仪器信息网APP
选仪器、听讲座、看资讯

【分享】Protein NMR Spectroscopy [912p] 已添加了Table of Contents

核磁谱图交流

    +关注 私聊
  • Ilovenmr

    第1楼2008/08/26

    非常好的书,对核磁的原理讨论很深刻。据说是所有生物核磁实验室的必备参考书。建议从事核磁工作的都耐心认真的读一下!即使你不做蛋白,前面几章的理论知识也是非常系统的学习机会。当然如果主要做天然产物分析的,可以选择跳过。
    旁听过Palmer III的课,讲课非常认真仔细,写板书,基本不用ppt。最大的优点就是从来不跳步,步骤思路非常清晰。另外他很推崇James Keeler,就是置顶Understanding NMR spectroscopy的作者。

0
    +关注 私聊
  • Ilovenmr

    第2楼2008/08/26

    太强了,居然是电子版不是扫描的!这本书大概卖80美元左右。

0
    +关注 私聊
  • celan

    第3楼2008/08/27

    谢谢Ilovenmr对该书的评价。
    该书电子版来之不易,奉献给同行。

0
    +关注 私聊
  • jfxiang

    第4楼2008/08/27

    刚刚才收到科学院出版社关于这本书的介绍,就有这本书的电子版,楼主真牛。多谢!

0
    +关注 私聊
  • celan

    第5楼2008/08/27

    Protein NMR Spectroscopy: Principles and Practice (Hardcover)
    by John Cavanagh (Author)...

