仪器信息网APP
选仪器、听讲座、看资讯

静态顶空气相色谱:理论与实践(英文原版)Static Headspace-Gas Chromatography: Theory and Practice, 2nd Edition

  • 恋上兔子的熊
    2015/11/16
  • 私聊

气相色谱(GC)


  • Static Headspace-Gas Chromatography: Theory and Practice, 2nd Edition

    Static Headspace-Gas Chromatography: Theory and Practice, 2nd Edition
    Bruno Kolb, Leslie S. Ettre
    ISBN: 978-0-471-74944-8
    Hardcover
    376 pages
    Wiley
    May 2006
    The only reference to provide both current and thorough coverage of
    this important analytical technique.
    Static headspace-gas chromatography (HS-gc) is an indispensable
    technique for analyzing volatile organic compounds, enabling the
    analyst to assay a variety of sample matrices while avoiding the
    costly and time-consuming preparation involved with traditional gc.
    Static Headspace-Gas Chromatography: Theory and Practice has long been
    the only reference to provide in-depth coverage of this method of
    analysis. The Second Edition has been thoroughly updated to reflect
    the most recent developments and practices, and also includes coverage
    of solid-phase microextraction (SPME) and the purge-and-trap
    technique. Chapters cover:
    * Principles of static and dynamic headspace analysis, including the
    evolution of HS-gc methods and regulatory methods using static HS-gc
    * Basic theory of headspace analysis-physicochemical relationships,
    sensitivity, and the principles of multiple headspace extraction
    * HS-gc techniques-vials, cleaning, caps, sample volume, enrichment,
    and cryogenic techniques
    * Sample handling
    * Cryogenic HS-gc
    * Method development in HS-gc
    * Nonequilibrium static headspace analysis
    * Determination of physicochemical functions such as vapor pressures,
    activity coefficients, and more.
    Comprehensive and focused, Static Headspace-Gas Chromatography, Second
    Edition provides an excellent resource to help the reader achieve
    optimal chromatographic results. Practical examples with original data
    help readers to master determinations in a wide variety of areas, such
    as forensic, environmental, pharmaceutical, and industrial
    applications.
    Preface.
    Preface to the First Edition.
    List of Acronyms and Symbols.
    1. General introduction.
    1.1 Principles of headspace analysis .
    1.2 Types of headspace analysis.
    1.2.1 Principles of static headspace - gas chromatography (HS-gc).
    1.2.2 Principles of dynamic headspace -- gas chromatography.
    1.3 The evolution of the HS-gc methods.
    1.4 Headspace -- gas chromatography literature.
    1.5 Regulatory methods utilizing (static) HS-gc.
    1.6 References.
    2. Theoretical background of HS-gc and its applications.
    2.1 Basic theory of headspace analysis.
    2.2 Basic physicochemical relationships.
    2.3 Headspace sensitivity.
    2.3.1 Influence of temperature on vapor pressure and partition
    coefficient.
    2.3.2 Influence of temperature on headspace sensitivity for compounds
    with differing partition coefficients.
    2.3.3 Influence of sample volume on headspace sensitivity for
    compounds with differing partition coefficients.
    2.3.4 Changing the sample matrix by varying the activity coefficient.
    2.4 Headspace linearity.
    2.5 Duplicate analyses.
    2.6 Multiple headspace extraction (MHE).
    2.6.1 Principles of MHE.
    2.6.2 Theoretical background of MHE.
    2.6.3 Simplified MHE calculation.
    2.7 References.
    3. The technique of HS-gc.
    3.1 Sample vials.
    3.1.1 Types.
    3.1.2 Selection of vial volume.
    3.1.3 Vial cleaning.
    3.1.4 Wall adsorption effects.
    3.2 Caps.
    3.2.1 Pressure on caps.
    3.2.2 Safety closures.
    3.3 Septa.
    3.3.1 Types.
    3.3.2 Septum blank.
    3.3.3 Should a septum be pierced twice?.
    3.4 Thermostatting.
    3.4.1 Influence of temperature.
    3.4.2 Working modes.
    3.5 The fundamentals of headspace sampling systems.
    3.5.1 Systems using gas syringes.
    3.5.2 Solid-phase microextraction (SPME).
    3.5.2.1 Comparison of the sensitivities in HS-SPME and direct static
    HS-gc.
    3.5.3 Balanced-pressure sampling systems.
    3.5.4 Pressure/loop systems.
    3.5.5 Conditions for pressurization systems.
    3.5.6 The volume of the headspace sample.
    3.5.6.1 Sample volume with gas syringes.
    3.5.6.2 Sample volume with loop systems.
    3.5.6.3 Sample volume with the balanced-pressure system.
    3.6 Use of open-tubular (capillary) columns.
    3.6.1 Properties of open-tubular columns for gas samples.
    3.6.2 Headspace sampling with split or spitless?.
    3.6.3 Comparison of split- and splitless headspace sampling.
    3.6.4 Band broadening during sample introduction.
    3.6.5 Temperature influence on band broadening.
    3.6.6 The combination of different columns and detectors.
    3.7 Enrichment techniques in HS-gc.
    3.7.1 Systems for cryogenic trapping.
    3.7.1.1 Systems for Cryogenic condensation.
    3.7.1.2 Trapping by cryogenic focusing.
    3.7.1.3 Influence of temperature on cryogenic focusing.
