的温升随时间变化将是一个以时间为变量的线性函数。对于这种恒定热流径向加热的测量方法,如果电池密度可以单独测量,并假设在小的温度范围内密度不随温度发生变化,那么就可以利用此线性温升函数的斜率和截距同时测定电池的比热容和径向导热系数。[/size][size=24px][color=#cc0000]3. 有限元仿真模拟[/color][/size][size=18px]  从上述获得的不同边界条件时的表面温度解析表达式,可以采用恒温和恒流两种不同测试方法来实现对电池径向导热系数和比热容的测量。依据测试方法进行测试仪器设计和实施具体测试试验前,还需进行有限元仿真模拟计算,一方面是验证测试模型的准确性,另一方面是确定被测电池样品之外其他辅助测量部件对测试模型的影响,由此对测试仪器设计、具体试验方法和校准修正进行指导。[/size][size=18px]  在有限元仿真模拟中,选择了与电池热性能相近的各向同性塑料类材料。这样做的目的一方面是有准确和可溯源的材料,另一方面是可以采用其他测试方法(如瞬态平面热源法和热流计法等)对这些材料进行准确测量以便于对比。所选材料为ABS塑料,其密度为1020kg/m3,导热系数为0.2256W/mK,比热容为1386J/kgK。有限元仿真为随时间变化的瞬态形式,起始温度为20℃,总加热时间为600s。[/size][size=18px][color=#cc0000][b]3.1. 恒温加热测试方法的模拟[/b][/color][/size][size=18px]  在恒温加热测试的仿真模拟中,为缩小瞬态仿真的计算量,根据圆柱形电池的轴对称性取圆柱形电池的四分之一进行仿真。仿真对象完全按照18650圆柱形电池尺寸设计(直径26mm,高度65mm),考虑到要在电池表面安装薄膜热流计,设计了一个厚度为0.1mm的纯铜圆筒来代表实际测试中紧贴电池表面的绝缘膜和薄膜热流计等,最终设计的测试仿真模型如图3-1所示。[/size][align=center][size=18px][img=,200,442]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848153976_8892_3384_3.png!w323x715.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-1 有限元仿真模型[/color][/size][/align][size=18px]  当圆柱形电池从起始温度20℃开始在表面温度突然提升至25℃后,在电池整体达到温度稳定后降温至20℃。对于这个完整的加热过程,仿真结果如图3-2所示,显示了仿真计算得到的电池轴心温度和电池表面热流密度随时间变化曲线。图3-3显示了表面热流密度变化曲线及其对数形式的对比。[/size][align=center][size=18px][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848451495_7520_3384_3.png!w690x407.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-2 恒温加热方法有限元仿真结果:电池轴心温度和表面热流密度变化曲线[/color][/size][/align][align=center][size=18px][color=#cc0000][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849029885_9003_3384_3.png!w690x407.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-3 恒温加热方法有限元仿真结果:表面热流密度变化曲线及其对数形式[/color][/size][/align][size=18px]  从图3-3可以看出,电池表面热流密度曲线的对数形式是一条直线,其斜率为0.005323。根据方程(5),则可以计算得到径向热扩散系数为1.556×10-7m2/s,与仿真计算的理论值1.596×10-7m2/s相差了2.5%。同样,对获得的表面热流密度按照时间进行积分,根据方程(7),则可以计算得到比热容为1378J/kgK,与仿真计算的理论值1386J/kgK相差了0.6%。根据仿真得到的热扩散系数和比热容,则可以计算的电池径向导热系数为0.2186W/mK,与理论值0.2256W/mK相差了3.1%。[/size][size=18px]  从上述仿真结果可以明显看出,电池径向导热系数测量结果的误差主要来自径向热扩散系数,这是因为在仿真计算的测试模型中考虑了铜制薄膜所带来的影响。如果不考虑铜制薄膜而只对电池本身进行仿真,径向热扩散系数的相对误差为1.3%,比热容的相对误差为0.1%,径向导热系数的相对误差为1.3%。[/size][size=18px]  通过以上恒定温度测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了恒定温度测试方法的有效性,证明了用方程(5)可测量径向热扩散系数,用方程(7)可测量比热容,以及最终准确得到径向导热系数,并具有很高精度。由此可以实现只需检测圆柱形电池表面热流变化就可以同时测量电池的径向热扩散系数、径向导热系数和比热容。[/size][size=18px]  (2)恒定温度测试方法的一个显著特点是加热温度可以任意设定,即可以在一个较窄的温度区间内(如1℃范围)测试相应的导热系数和比热容,并通过温度的台阶式不断升高来覆盖较大温度范围导热系数和比热容的测量。另外,这个能力一方面可以用来测量整个被测样品内部相变过程中的热性能,另一方面可用来代替绝热量热计进行电池热失控测量。[/size][size=18px]  (3)通过仿真发现,在测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如薄膜热流计、加热膜、均热膜和绝缘膜等)对测量的影响。