    Price: CDN$ 122.68

    Ilovenmr 发表:太强了,居然是电子版不是扫描的!这本书大概卖80美元左右。

0
    +关注 私聊
  • celan

    第6楼2008/08/27

    Protein NMR Spectroscopy: Principles and Practice
    Summary
    Protein NMR Spectroscopy provides a complete introduction to solution NMR spectroscopy for determining three-dimensional structures, dynamical properties, and intermolecular interactions of proteins. The Second Edition of this now classic text provides an authoritative presentation of the theoretical principles and experimental practices required for the most sophisticated applications of solution NMR spectroscopy to explicate the molecular basis of protein function, which in turn is increasingly important for understanding mechanisms of disease and for developing novel therapeutic approaches
    Key Features
    Bloch, density matrix and product operator theoretical formalisms
    One-, two-, three-, and four-dimensional NMR spectroscopy
    Semiclassical relaxation theory and chemical exchange effects
    Practical aspects of experimental NMR spectroscopy
    Proton homonuclear NMR experiments relevant for proteins and other biological macromolecules
    13C and 15N heteronuclear NMR experiments relevant for proteins and other biological macromolecules
    Extensive examples of NMR spectra for 1H, 15N, and 13C/15N proteins
    -----------------------------------------
    Table of Contents
    Acknowledgments
    Preface
    Chapter 1: Classical NMR Spectroscopy
    1.1 Nuclear magnetism
    1.2 The Bloch equations
    1.3 The one-pulse NMR experiment
    1.4 Linewidth
    1.5 Chemical shift
    1.6 Scalar coupling and limitations of the Bloch equations
    Chapter 2: Theoretical Description of NMR Spectroscopy
    2.1 Postulates of quantum mechanics
    2.1.1 The Schrödinger equation
    2.1.2 Eigenvalue equations
    2.1.3 Simultaneous eigenfunctions
    2.1.4 Expectation value of the magnetic moment
    2.2 The density matrix
    2.2.1 Dirac notation
    2.2.2 Quantum statistical mechanics
    2.2.3 The Liouville-von Neumann equation
    2.2.4 The rotating frame transformation
    2.2.5 Matrix representations of the spin operators
    2.3 Pulses and rotation operators
    2.4 Quantum mechanical NMR spectroscopy
    2.4.1 Equilibrium and observation operators
    2.4.2 The one-pulse experiment
    2.5 Quantum mechanics of multispin systems
    2.5.1 Direct product spaces
    2.5.2 Scalar coupling Hamiltonian
    2.5.3 Rotations in product spaces
    2.5.4 One-pulse experiment for a two-spin system
    2.6 Coherence
    2.7 Product Operator Formalism
    2.7.1 Operator spaces
    2.7.2 Basis operators
    2.7.3 Evolution in the product operator formalism
    2.7.3.1 Free precession
    2.7.3.2 Pulses
    2.7.3.3 Practical Points
    2.7.4 Single quantum coherence and observable operators
    2.7.5 Multiple quantum coherence
    2.7.6 Coherence transfer and generation of multiple quantum coherence