    3.7.1.4 Comparison of the various techniques of cryogenic trapping.
    3.7.2 Influence of water in cryogenic HS-gc.
    3.7.2.1 Water removal in static HS-gc.
    3.7.2.2 Applications.
    3.7.3 Enrichment by adsorption.
    3.7.3.1 Water removal from an adsorption trap.
    3.8 Special techniques with the balanced-pressure systems.
    3.8.1 Instrumentation for MHE.
    3.8.2 Backflushing.
    3.9. Reaction HS-gc.
    3.9.1 Derivatization in the headspace vial.
    3.9.1.1 Methylation.
    3.9.1.2 Esterification.
    3.9.1.3 Transesterification.
    3.9.1.4 Acetylation.
    3.9.1.5 Carbonyl compounds.
    3.9.2 Subtraction HS-gc.
    3.9.3 Special reactions.
    3.9.4 HS-gc analysis of volatile derivatives from inorganic compounds.
    3.10 References.
    4. Sample handling in HS-gc.
    4.1 Equilibration.
    4.1.1 Gas samples.
    4.1.2 Liquid samples.
    4.1.3 Solid samples.
    4.2 Solution approach.
    4.3 Sample handling and sample introduction.
    4.3.1 Gas samples.
    4.3.2 Liquid samples.
    4.3.3 Solid samples.
    4.4 Preparation of standard solutions.
    4.4.1 Preparation of a standard solution from a liquid or solid
    substance.
    4.4.2 Preparation of a standard solution from a gaseous compound.
    4.5 Influence of the matrix.
    4.5.1 Clean matrix is available.
    4.5.2 Matric effect can be eliminated.
    4.5.3 Artificial matrix can be prepared.
    4.6 Methods aiming the complete evaporation of the analyte.
    4.6.1 The total vaporization technique (TVT).
    4.6.2 The full evaporation technique (FET).
    4.6.3 Calculation of the extraction yield in FET.
    4.6.4 Comparison of headspace sensitivities.
    4.7 References.
    5. Headspace methods for quantitative analysis.
    5.1 Internal normalization.
    5.2 Internal standard method.
    5.3 External standard method.
    5.4 Standard addition method.
    5.4.1 Single addition.
    5.4.2 Handling of the added standard (Gas-phase addition and sample-
    phase addition).
    5.4.3 Determination by multiple additions.
    5.5 Multiple headspace extraction (MHE).
    5.5.1 Principles of MHE.
    5.5.2 Calibration in MHE.
    5.5.2.1 External standard.
    5.5.2.2 Internal standard.
    5.5.2.3 Standard addition.
    5.5.3 The use of gaseous external standards in MHE.
    5.5.4 The role of quotient Q.
    5.5.4.1 Relationship between Q and pressures.
    5.5.4.2 Value of Q in the case of total vaporization.
    5.5.4.3 The relative position of the MHE plots as a function of Q.
    5.5.5 The correlation coefficient (r).
    5.5.6 Evaluation of the shape of the regression plot.
    5.5.7 Influence of K/ß.
    5.6 Analysis of solid samples (adsorption systems).
    5.6.1 Suspension approach.
    5.6.2 Surface-modification techniques.
    5.6.3 Highly adsorptive samples.
    5.7 Calibration techniques with headspace samples of varying volumes.
    5.8 Analysis of gas samples.
    5.9 References.
    6. Method development in HS-gc.
    6.1 General guidelines.
    6.2 Determination of the residual monomer content of polystyrene
    pellets.
    6.2.1 First approach: use of internal standard with MHE.
    6.2.2 Second approach: single determination with internal standard.
    6.2.3 Third approach: use of external standard with MHE.
    6.2.4 Fourth approach: use of the solution approach.
    6.3 Determination of residual solvents in a printed plastic film.
    6.3.1 First approach: use of external standard with MHE.
    6.3.2 Second approach: use of standard addition with MHE.
    6.3.3 Third approach: use of internal standard.
    6.4 Determination of the volatile constituents of a cathodic
    electrolytic plating bath.
    6.4.1 First approach: use of external standard with MHE.
    6.4.2 Second approach: dilution and use of external standard.
    7. Nonequilibrium static headspace analysis.
    7.1 Accelerated analysis.
    7.2 Heat-sensitive samples.
    7.3 References.
    8. Qualitative analysis by HS-gc.
    8.1 The use of HS-gc in ‘fingerprinting.’.
    8.2 The use of headspace sampling in hyphenated systems.
    8.3 The use of HS-gc in microbiology.
    8.4 References.
    9. Special measurements.
    9.1 Determination of vapor pressures.
    9.2 Determination of activity coefficients.
    9.3 Determination of related physicochemical functions.
    9.4 Determination of phase distribution (partition coefficient).
    9.4.1 The vapor-phase calibration (VPC) method.
    9.4.2 The phase-ratio variation (PRV) method.
    9.4.3 MHE methods for the determination of the partition coefficient.
    9.5 Reaction constant measurements.
    9.6 Determination of solute solubility by MHE.
    9.7 Gas-solid systems.
    9.7.1 Determination of adsorption isotherms.
    9.7.2 Determination of the rate of release of a volatile analyte.
    9.8 Validation of the headspace instrumentation: investigation of
    detector linearity and detection limit.
    9.8.1 Definitions.
    9.8.2 Linear range of the detector.
    9.8.3 Precision of the range.
    9.8.4 Minimum detectability.
    9.9 References.
    Index.
    顶空感兴趣的同学,好好研读一下,很好的一本书。
    +关注 私聊
  • wazcq

