仪器信息网APP
选仪器、听讲座、看资讯

sup-NIR分析仪在原料药快速识别体系建立中的应用研究

  • qindong413
    2018/07/04
    良药不苦口
  • 私聊

近红外光谱(NIR)

  • sup-NIR分析仪在原料药快速识别体系建立中的应用研究



    研究生:孙巧凤

    导师:臧恒昌教授



    摘要 目的:药用原辅料是药品生产过程中的基础物质,也是药品质量的关键影响因素。我国药品生产质量管理规范要求采取核对或检验等适当的措施,确认每一包装内的原辅料正确无误,给制药企业带来了巨大的挑战。近几年国家提出了实行药品与药用原辅料和包装材料关联审批,在政策放宽的情况下,如何低成本、准确而快速的监管原辅料是一个十分关键的问题。欧盟的近红外草案规定当近红外方法应用于原辅料的放行时,可以被称为主要方法,这说明近红外光谱分析技术对于原辅料质量快速评价具有强有力的优势。通过对药用原辅料建立近红外光谱快速分析体系,将有效的推动国产近红外光谱仪服务于药品生产行业,为广大人民群众的用药安全提供保障。方法:本实验采用sup-NIR1520对76种不同的原料药进行光谱采集,并利用化学计量学方法建立原料药的快速识别库,数据库的内部及外部验证结果的准确率均为100%,证明了sup-NIR1520分析仪在药用原料快速识别应用方面的可行性。本研究还对不同厂家的雷尼替丁进行了定性分析,利用sup-NIR1520采集光谱并利用支持向量机判别分析建立定性分析模型,模型校正集的识别率和拒绝率均为100%,验证集的识别率和拒绝率分别为100%,88.9%。

    关键词:近红外光谱分析技术;sup-NIR分析仪;药用原料;化学计量学


    Research on the establishment of rapid identification systemof pharmaceutical raw materials with sup-NIR analyzer

    Graduate student: QiaofengSun

    Supervisor: Hengchang Zang

    Abstract Objective: Pharmaceuticalexcipients and raw materials are the basic substances in the production ofdrugs, and they are the key influencing factors of quality of medicine. GMPrequires that appropriate measures should be taken to confirm that thematerials in each package are correct, which has brought great challenges tothe pharmaceutical companies. In recent years, The State has proposed theassociated examination and approval of drugs and pharmaceutical excipients andraw materials and packaging materials. Under such circumstances, how tosupervise raw and excipients materials accurately, quickly is a key technicalissue. How to supervise the raw materials and excipients with low cost,accurate and fast is a key issue. The EU's near-infrared draft stipulates thatwhen near-infrared methods are applied to the release of raw materials andexcipients, it can be called the main method, which indicates that NIRS hasstrong advantages for the quality evaluation of raw materials and excipients.The establishment of a rapid analysis system for near-infrared spectroscopy ofpharmaceutical raw materials and excipients will effectively promote domesticportable near-infrared spectrometers to serve the pharmaceutical industry andprovide security for the people's drug safety.Methods: In this experiment, 76 kinds of differentpharmaceutical raw materials were collected by sup-NIR1520, and rapididentification database for raw materials was established by chemometricsmethods. The accuracy of the internal and external validation results of thedatabase were 100%, which proved the feasibility of the sup-NIR analyzer in therapid identification of pharmaceutical raw materials. This study also conducteda qualitative analysis of ranitidine from different manufacturers. Samplesspectra were collected using sup-NIR1520 and a qualitative analysis model wasestablished by SVM-DA method. The recognition rate and rejection rate of thecalibration set were both 100%. The recognition rate and rejection rate of thevalidation set were 100% and 88.9% respectively.