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)恒定温度测试方法中,测量径向热扩散系数的误差较比热容的误差略大,虽然都可以获得较高的测量精度,而比热容的测量精度更高。[/size][size=18px]  (5)这种恒定温度测试方法的另一个特点是测试时间较长,一个温度步长的测量就需要近40分钟,如果采用多温度步长来覆盖较宽的温度区间,则需要更长测试时间。[/size][size=18px][color=#cc0000][b]3.2. 恒流加热测试方法的模拟[/b][/color][/size][size=18px]  在恒流加热测试方法的仿真模拟中,同样采用图3-1所示的仿真模型,但边界条件是恒流加热方式。当设定加热功率为0.3W时,仿真结果如图3-4所示。[/size][align=center][size=18px][color=#cc0000][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849223050_1234_3384_3.png!w690x468.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-4 恒流加热方式有限元仿真结果[/color][/size][/align][size=18px]  图3-4所示的仿真结果显示了电池中心轴线和外表面温度随时间的变化,为了便于观察还显示了内外温度差。从内外温差曲线可以看出,在开始加热的400s后,温差曲线开始保持恒定不再变化,完全进入了准稳态过程,400s以后的外表面温度随时间变化呈现出线性状态。线性拟合400s后的表面温升曲线,得到一个标准的线性方程θ(R,t)=0.0237t+3.0094。由方程(11)可以得到:[/size][align=center][size=18px][img=,690,66]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856479346_3131_3384_3.png!w690x66.jpg[/img][/size][/align][size=18px]  根据已知的热流密度Q、电池半径R和密度ρ,则可以同时获得电池的径向导热系数和比热容,分别为0.2376W/mK和1400J/kgK。[/size][size=18px]  将仿真模拟的计算结果与设定值比较可以发现,仿真结果得到的导热系数偏差约5%,比热容则偏差约1%。这种偏差主要是由于代入计算的0.3W加热功率并没有完全用来加热电池,部分功率用于加热了铜膜。[/size][size=18px]  对仿真测试模型进行更改,去掉铜膜,使0.3W加热功率完全作用在电池上,此时得到的径向导热系数和比热容分别为0.2269W/mK和1380J/kgK,与设定值相比误差在0.5%左右,完全与设定值吻合。[/size][size=18px]  通过上述恒定热流测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了用方程(11)描述准稳态过程中电池表面温升是合理的,由此实现了只需检测电池表面温度变化就可以同时测量电池的径向导热系数和比热容。[/size][size=18px]  (2)需要注意的是,用方程(11)得到的径向导热系数和比热容,是整个温升范围内的平均导热系数和平均比热容,并不是某一个温度点下的热性能数值。由于整个温升区间较小,认为在此温度区间内导热系数和比热容是常数。[/size][size=18px]  (3)测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如加热膜、均热膜和绝缘膜等)对测量的影响,这些部件因自身热容会损耗掉一部分加热功率。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)径向导热系数测试对上述其他部件的影响最为敏感,比热容测试则并不敏感,这就是径向导热系数准确测量的难度所在。[/size][size=24px][color=#cc0000]4. 结论[/color][/size][size=18px]  特别针对圆柱形锂离子电池径向导热系数测试技术开展了研究,建立了简单易操作的测试方法,并用有限元仿真对测试方法进行了验证,整个研究工作得出以下结论:[/size][size=18px]  (1)针对圆柱形锂离子电池径向导热系数,建立了恒温和恒流两种测试时模型和相应的测试方法。有限元仿真模拟证明了这两种测试方法都具有很高的测量精度,完全可以应用在实际测试中,这对锂离子电池的热性能测试有着重要意义。[/size][size=18px]  (2)建立的两种测试方法,都可以通过一次升温试验就可以获得径向导热系数、径向热扩散系数和比热容数值。特别是恒温测试方法还可以进行宽温区范围的热性能参数随温度变化的测量,甚至可进行整个相变过程中的热性能测量。[/size][size=18px]  (3)建立的等温测试方法,已经基本具有了常用的加速绝热量热仪的功能,可代替和补充加速绝热量热仪进行电池的热失控检测。[/size][size=18px]  (4)建立的两种测试方法简单且易于实现,试验操作方便,非常适合电池性能考核中其他变量的加载,如电池充放电过程中的热性能检测。[/size][size=18px]  (5)圆柱形锂电池径向导热系数测试方法上的突破,可将恒温和恒流两种测试方法推广应用到其它规格锂离子电池的热性能测试中,可进行各种加载条件和各个方向上的锂电池热性能测试。[/size][size=18px]  (6)所研究的恒温和恒流两种测试方法原理简单,边界条件易于实现,非常有利于低价仪器化和模块化,以及与其他测试仪器的集成。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】文献综述和评论:圆柱形锂电池各向异性导热系数测试技术