    2.7.7 Examples of product operator calculations
    2.7.7.1 The spin-echo
    2.7.7.2 INEPT
    2.7.7.3 Refocussed INEPT
    2.7.7.4 Spin-state selective polarization transfer
    2.8 Averaging of the spin Hamiltonian and residual interactions
    Chapter 3: Experimental Aspects of NMR Spectroscopy
    3.1 NMR instrumentation
    3.2 Data acquisition
    3.2.1 Sampling
    3.2.2 Oversampling and digital filters
    3.2.3 Quadrature detection
    3.3 Data Processing
    3.3.1 Fourier transformation
    3.3.2 Data manipulations
    3.3.2.1 Zero-filling
    3.3.2.2 Apodization
    3.3.2.3 Phasing
    3.3.3 Signal-to-noise ratio
    3.3.4 Alternatives to Fourier transformation
    3.3.4.1 Linear prediction
    3.3.4.2 Maximum entropy reconstruction
    3.4 Pulse techniques
    3.4.1 Off-resonance effects
    3.4.2 B1 inhomogeneity
    3.4.3 Composite pulses
    3.4.4 Selective pulses
    3.4.5 Phase-modulated pulses
    3.4.6 Adiabatic pulses
    3.5 Spin decoupling
    3.5.1 Spin decoupling theory
    3.5.2 Composite pulse decoupling
    3.5.3 Adiabatic spin decoupling
    3.5.4 Cycling sidebands
    3.5.5 Recommendations for spin decoupling
    3.6 B0 field gradients
    3.7 Water suppression techniques
    3.7.1 Presaturation
    3.7.2 Jump-return and binomial sequences
    3.7.3 Spin lock and field gradient pulses
    3.7.4 Post-acquisition signal processing
    3.8 One-dimensional proton NMR spectroscopy
    3.8.1 Sample preparation
    3.8.2 Instrument setup
    3.8.2.1 Temperature calibration
    3.8.2.2 Tuning
    3.8.2.3 Shimming
    3.8.2.4 Pulse width calibration
    3.8.2.5 Recycle delay
    3.8.2.6 Linewidth measurement
    3.8.3 Referencing
    3.8.4 Acquisition and data processing
    3.8.4.1 One-pulse experiment
    3.8.4.2 Hahn-echo experiment
    Chapter 4: Multi-dimensional NMR Spectroscopy
    4.1 Two-dimensional NMR spectroscopy
    4.2 Coherence transfer and mixing
    4.2.1 Through-bond coherence transfer
    4.2.1.1 COSY-type coherence transfer
    4.2.1.2 TOCSY transfer through bonds
    4.2.2 Through space coherence transfer
    4.2.3 Heteronuclear coherence transfer
    4.2.4 Coherence transfer under residual dipolar coupling Hamiltonians
    4.3 Coherence selection, phase cycling and field gradients
    4.3.1 Coherence level diagrams
    4.3.2 Phase cycles
    4.3.2.1 Selection of a coherence transfer pathway
    4.3.2.2 Saving time
    4.3.2.3 Artifact suppression
    4.3.2.4 Limitations of phase cycling
    4.3.3 Pulsed field gradients
    4.3.3.1 Selection of a coherence transfer pathway
    4.3.3.2 Artifact suppression
    4.3.3.3 Limitations of pulsed field gradients
    4.3.4 Frequency discrimination
    4.3.4.1 Frequency discrimination by phase cycling
    4.3.4.2 Frequency discrimination by pulsed field gradients
    4.3.4.3 Aliasing and folding in multi-dimensional NMR spectroscopy
    4.4 Resolution and sensitivity
    4.5 Three and Four dimensional NMR Spectroscopy