    Key words: Near infraredspectroscopy; sup-NIR analyzer; pharmaceutical raw materials; Chemometrics


    1材料
    1.1仪器与软件

    Sup- NIR1520型近红外光谱分析仪工作温度是5-35 ℃,工作湿度是(5-85)%,工作压力为(86-116)kPa;采用带TEC温控系统的InGaAs检测器;光纤漫反射探头;参比盒;RIMP光谱采集及处理软件;MATLAB 2015a数据处理软件。
    1.2样品
    研究中使用的76种药用原料均为药厂生产中使用的原料,质量均符合药典规定标准。
    2 方法
    2.1近红外光谱的采集

    样品不经预处理,室温条件为20-25 ℃,采用光纤漫反射探头直接采集样品光谱,不同位置重复采集3次光谱,取平均;波长范围为1000-1800nm;扫描次数30次;分辨率为11 nm;以白板作为参比。
    2.2原料识别体系建立的方法
    利用每种原料7张光谱的内部相关系数确定每种辅料的阈值,以此相关系数阈值为一级识别体系的判断依据,对验证集进行预测。二级识别体系的建立利用PLS-DA定性分析方法。


    图3-1 药用原料识别体系技术路线图

    2.3样品集的划分
    采用K-S法分别将76种原料划分为校正集和验证集,其中每种样品取7个作为标准校正集,3个作为识别体系的验证集,即532个样品为校正集,228个样品作为验证集;其中校正集中,每种原料的7个光谱取平均作为标准图谱。
    2.4一级识别体系的建立
    2.4.1预处理方法的选择

    本研究参考辅料识别体系的预处理方法的考察结果,共考察了FD、SD预处理方法对识别体系的影响,并根据识别体系的识别率和拒绝率确定最佳预处理方法。
    2.4.2阈值的确立
    根据每种辅料的内部相关系数值大小确定此种辅料的阈值,主要规则如下:若同类别的相关系数均大于0.97,为了增大识别体系的准确率,以不同种类间的一般阈值0.97为此类辅料的阈值;若辅料内部出现小于0.97的相关系数值,则以最小值作为此类辅料的判别阈值。
    2.4.3结果分析
    一级识别体系主要是以相关系数值作为判断标准,将76张标准图谱作为一级识别体系的基础,以每种辅料的阈值作为判断种类归属的依据。验证样品首先与标准图谱计算相关系数进行初步判断。
    2.5二级识别体系的建立
    某些原料因结构相似等因素干扰导致无法直接用一级识别体系直接正确判断,存在一个以上大于阈值的相关系数值,则将所有大于阈值的辅料的7张原始光谱导出与验证样品进行PLS-DA定性分析并最终归类。并将其建立成PLS-DA判别分析的二级识别体系。
    2.6识别体系的外部验证
    按照建立识别体系时相同的方法采集得到外部验证样品光谱,利用外部验证集对原料识别体系的准确性进行验证,观察该数据库对于外来样品的识别和拒绝情况。并根据结果统计出外部验证时样品的假阳、假阴、真阳和真阴的个数。假阳性是指实际为阴性,判断为阳性,在本研究中表示实际不属于识别体系里的样品,但错误判断为识别体系中的某一原料;假阴性表示实际为阴性,判断为阳性;真阳性表示实际为阳性,判断也为阳性;真阴则表示实际为阴性,判断也为阴性。
    2.7不同生产厂家原料的定性分析
    原料药识别体系的建立仅仅研究了不同种类原料间的相互识别,不同厂家由于原材料及生产条件不同,生产出的原料也会有差异,为了更精确的控制原料的质量,考察sup-NIR1520对更加相似物料的定性能力,本研究设计实验设计实验以原料雷尼替丁为例,收集两个厂家A和B的雷尼替丁原料共52批,其中A厂家28批,B厂家24批。利用SVM-DA定性方法对其样品进行分析。
    2.7.1近红外光谱的采集
    样品不经预处理,室温条件为20-25 ℃,采用光纤漫反射探头直接采集样品光谱,不同位置重复采集3次光谱,取平均;波长范围为1000-1800nm;扫描次数30次;分辨率为11 nm;以白板作为参比。
    2.7.2样品集的划分
    采用KS方法将样品集划分为35个校正集和17个验证集,并使其校正集和验证集在A、B两个厂家中均有相应的占比。
    2.7.3定性分析模型的建立
    本研究采用SVM-DA定性分析方法进行模型的建立,SVM-DA是一种有监督的定性识别方法,因其在小样本、非线性以及高维模式识别方面具有很大的优势而得到了广泛的应用。通过对不同厂家样品的定性识别,考察了国产近红外光谱仪sup-NIR1520在定性识别方面进一步的应用。
    3实验结果
    3.1样品的原始光谱