    【原创大赛】文献综述和评论:圆柱形锂电池各向异性导热系数测试技术

    [b][color=#999999]Literature Review and Comments: Measurement Technology for Anisotropic Thermal Conductivity of Cylindrical Lithium Battery[/color][/b][color=#cc0000]摘要:本文针对圆柱形锂离子电池整体导热系数测试方法,评论性概述了近些年的文献报道,研究分析了导热系数测试方法的特点,总结了圆柱形锂电池各向异性导热系数测试中存在的问题和面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径和新方法。[/color][hr/][size=18px][color=#cc0000]1. 问题的提出[/color][/size]  圆柱形锂离子电池是所有类型锂离子电池中功率密度最高的,在设计、制造、应用和质量及安全性管理中,圆柱形锂电池会涉及到多种规格形式,如图1-1所示。[align=center][img=,690,312]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081757079468_491_3384_3.jpg!w690x312.jpg[/img][/align][align=center][color=#cc0000]图1-1 各种规格的圆柱形锂电池[/color][/align]  圆柱形锂电池通常采用螺旋电极组件,由于在径向传导路径中电极和电解质层之间存在大量轴向上没有的界面,这使得圆柱形锂离子电池导热系数在径向和轴向之间存在着近两个数量级的差异。导热系数作为锂离子电池重要的热物理性能参数之一,测试就需要覆盖上述不同规格电池和不同方向的导热系数,这使得准确测试评价圆柱形锂离子电池导热系数面临着以下几方面的严峻挑战:  (1)导热系数测试方法众多,但针对圆柱形锂离子电池的特殊外形特征,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池的设计和热管理尤为重要。  (2)圆柱形锂离子电池一个显著特点就是明显的各向异性特征,这就要求导热系数测试方法和仪器还需具备各向异性的测试能力。同时,由于圆柱形锂电池一般都是密封结构,不允许在电池内插入温度传感器等探测器,测试只能采用无损形式。由此可见,圆柱形锂电池的各向异性和无损检测,明显增大了测试技术的复杂程度和技术难度,甚至还需开发有些新型测试技术,如圆柱形锂离子电池径向导热系数测试技术。  (3)由于圆柱形锂电池导热系数测试涉及到不同形状和方向,这就要涉及不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽可能少的测试方法和仪器设备以尽可能多的满足其他规格锂电池的导热系数测试需求。  (4)由于锂离子电池还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器集成在一起,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。  本文将针对上述存在的问题和挑战,首先对近几年圆柱形锂离子电池导热系数测试技术进行评论性综述,然后在对这些技术进行分析研究的基础上,提出更适合圆柱形锂离子电池导热系数测量的实用方法。[size=18px][color=#cc0000]2. 圆柱形锂电池导热系数测试方法综述[/color][/size]  尽管有些文献针对圆柱形锂电池导热系数测试进行了研究和报道,但出于适用性和实用性等方面的考虑,我们只关注那些对整体圆柱形锂电池进行的非破坏性导热系数测试方法。圆柱形锂电池是标准的圆柱形结构,对于径向和轴向导热系数,目前比较有效的测试方法基本采用的都是圆柱形结构的准稳态法,测试模型如图2-1所示。[align=center][img=,400,291]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081806399747_8057_3384_3.jpg!w690x502.jpg[/img][/align][align=center][color=#cc0000]图2-1(a)径向加热和(b)轴向加热情况的几何模型[/color][/align]  在上述测试模型中,假设圆柱形锂电池的成分均一,以简化操作和计算。径向测试模型是在圆柱形电池外表面加载恒定热流或加热电池使外表面温度呈线性变化,如图2-1(a)所示,在圆柱形电池的轴线上(z向)呈绝热状态。  同样,对于轴向导热系数测试,如图2-1(b)所示,只在圆柱形电池的顶部加载恒定热流或使顶部表面温度呈线性变化,而电池底部采取绝热措施,由此可以形成与图2-1(a)相同测试模型,而这个测试模型则是典型的一维准稳态测试模型。  为了实现图2-1所示的准稳态测试模型,径向导热系数测试装置的基本结构设计为如图2-2所示形式,并且整个装置放置在真空器皿中以减少热损失。[align=center][img=,690,221]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758104291_4532_3384_3.jpg!w690x221.jpg[/img][/align][align=center][color=#cc0000]图2-2带柔性加热器、薄膜热流计和测温热电偶的径向导热系数测量装置示意图[/color][/align]  为了减少附加热容的影响,加热器、热流计以及绝缘层尽可能采用薄膜形式,由此所有温度和热流测量都在电池外表面进行。