0
    +关注 私聊
  • celan

    第7楼2008/08/27

    Chapter 5: Relaxation and Dynamic Processes
    5.1 Introduction and survey of theoretical approaches
    5.1.2 Relaxation in the Bloch equations
    5.1.2 The Solomon Equations
    5.1.3 Random-phase model for transverse relaxation
    5.1.4 Bloch, Wangsness and Redfield Theory
    5.2 The Master Equation
    5.2.1 Interference Effects
    5.2.2 Like spins, unlike spins, and the secular approximation
    5.2.3 Relaxation in the rotating Frame
    5.3 Spectral Density Functions
    5.4 Relaxation Mechanisms
    5.4.1 Intramolecular dipolar relaxation for IS spin system
    5.4.2 Intramolecular dipolar relaxation for scalar coupled IS spin system
    5.4.3 Intramolecular dipolar relaxation for IS spin system in the rotating frame
    5.4.4 Chemical shift anisotropy and quadrupolar relaxation
    5.4.5 Relaxation interference
    5.4.6 Scalar relaxation
    5.5 Nuclear Overhauser Effect
    5.6 Chemical Exchange Effects in NMR Spectroscopy
    5.6.1 Chemical exchange for isolated spins
    5.6.2 Qualitative effects of chemical exchange in scalar coupled systems
    Chapter 6: Experimental 1H NMR Methods
    6.1 Assessment of the 1D 1H Spectrum
    6.2 COSY-type experiments
    6.2.1 COSY
    6.2.1.1 Product operator analysis.
    6.2.1.2 Experimental protocol
    6.2.1.3 Processing
    6.2.1.4 Information content
    6.2.1.5 Quantitation of scalar coupling constants in COSY spectra
    6.2.1.6 Experimental variants
    6.2.2 Relayed COSY
    6.2.2.1 Product operator analysis.
    6.2.2.2 Experimental protocol
    6.2.2.3 Processing.
    6.2.2.4 Information content.
    6.2.3 Double-relayed COSY
    6.3 Multiple Quantum Filtered COSY
    6.3.1 2QF-COSY
    6.3.1.1 Product operator analysis.
    6.3.1.2 Experimental protocol
    6.3.1.3 Processing.
    6.3.1.4 Information content
    6.3.2 3QF-COSY
    6.3.2.1 Product operator analysis
    6.3.2.2 Experimental protocol and processing
    6.3.2.3 Information content
    6.3.3 E-COSY
    6.3.3.1 Product operator analysis
    6.3.3.2 Experimental protocol
    6.3.3.3 Processing
    6.3.3.4 Information content
    6.3.3.5 Experimental variants
    6.4 Multiple Quantum Spectroscopy
    6.4.1 2Q spectroscopy
    6.4.1.1 Product operator analysis
    6.4.1.2 Experimental protocol
    6.4.1.3 Processing
    6.4.1.4 Information content
    6.4.2 3Q spectroscopy
    6.4.2.1 Product operator analysis
    6.4.2.2 Experimental protocol and processing
    6.4.2.3 Information content
    6.5 TOCSY
    6.5.1 Product operator analysis
    6.5.2 Experimental protocol
    6.5.3 Processing
    6.5.4 Information content
    6.5.5 Experimental variants
    6.6 Cross-relaxation NMR experiments
    6.6.1 NOESY
    6.6.1.1 Product operator analysis.
    6.6.1.2 Experimental protocol
    6.6.1.3 Processing.
    6.6.1.4 Information content.
    6.6.1.5 Experimental variants.
    6.6.2 ROESY
    6.6.2.1 Product operator analysis
    6.6.2.2 Experimental protocol and processing
    6.6.2.3 Information content
    6.6.2.5 Experimental variants
    6.7 1H 3D experiments
    6.7.1 Experimental protocol
    6.7.2 Processing
    6.7.3 Information content
    6.7.4 Experimental variants
    Chapter 7: Heteronuclear NMR Experiments
    7.1 Heteronuclear correlation NMR spectroscopy
    7.1.1 Basic heteronuclear correlation experiments
    7.1.1.1 The HMQC experiment
    7.1.1.2 The HSQC experiment
    7.1.1.3 The constant-time HSQC experiment
    7.1.1.4 Comparison of HMQC and HSQc spectra
    7.1.2 Additional considerations in HMQC and HSQC experiments
    7.1.2.1 Phase cycling and artifact suppression
    7.1.2.2 13C scalar coupling and multiplet structure
    7.1.2.3 Folding and aliasing
    7.1.2.4 Processing HMQC and HSQC experiments
    7.1.3 Decoupled HSQC, Sensitivity-enhanced HSQC, and TROSY experiments
    7.1.3.1 The decoupled HSQC experiment
    7.1.3.2 Sensitivity-enhanced HSQC
    7.1.3.3 TROSY experiment
    7.1.3.4 Comparison of decoupled HSQC, PEP HSQC, and TROSY experiments