    第1楼2015/11/16

    应助达人

    这本书我在2011年看过了

0
    +关注 私聊
  • 又又1990

    第2楼2015/11/16

    感谢楼主分享,下载所需积分5积分,是不是有点多呀?

0
    +关注 私聊
  • 千层峰

    第3楼2015/11/16

    貌似内容很多,,看不下去。。。

0
    +关注 私聊
  • 秋醉虞阳

    第4楼2015/11/17

    我给你翻译 30积分一页

    千层峰(jxyan) 发表:貌似内容很多,,看不下去。。。

0
    +关注 私聊
  • 安平

    第5楼2015/11/17

    应助达人

    这本书不错的。

0
    +关注 私聊
  • symmacros

    第6楼2015/11/17

    应助达人

    看过这本书,很不错,基本理论和实验,好像有中文版。

0
    +关注 私聊
  • 恋上兔子的熊

    第7楼2015/11/18

    没见过中文版,如果国内出版的话,应该不愁卖的,英文原版当当卖1300,呵呵

    symmacros(jimzhu)发表:看过这本书,很不错,基本理论和实验,好像有中文版。

0
    +关注 私聊
  • zyl3367898

    第8楼2015/12/01

    应助达人

    下载过了,好资料。

0
    +关注 私聊
  • 哈迈仪器

    第9楼2016/01/26

    关键词:Agilent 1.5ml进样瓶/2ml样品瓶(盖垫)
    名称:安捷伦2ML棕色样品瓶,顶空样品瓶,进样样品瓶5182-07169-425
    安捷伦进样瓶,顶空进样瓶,螺口进样瓶
    英文名:2ml Clearscrew vial Borsilicate
    型号:HM-0712 HM-0713 HM-0714 HM-0715 HM-0717 HM-0716 HM-0718 HM-6592 HM-0745
    品牌:HAMAG
    容量: 1.5ml2ml (标准体积)
    材质:水解玻璃(1类硼硅玻璃)
    颜色:透明;棕色;透明带书写处;棕色带书写处
    是否OEM代加工:是
    包装:内包装收缩塑料盒100/盒,外包装纸箱,欢迎来电
    特征:32*11.6mm ,9*1mm 特氟龙/硅胶隔垫,9mm 聚丙烯盖
    产品介绍:该类型样品瓶有两种不同的材质,一种为国产硼硅酸盐,一种为进口一级水解玻璃,可满足不同程度的客户需求,规格为12*32mm。该系列比标准小口径瓶开口大40%,独特的螺纹设计保证一致的密封性,瓶颈处加工精确,便于机械臂的处理,严格的质量保证批与批之间的尺寸的一致性,匀称一致的平底保证与内插管的匹配性,陶瓷书写板便于标记。
    9mm标准2ml透明螺纹口样品瓶(2ml自动进样瓶)、2ml12×32mm,瓶口直径9mm;红色PTFE/白色硅胶瓶垫、蓝色开孔聚丙烯(PP)瓶盖,样品瓶有透明、棕色、透明带刻度书写、棕色带刻度书写供选择,适用于AgilentWatersVarian和岛津等各种型号自动进样器。
    订购电话:0574-28853126-616

0
    +关注 私聊
  • KingDz

    第9楼2016/03/29

    给翻译出来,能出版不

    恋上兔子的熊(v2836608) 发表:没见过中文版,如果国内出版的话,应该不愁卖的,英文原版当当卖1300,呵呵

0
查看更多
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...