无论是径向还是轴向导热系数测量,用低导热隔热材料包裹整个测量装置以避免热量散失,以尽可能满足测试模型无热损的假设。  实际上,图2-1所示的准稳态测试模型是一种传统的测试方法,常被用于测量柔性和颗粒状隔热材料的高温导热系数。在标准的准稳态法测试过程中,需要测试绝热面的温度(如圆柱形样品的轴心温度)。在恒定热流加热情况下,经过一段时间后,样品的加热面和绝热面温度将达到相同的升温速率,传热方向上样品内外温度差将趋于相同,这种状态称之为准稳态。通过温差测量,很容易获得不同温度下的导热系数。  但对于圆柱形锂电池,不允许在电池中心插入测温传感器,只能在电池的外表面进行各种测量,这就为测量带来了难题。[color=#cc0000]2.1. Jain团队的研究工作[/color]  为了解决上述难题,美国德克萨斯大学Jain团队的Drake在读博期间开展了专项研究[1],开发了一种新颖的测试技术并进行了报道,测量装置与图2-2结构基本相同,只是少了薄膜热流计。测试过程中,通电控制加热膜温度线性升温,经过一段时间后,整个电池的温度变化进入准稳态过程,热电偶测量的电池表面温度也逐渐呈线性升温,希望通过此升温曲线来测定相关热性能参数。  另外,Drake等人针对测试模型建立了相应的数学表达式,并采用有限元方法进行仿真模拟,报道了数学表达式与有限元模拟结果有很好的吻合,如图2-3所示,计算了电池外表面、轴心线和径向不同位置处的温度变化。[align=center][img=,690,304]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758273600_4573_3384_3.jpg!w690x304.jpg[/img][/align][align=center][color=#cc0000]图2-3 径向数学模型与有限元热模拟的比较[/color][/align]  通过对数学模型的分析,Drake等人认为在进入准稳态后,通过测量圆柱形电池外表面温度变化直线段的截距和斜率,来分别得到电池的导热系数和比热容。由此分别对26650和18650电池的径向和轴向导热系数以及比热容进行了测量,测试曲线如图2-4和图2-5所示,锂电池的导热系数和比热容测试结果如表2-1所示。[align=center][color=#cc0000]表2-1 26650和18650电池的测量热物理特性[/color][/align][align=center][color=#cc0000][img=,690,105]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758408130_440_3384_3.png!w690x105.jpg[/img][/color][/align][align=center][color=#cc0000][img=,500,389]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800067070_2731_3384_3.jpg!w690x538.jpg[/img][/color][/align][align=center][color=#cc0000]图2-4 26650锂电池径向和轴向热物理性能测量的实验数据和分析模型比较[/color][/align][align=center][color=#cc0000][img=,500,392]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800230306_5883_3384_3.jpg!w690x541.jpg[/img][/color][/align][align=center][color=#cc0000]图2-5 18650锂电池径向和轴向热物理性能测量的实验数据和分析模型比较[/color][/align]  按照Drake等人提出的测试方法,圆柱形锂电池的不同方向测量可以得到不同的导热系数和比热容。因为比热容没有方向性,所以不同方向测试得到的比热容应该相同,由此可以检验测试方法的准确性。而Drake等人报道了对于26650锂电池的测试结果,轴向试验测得的比热容为1605J/kgK,径向试验测定的比热容为1895J/kgK,相差将近15%。  Drake等人的报道称这一“微小”差异归因于这样一个事实,即由于径向实验中的温度测量是在电池的中心位置进行,因此它没有考虑电池端部存在的金属接线片。当在轴向测试中考虑金属突片时,由于与构成电池电解质的有机溶剂相比,金属的比热容较低,所以测得的比热容稍低。所以报道认为轴向测量的比热容被认为更准确,因为考虑了翼片。  另外,Drake等人的报道还进行了简单的不确定度分析,结论是导热系数和比热容的总测量不确定度估计为5%左右。  在Drake博士的研究工作基础上,Jain团队又开展了研究改进工作[2]。Drake博士的圆柱形锂电池径向导热系数测试模型是进入电池的是不随时间变化恒定热流,但由于包裹的隔热材料以及薄膜形式的加热器等对热量吸收,使得真正进入电池的热流实际上可能会随时间发生变化,因此新的研究修改了解析模型以解决这些热量损失,得出了更广义的可变加热热流条件下的电池表面温升表达式,并重新定义的径向导热系数测试方法,以提高径向导热系数测量准确性。  此次研究分别对两种均质材料delrin和丙烯酸树脂和26650锂离子电池进行了测试,重新定义的导热系数测试方法并未沿用前期Drake博士报道的测试方法,而是采用试验得到的样品表面温升曲线,并结合灵敏度分析和参数估计方法来计算得到导热系数。  此次研究采用了如图2-2所示的测量装置,即在Drake博士的测试装置中加入了薄膜热流计,以检测加载恒定热流后真正进入圆柱形锂电池中的热流大小,测试结果如图2-6所示,从测试结果可以看出有随时间变化的明显热损。