    采用sup-NIR1520光谱仪采集的76种药用原料的原始光谱图如图3-2所示。每种原料包括10个批次,共760个不同批次的光谱。由原始光谱图可以看出,原料光谱的数量很多且重叠严重,无法用感官判断其类别,因此需要借助化学计量学方法建立快速识别体系。


    图3-2 原料样品的原始光谱图(见实验记录0004196-p67)

    3.2样品集的划分结果
    利用K-S法将样品划分为个532校正集和228个验证集。校正集532个样品中包括76种原料,每种样品7张光谱,其原始光谱如图3-3-a所示。验证集样品包括76种原料,每种3张验证光谱,其原始光谱如图3-3-b。将532张光谱每7张取平均,每种样品保留一张平均后的光谱作为一级识别体系的标准谱图。标准谱图如图3-4所示。


    图3-3 校正集(a)和验证集(b)原始光谱图(见实验记录0004196-p67)

    图3-4 76种药用原料的标准图谱(见实验记录0004196-p68)


    3.3一级识别体系的建立
    3.3.1预处理方法的选择

    由图3-3可知,光谱采集过程中由于粉末颗粒以及背景的干扰,引入了很多无关信息,影响两个样本间相关系数值的大小,进而影响两个样本间的定性关系,因此应首先对预处理方法进行考察,以判断的正确率为评价指标,此正确率包含正确识别以及拒绝占总验证样本数的比例。
    导数可以去除基线漂移和背景的干扰,放大光谱间的差异,本研究考察了FD+SG 13点平滑、SD +SG 13点平滑对于识别体系相关系数判断正确率的影响,选出最佳的预处理方法。不同的预处理方法对原料的阈值以及验证正确率有很明显的影响,经SD+SG13点平滑预处理后对于某些原料来说结果十分不理想,如艾地苯醌。可能是由于经过二阶导数处理后光谱的噪声被放大,光谱也比原始光谱复杂很多,导致原本相似的光谱差异较大,原本不相似的光谱相关系数增大,大大增加了错误判断的几率。经FD+SG13点平滑预处理后,识别体系的整体结果均很好,正确率均在90 %以上,因此选FD+SG13点平滑为最佳预处理方法。
    3.3.2阈值的确立
    原料一级识别体系的判断指标即为光谱间的相关系数值,首先应当建立每种原料判别的阈值。阈值的确立方法与辅料识别体系阈值确立方法相同,所有光谱均经过预处理后计算相关系数。若内部相关系数均大于0.97,以0.97为此类原料的阈值,以多索茶碱为例,多索茶碱类内的相关系数值均大于0.98,因此以0.97为此原料的阈值;若原料内部出现小于0.97的相关系数值,则以最小值作为此类原料的判别阈值。以氨磺必利为例,此时阈值选为0.89,相同情况的其他原料均以最小值为阈值。根据以上两种原则计算出的所有原料的阈值见表3-1。


    3.3.3结果分析

    标准谱图以及验证集样品光谱图均经过FD+SG 13点平滑预处理,根据阈值进行相关系数的判别,此时的判别属于库内验证。一级识别体系的验证存在两种情况,一种是仅有一个相关系数值大于阈值此时可以正确归属该辅料,如图3-5所示,图中横坐标为76个校正集标准样品,纵坐标为相关系数值,红色横线部分为阈值。另一种情况是同时出现多个两个或以上的数值大于阈值,此时会出现辅料归属的混淆判断,将会再进入更进一步的分析。如图3-6所示,第100个验证样品同时与三个标准样品相匹配,一级识别体系无法正确判断,应进行子库的建立。其他验证样品利用相同的原理进行验证。
    最终的验证结果显示,以下几种原料之间因结构或其他外在因素存在而无法正确判断:卡铂和顺铂;奥替拉西钾、盐酸格拉司琼、吉美嘧啶、佐匹克隆和盐酸帕洛诺司琼;氨苄西林、阿莫西林、庆大霉素和头孢丙烯;肝素钠、精氨酸、鲨鱼CS和猪CS。而除此之外的其他样品均能成功识别和拒绝。