0
    +关注 私聊
  • celan

    第8楼2008/08/27

    7.1.3.5 Relaxation interference and TROSY spectra of larger proteins
    7.1.4 Water suppression and gradient enhancement of heteronuclear correlation spectra
    7.1.4.1 Solvent suppression
    7.1.4.2 Gradient-enhanced HSQC and TROSY NMR spectroscopy
    7.1.5 The constant-time 1H-13C HSQC experiment
    7.2 Heteronuclear-edited NMR spectroscopy
    7.2.1 3D NOESY-HSQC spectroscopy
    7.2.1.1 3D 1H-15N NOESY-HSQC
    7.2.1.2 3D 1H-13C NOESY-HSQC
    7.2.2 3D TOCSY-HSQC spectroscopy
    7.2.3 3D HSQC-NOESY and HSQC-TOCSY experiments
    7.2.4 HMQC-NOESY-HMQC experiments
    7.2.4.1 3D 15N/15N HMQC-NOESY-HMQC
    7.2.4.2 4D 13C/15N HMQC-NOESY-HMQC
    7.2.4.3 4D 13C/13C HMQC-NOESY-HMQC
    7.2.4.4 Processing 4D HMQC-NOESY-HMQC spectra
    7.2.5 Relative merits of 3D and 4D heteronuclear-edited NOESY spectroscopy
    7.3 13C-13C correlations: the HCCH-COSY and HCCH-TOCSY experiments
    7.3.1 HCCH-COSY
    7.3.2 Constant-time HCCH-COSY
    7.3.3 HCCH-TOCSY
    7.4 3D Triple-resonance experiments
    7.4.1 A prototype triple resonance experiment: HNCA
    7.4.1.1 A simple HNCA experiment
    7.4.1.2 The CT-HNCA experiment
    7.4.1.3 The decoupled CT-HNCA experiment
    7.4.1.4 The gradient-enhanced HNCA experiment
    7.4.1.5 The gradient-enhanced TROSY-HNCA experiment
    7.4.2 A complementary approach: the HN(CO)CA experiment
    7.4.3 A straight-through triple resonance experiment: H(CA)NH
    7.4.4 B ackbone correlations with the 13CO spins
    7.4.4.1 HNCO
    7.4.4.2 HN(CA)CO
    7.4.5 Correlations with the Cb/Hb spins
    7.4.5.1 CBCA(CO)NH
    7.4.5.2 CBCANH
    7.4.5.3 HNCACB
    7.4.6 Additional considerations for triple resonance experiments
    7.5 Measurement of scalar coupling constants
    7.5.1 HNCA-J experiment
    7.5.2 HNHA experiment
    7.6 Measurement of residual dipolar coupling constants
    Chapter 8: Experimental NMR Relaxation Methods
    8.1 Pulse Sequences and Experimental Methods
    8.2 Picosecond-nanosecond dynamics
    8.2.1 Experimental methods for 15N laboratory-frame relaxation
    8.2.2 Experimental methods 15N relaxation interference
    8.2.3 Experimental methods for 13CH2D methyl laboratory-frame relaxation
    8.2.4 Experimental methods for 13CO laboratory-frame relaxation
    8.3 Microsecond-second dynamics
    8.3.1 Lineshape analysis
    8.3.2 ZZ-exchange spectroscopy
    8.3.3 R1兿 rotating frame relaxation methods
    8.3.4 CPMG relaxation methods
    8.3.5 Chemical exchange in multiple quantum spectroscopy
    8.3.6 TROSY-based approaches
    Chapter 9: Larger Proteins and Molecular Interactions
    9.1 Larger proteins
    9.1.1 Protein deuteration
    9.1.2 Relaxation in perdeuterated and random fractionally deuterated proteins
    9.1.3 Sensitivity for perdeuterated proteins
    9.1.4 2H Isotope shifts
    9.1.5 Experiments for 1HN, 15N, 13Ca, 13C兝 and 13CO assignments in deuterated proteins
    9.1.5.1 Constant-time HNCA for deuterated proteins
    9.1.5.2 HN(CA)CB for deuterated proteins
    9.1.5.3 Other experiments for resonance assignments
    9.1.6 Sidechain 13C assignments in deuterated proteins
    9.1.7 Sidechain 1H assignments
    9.1.8 NOE restraints from deuterated proteins
    9.1.8.1 4D HN-HN 15N/15N-separated NOESY experiment
    9.1.8.2 13C/15N, 13C/13C and 15N/15N-separated NOESY experiments on random fractionally deuterated proteins
    9.1.9 Selective protonation
    9.2 Intermolecular interactions
    9.2.1 Exchange regimes
    9.2.2 Protein-ligand binding interfaces
    9.2.2.1 Chemical shift mapping
    9.2.2.2 Cross-saturation
    9.2.2.3 Transverse relaxation and amide proton solvent exchange
    9.2.3. Resonance assignments and structural restraints for protein complexes
    9.2.3.1 Assignments and structures of proteins in protein-ligand complexes
    9.2.3.2 Isotope edited/filtered NOESY to define intermolecular interfaces
    9.3 Methods for rapid data acquisition
    9.3.1 Non-uniform sampling
    9.3.2 GFT NMR spectroscopy
    9.3.3 Projection-reconstruction
    Chapter 10: Sequential Assignment and Structure Calculations
    10.1 Resonance assignment strategies
    10.1.1 1H resonance assignments
    10.1.2 Heteronuclear resonance assignments
    10.2 Three dimensional solution structures
    10.2.1 NMR derived structural restraints
    10.2.1.1 NOE distance restraints
    10.2.1.2 Dihedral angle restraints from scalar coupling constants
    10.2.1.3 Dihedral angle restraints from isotropic chemical shifts
    10.2.1.4 Restraints from residual dipolar coupling constants
    10.2.1.5 Hydrogen bond restraints from amide proton-solvent exchange
    10.2.1.6 Hydrogen bond restraints from trans-hydrogen bond scalar coupling constants
    10.2.2 Structure determination
    10.3 Conclusion

0
    +关注 私聊
  • ❤厶大三

    第9楼2008/09/28

    自己不是做蛋白的,还是好好学习一下!
    感谢分享!

0
0
查看更多
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...