[align=center][img=,690,263]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800415554_2764_3384_3.jpg!w690x263.jpg[/img][/align][align=center][color=#cc0000]图2-6(a)输入电池热流随时间的变化;(b)输入电池热流、热损及其总和随时间的变化,虚线表示加载给薄膜加热器的恒定热流[/color][/align]  为了真正有效的评价改进后的测试方法,采用了瞬态平面热源法对delrin和丙烯酸样品的导热系数进行单独测量并进行的对比测试,测试结果如表2-2所示。[align=center][color=#cc0000]表2-2两种测量方法的结果比较[/color][/align][align=center][img=,500,109]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081807306073_4151_3384_3.png!w690x151.jpg[/img][/align]  在Jain团队的这次改进性研究中,参数估计计算中只估计了导热系数这一个参数,并未对比热容进行参数估计,理由是参数估计过程中要先计算出比热容,然后再根据此比热容来估计导热系数,而比热容的误差会对导热系数带来较大影响。因此,此次研究中电池比热容数据采用了量热计独立测量结果,delrin和丙烯酸树脂比热容则由瞬态平面热源法测得。  Jain团队的这次改进性研究报道了径向导热系数测量的不确定度为7%,从表2-2所示测量结果来看,两种方法相差了9~15%,导热系数越小则测量误差越大。[color=#cc0000]2.2. Spinner等人的研究工作[/color]  为了对圆柱形锂电池做更深入的研究,美国海军研究实验室的Spinner等人分别采用了解析、量热测量、数值和试验四种方法对商用18650锂离子电池的热物理性能进行了测试研究[3]:  (1)第一种方法是根据随时间变化的导热方程式得出的径向导热系数的解析表达式,然后依据自然对流加热和冷却锂电池的实验测量值,采用参数估计方法得到锂电池径向导热系数和比热容。  (2)第二种方法是采用自制的简易量热仪测试出锂电池的比热容。  (3)第三种方法是采用径向导热方程解析表达式,结合图2-2所示的恒定热流试验测量结果,采用数值差分和参考估计方法得到径向导热系数和比热容。  (4)第四种方法完全采用了Drake等人的轴向导热系数测试方法[1]。根据电池表面温度准稳态变化曲线,通过截距和斜率计算得到轴向导热系数和比热容。  在第一种径向导热系数测试中,将一个表面粘贴有热电偶的锂电池放置在一个具有初始温度的密闭腔室内,等锂电池和腔室初始温度都达到稳定后,使腔室温度阶越升高或降低到一个新的温度,通过表面对流传热形式对锂电池进行加热或冷却,测温热电偶在整个过程中检测电池表面温度随时间的变化。这是一个典型的圆柱形样品侧面对流热交换模型,Spinner等人根据此传热模型建立了电池表面温度变化解析表达式,然后采用参数估计技术并结合试验测试得到的表面温度变化数据,计算得到锂电池径向导热系数和比热容,分别为0.55±0.23W/mK和972±92J/kgK。  为了评估测量准确性,在第二种方法中采用了量热法分别测量18650锂电池、铝和特氟隆的比热容作为对比,每次测量都将选取四个样品捆绑在一起以增加总热容来提高测量精度,测量结果如表2-3所示。[align=center][color=#cc0000]表2-3通过量热法获得的比热容与文献报道的铝(6061型)、特富龙和18650 LiCoO2电池的比热容值进行比较[/color][/align][align=center][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800568202_6586_3384_3.png!w690x136.jpg[/img][/align]  在第三种径向导热系数测试中,首先对照测试了具有与18650电池相似几何形状的特富龙圆柱体,导热系数和比热容分别为0.232±0.003W/mK和1203±8J/kgK。然后对18650电池进行了九次不同恒定热流测试,九次测量结果有较好的一致性,导热系数和比热容的平均值分别为0.300±0.015W/mK和814±19J/kgK。  从第三种技术得到的结果可以看出,得到的比热容数据814±19J/kgK要比量热计测量结果896±31J/kgK低了近9%。因此,Spinner等人放弃了比热容测量,直接采用量热计的比热容测量结果,而直接参数估计径向导热系数这一个参数,这样得到的导热系数为0.219±0.020W/mK,认为此结果是最佳估计。但对于这个结论是否正确,并没有进行进一步的考核,如采用其他方法准确测量特富龙的导热系数,然后再进行比较。  在第四种轴向导热系数测试中,测得的轴向导热系数为21.9±1.7W/mK,但并未给出比热容测量结果。  将Spinner等人的结果与Drake等人的结果相比可以看出,除径向导热系数测量结果相近之外,轴向导热系数和比热容测量结果相差巨大。[color=#cc0000]2.3. Murashko团队的研究工作[/color]  为了对运行期间圆柱形锂电池的热性能(热扩散系数和发热量)实现在线测量,Murashko团队提出了另外一种测试方法并开展了研究[4][5]。  测试模型如图2-7(b)所示,圆柱形电池应视为无限长圆柱。为了这个目的,如图2-7(a)所示在圆柱形电池的两个端部都使用了纤维棉进行隔热。分别通过使用PT100温度传感器和热流传感器(GHFS)对电池表面的温度和热流进行测量。[align=center][color=#cc0000][img=,690,358]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801134074_869_3384_3.jpg!w690x358.jpg[/img][/color][/align][align=center][color=#cc0000]图2-7 (a)具有隔热、GHFS和PT100传感器的圆柱形电池;(b)无限长的圆柱体[/color][/align]  对于圆柱形锂电池的热性能的测量,是将圆柱形电池当作有内热源的圆柱体样品来对待,针对内热源圆柱体传热模型,建立了表面温度和表面热流的解析表达式,通过测试获得的电池表面温度和热流,采用参数估计的方法逆向求解出径向导热系数、径向热扩散系数、比热容和电池发热量。分别进行了两次不同的测试,连个测试结果如表2-4和表2-5所示:[align=center][color=#cc0000]表2-4 首次测试后的热参数计算结果[/color][/align][align=center][color=#cc0000][img=,690,137]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801256908_6402_3384_3.png!w690x137.jpg[/img][/color][/align][align=center][color=#cc0000]表2-5 第二次测试后的热参数计算结果[/color][/align][align=center][img=,690,135]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801383511_9614_3384_3.png!w690x135.jpg[/img][/align]  从上述两次测试结果可以看出,所采用的方法很难同时测定比热容和径向导热系数,径向导热系数和热扩散率的误差巨大,但可以用于测量圆柱型电池的比热容。[color=#cc0000]2.4. 其他研究工作[/color]  厦门大学的黄键等人在2020年报道了他们针对18650圆柱形锂离子电池导热系数各向异性测试的研究工作[6],测试方法是ASTM D5470稳态恒定热流法和CFD仿真模拟相结合,通过不同尺寸和形状的上下热流计来测试夹持在上下热流计之间不同摆放形式的圆柱形锂电池。对于圆柱形锂电池的轴向导热系数测试,如图2-8所示,采用了小直径的铜棒热流计,上下结构的铜棒热流计将直立放置的圆柱形锂电池夹持在中间,电池上下顶面分别控制在不同温度以在电池轴向形成稳定的温度梯度,由此来测量轴向导热系数。[align=center][color=#cc0000][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801511307_5360_3384_3.png!w690x317.jpg[/img][/color][/align][align=center][color=#cc0000]图2-8 轴向导热系数测试;(a)测量装置,(b)装置结构示意图[/color][/align]  如图 2-9所示,对于电池径向导热系数测量,还是采用稳态法,只是加大了上下铜棒热流计的尺寸,并是上下热流计的端面形状与圆弧形电池外表面贴合,以保证在电池的直径方向上性能稳定的温度梯度。从图 2-9可以看出,这种仪器结构测试的并不是真正意义上的径向导热系数。[align=center][color=#cc0000][img=,690,240]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081802037589_4119_3384_3.png!w690x240.jpg[/img][/color][/align][align=center][color=#cc0000]图2-9 径向导热系数测试;(a)测量装置,(b)装置结构正视图,(c)侧视图[/color][/align]  采用瞬态平面热源法测量了316不锈钢导热系数(14.494W/mK),然后将316不锈钢制成18650圆柱形锂离子电池形状,再放置到上述两台测试仪器进行测试以考核测量精度。轴向测试结果偏差为-0.649%,径向测试结果偏差为2.394%。  在随后的18650圆柱形锂离子电池轴向导热系数测试中,电池顶部温度控制在125.7℃,底部温度控制在31.3℃,在温差近94.4℃情况下测得的轴向导热系数为11.5W/mK。在径向导热系数测试中,测得结果为4.324W/mK。  这种测试方法能否准确测量圆柱形锂电池的各向异性导热系数非常值得商榷,主要问题是在测试径向导热系数过程中,上下铜热流计和圆柱状电池的布置结构非常容易使热量寻找最短路径进行传递,如从电池外壳传热,这势必一方面增大了传热量,另一方面缩短了热传递路径,这两方面的作用都会使得导热系数测试增大。而且,这种上下形式的传热结构,并不是真正的电池径向传热,所得到的导热系数也不是真正的点尺寸径向导热系数。  加州理工学院的Bhundiya等人针对18650和26650圆柱形锂离子电池也开展了测试研究[7]。测试前先将被测电池拆解,使用镍铬合金线通电加热柱状电池中心轴线来测量锂电池的径向导热系数,对于18650锂电池导热系数的测量结果为0.43±0.07WmK,对于22650锂电池导热系数的测量结果为0.20±0.04W/mK。明显可以看出他们的两个测量结果均远大于Drake等人的报告值(0.20±0.01W/mK和0.15±0.01W/mK)[1],而且整个测试装置非常简陋,被测电池外围并没有采取热防护而存在对流热损,测量结果的重复性基本在10%以上,最重要的一是测量接触压力与实际不符而带来较大热阻,二是没有采用已知导热系数材料进行考核验证。尽管测试结果对比相差较大,但至少又一次证明了圆柱形锂离子电池中层间接触热阻的影响非常明显,也可能证明了不同厂家锂电池因不同制造工艺不同而使得径向导热系数出现较大差别。[size=18px][color=#cc0000]3. 分析和评论[/color][/size]  纵观上述国内外对圆柱形锂离子电池各向异性导热系数的测试研究,呈现出十分混乱的局面,研究思路不是十分清晰和有效,存在的诸多问题主要表现如下:  (1)最直观的表现是导热系数各向异性测量结果非常差,稍微有点作用的是对比热容的测量,由此反而说明了比热容测量对各种误差影响因素并不敏感。  (2)对圆柱形锂离子电池的径向导热系数测试,已经建立了恒定热流法测试模型,也推导出了非常漂亮的相应数学表达式,但在具体试验中并没有很好的应用。可能是各种边界条件的影响太大,使得无法直接使用相应的数学表达式来获得准确的测量结果,采用的各种参数估计方法并没有提高测量精度。  (3)在热性能测试过程中,数学模型并不能准确描述实际测量装置的各种变化和边界条件,因此在热性能测试中最要的一个环境就是对测试方法进行仿真模拟计算,验证测试模型的准确性和量化各种边界条件的影响,并建立相应的校准方法。这是保证测量准确性的关键,而上述国内外的研究都没有涉及,由此使得现有的国内外研究对提高测量精度显着无能为力,从而盲目的采取了更多的其他方法做着努力,但基本没有效果。  (4)在上述国外的测试研究中,出现了很多常识性错误。最典型的错误就是热性能参数测量绝对不能在真空环境下进行,企图用真空条件来降低对流和辐射热损的影响,其效果往往会被真空下空隙型接触热阻同时增大的负面影响给覆盖掉,真空下测试势必会增加加热膜、薄膜热流计和热电偶之间的接触热阻,这也是上述国外研究中测量误差巨大的主要原因之一。另外,如果真空度控制不稳定或者不控制,孔隙型接触热阻的变化也会给测量带来较大的波动。  综上所述,尽管国内外研究还存在很多问题,但总体有以下两点收获:  (1)针对圆柱形锂离子电池各向异性热性能的测试,做了有效的尝试。特别是针对非破坏式的测试方法方面,证明了只测量电池表面温度变化来确定各向异性导热系数和比热容的可能性,这种证明对后续研究工作的开展和解决锂离子电池热性能测试难题有着重大意义。  (2)通过近些年的努力,针对电池热性能的测试,基本形成了一个共识,就是不管使用什么测试方法和技术手段,最终都需要一是符合工程要求进行非破坏性检测,二是最终测量的准确性都需要采用可比较的测试方法和手段进行对比考核。[size=18px][color=#cc0000]4. 新方法的提出和研究[/color][/size]  通过上述针对圆柱形锂离子电池径向导热系数各种测试方法的综述和分析,可以看出真正有实际工程意义的测试方法具有以下几方面的特征:  (1)非破坏式测量,即不能拆解锂电池来进行测量,否则会改变电池的各种性能特征和边界条件。  (2)表面测量方式,即所有测试加载都发生在圆柱形电池的外表面,目前报道相对成功的是在电池表面加载恒定热流。  在材料热物理性能测试中,边界条件分为三类,即第一类边界条件是恒定温度,第二类边界条件是恒定热流,第三类边界条件是交变温度或热流。由此可见,对于不能拆解的圆柱形锂离子电池,完全可以可以采用这三种边界条件测试模型进行径向导热系数测量。上述综述中常用的方式是第二类边界条件,这也就是说还可以采用第一和第三类边界条件对锂电池径向导热系数进行测量。  由此,上海依阳实业有限公司采用第一类边界条件的测试方法对径向导热系数测试技术开展了研究,建立恒温测试模型,推导了相应的表面温度解析表达式,并用有限元仿真模拟验证了测试模型的准确性,同时也验证了恒定热流测试模型的准确性。  通过研究发现,采用第一类边界条件的恒温测试方法能更准确的测量锂电池径向导热系数,并同时能测量得到比热容和径向热扩散系数。更重要的是恒温测量方法可以很容易的推广应用到棱柱形和袋装锂离子电池的热性能和热失控测试,可以作为目前常用的加速量热计测试技术的一种重要补充。[size=18px][color=#cc0000]5. 参考文献[/color][/size][1] Drake, S. J., et al. “Measurement of Anisotropic Thermophysical Properties of Cylindrical Li-Ion Cells.” Journal of Power Sources, vol. 252, 2014, pp. 298–304.[2] Ahmed M B , Shaik S , Jain A . Measurement of radial thermal conductivity of a cylinder using a time-varying heat flux method[J]. International Journal of Thermal Sciences, 2018, 129:301-308.[3] Spinner, Neil S., Ryan Mazurick, Andrew Brandon, Susan L. Rose-Pehrsson, and Steven G. Tuttle. 2015. “Analytical, Numerical and Experimental Determination of Thermophysical Properties of Commercial 18650 LiCoO2 Lithium-Ion Battery.” Journal of The Electrochemical Society 162 (14).[4] Murashko K A , Mityakov A V , Mityakov V Y , et al. Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements[J]. Journal of power sources, 2016, 330(oct.31):61-69.[5] Murashko K , Mityakov A V , Mityakov V Y , et al. Heat flux based method for determination of thermal parameters of the cylindrical Li-ion battery: Uncertainty analysis[C]// Power Electronics and Applications (EPE'17 ECCE Europe), 2017 19th European Conference on. 2017.[6] Huang, Jian, et al. “Experimental Measurement of Anisotropic Thermal Conductivity of 18650 Lithium Battery.” Journal of Physics: Conference Series, vol. 1509, 2020, p. 12013.[7] Harsh Bhundiya, Melany Hunt, and Bruce Drolen, “ Measurement of the Effective Radial Thermal Conductivities of 18650 and 26650 Lithium-Ion Battery Cells”, The Thermal and Fluids Analysis Workshop (TFAWS) 2018 Proceedings.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 圆度仪圆柱度仪改造帮助企业节约仪器成本

    真圆度仪 圆柱度仪这些圆度测量仪器都有一定的使用寿命,使用时间长了机械主件及相关的电气部分都会出现各种障碍。在出现的各种故障的时候我们会通过维修改造的方法来继续完善利用这些仪器。今天汇智就给大家总结了在真圆度仪 圆柱度仪的仪器改造 应对的一些策略。 圆度仪是用于测量工件圆度误差的一种精密圆度圆柱度测量设备 ,此类设备属机电一体化产品 ,主要由机械与电气两大部分组成。其中 ,关键部件是仪器的主轴与传感器 ,但这两部分均属耐用精密部件 ,故障率较低 ,绝大多数设备故障出现在仪器的电气部分。针对电气故障 ,提出几点具体做法。 首先对圆柱度仪圆度仪进行分析与测试,由于电子元器件存在一个使用寿命问题 ,超过一定的期限 ,电气性能下降 ,故障率上升 ,此时有针对性的维修 ,将陷入困境 ,不但故障频繁 ,有时因技术已落后连配件都难以买到 ,事倍功半。由于圆柱度仪的主轴使用寿命大大超过电气部分 ,因电气故障报废或闲置整台仪器均是一种极大的浪费 ,此时最佳维修办法是实行技术改造。方法是 :利用现有圆柱度仪一切有利用价值的资源 (如仪器主轴、基座、工作台、传感器等 ) ,去掉已老化的电气等部分 ,采用新技术、新方法研制与之配套的部分 ,这样 ,改造成本将远远低于购买一台性能相当的新设备 ,而各项性能指标与新设备相当。通常 ,使用时间不超过十年的设备 ,可有针对性地进行维修 ,十年以上的设备 ,则应考虑技术改造。

圆柱测试仪相关的耗材

  • 泄漏与密封强度测试仪
    产品介绍: LT-03A泄漏与密封强度测试仪专业适用于各种热封、粘接工艺形成的软、硬金属、塑料包装件、无菌包装件等各封边的封口强度、蠕变、热封质量、以及整袋胀破压力、密封泄漏性能的量化测定,各种塑料防盗瓶盖密封性能、医用湿化瓶、金属桶及封盖的量化测定,各种软管整体密封性能、耐压强度、帽体连接强度、脱扣强度、热封边封口强度、扎接强度等指标的量化测定;同时也可对软包装袋所使用材料的抗压强度、耐破强度等指标,瓶盖扭力密封指标、瓶盖连接脱扣强度、材料的应力强度、以及整个瓶体密封性、抗压性、耐破性等指标进行评估分析。产品特点:● 智能全自动、功能齐全、高精度、高效率● 最大量程>1.8Mpa,符合最新国标要求(需定制)● 系统采用正压法测试原理,膨胀抑制、膨胀非抑制双重试验方法,满足多重任务● 防盗瓶盖脱离、泄漏、端盖脱离、瓶体耐内压、软包装破裂测试、蠕变测试、蠕变到破裂测试多种试验模式满足用户不同的测试需求● 专利设计,有效避免过冲● 自带针式打印机、结果永久保存● 双重压力保护,安全稳定● 试验量程可选,非标夹具可定制产品配置:标准配置:主机、测试架选购件:测试附件(约束板试验装置;开口包装试验装置;塑料防盗瓶盖密封性能试验装置;圆柱型复合罐端盖脱离装置;软管密封性能试验装置;气雾剂阀门密封性能试验装置)、药用泡罩密封性试验等装置备注:本机气源接口为Φ6 mm 聚氨酯管;气源用户自备
  • 爱谱斯 旋转圆柱电极RCE 测试电极
    IPS 旋转圆柱电极RCE广泛应用于金属腐蚀研究中的腐蚀速率测定、以及油田缓蚀剂的评价。相对传统的质量失重法,实验周期短,数据准确等特点。ASTM G185标准里有详细的测试步骤。示意图如下:IPS 旋转圆柱电极RCE参数:旋转速度:10-5000转 (带tip)电极尺寸:15mm外径,可按客户要求定制电极材料:铂、玻璃碳、金、铜、锌、铝、不锈钢钢、钛等, 可接受客户定制
  • 菲力尔 IM75 绝缘测试仪
    FLIR IM75具有数字万用表和METERLINK® 功能的绝缘测试仪FLIR IM75是一款先进的多功能数字万用表,也是一款一流的手持式绝缘测试仪,适用于从事安装、故障检修和日常维护的专业人士。IM75包含多种专业的绝缘测试模式,如:极化指数、介质吸收比和接地电阻。绝缘测试包括瞬时检测、连续检测和限定时间段检测,便于用户获得深入透彻的评估效果。这款仪表采用METERLiNK® 技术和蓝牙® 技术,通过前者可以将电气测量值嵌入FLIR红外热像仪捕获的热图像中;通过后者可远程查看实时读数。集绝缘测试和电气测试功能于一体的工具具有数字万用表功能的绝缘测试仪一款集多种功能于一体的工具,具有各种等级绝缘测试所需的多个电阻量程,且拥有无线功能。 真有效值测量,性能可靠具备高级绝缘测试所需的特性,包括真有效值测量(1000V量程)、变频测量模式和3种绝缘测试模式。高效的照明和坚固耐用的设计配备明亮的LED照明灯(用于照亮测试区域和测试目标)和彩色LED显示屏,采用坚固耐用的双层模塑结构。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制