    3.4二级识别体系的建立
    为了提高识别体系的正确率,对相关系数法没有正确识别的少量样品展开进一步的分析,利用常用的定性分析方法PLS-DA建立识别体系的子库。由一级识别体系结果可知,易混淆的样品可归结为四大类,分别为化药类:奥替拉西钾、盐酸格拉司琼、吉美嘧啶、佐匹克隆和盐酸帕洛诺司琼;抗生素类:氨苄西林、阿莫西林、庆大霉素和头孢丙烯;生药类:肝素钠、精氨酸、鲨鱼CS和猪CS;铂类:卡铂和顺铂。分别针对这四大类建立相应的PLS-DA分析模型。每个模型的校正集是由每种原料的7张原始光谱图组成,验证集是由相应种类的3张验证光谱组成。建立的最佳模型结果见表3-2。分别对应的PLS-DA模型如图3-7、图3-8、图3-9、图3-10所示。




    由以上四个定性模型可知,在一级识别体系中容易混淆的样品均能利用PLS-DA方法完全正确区分,说明将相关系数法和PLS-DA法相结合对药用原料进行快速识别是可行的。同时证明了sup-NIR1520分析仪可以用来区分药用原料,实现定性判别的目的。

    3.5识别体系的外部验证
    由原料识别体系的结果可知,建立的识别体系在快速识别药用原料方面是可行的,为进一步考察识别体系的准确性和稳健性,设计外部验证集考察模型对于外部样品的识别能力。
    3.5.1外部验证光谱图
    在相同条件下采集了100个不同种类和批次的样品光谱作为识别体系的外部验证集,样品的原始光谱如图3-11所示。光谱间的信息重叠严重,且有外界因素的干扰,利用化学计量方法对其进行处理及数据运算。


    3.5.2验证结果分析
    外部验证集的验证流程与识别体系的内部验证相同,先利用预处理后的相关系数值进行初步判断,如果有无法识别的样品再利用PLS-DA模型进一步验证。验证结果见表3-7。由表中的数据可知,识别体系的识别率为100%,拒绝率也高达97%。100个外部验证样品中有1个样品验证错误,表现为假阳性,即错误判断为识别体系中的某类原料。这可能是由于识别体系中的原料种类较多,识别体系的复杂程度增加而造成错误的识别。观察发现错误识别的样品相关系数值仅高于阈值千分之几,为保证样品识别的正确率,对于相关系数值十分接近阈值的样品单独进行常规化学分析确定其种类,可降低错误发生的几率。


    结合识别体系内部及外部验证结果可知,由sup-NIR采集光谱并利用化学计量学方法建立的原料识别体系可以用于原料的快速识别。

    3.6不同生产厂家原料的识别
    3.6.1样品原始光谱

    52批雷尼替丁的原始光谱如图3-12所示,从光谱图中可以看出,样品间是存在差异的,由于光谱的重叠比较严重,需要借助化学计量学方法进一步分析。


    3.6.2样品集的划分结果
    用KS方法将样品集划分为35个校正集和17个验证集。具体的划分结果见表3-4。


    3.6.3 定性分析模型的建立

    本研究利用SVM-DA对不同厂家的雷尼替丁进行定性分析,此方法主要通过核函数完成数据的维度转换,常用的核函数为径向核函数。本研究考察了不同预处理方法对模型结果的影响。可知,在经过MSC+FD+SG13点平滑预处理后,模型校正集的识别率和拒绝率均为100%,验证集的拒绝率也为100%,仅有一个验证样品识别错误,因此选择MSC+FD+SG13点平滑为最佳预处理方法。最佳模型结果如图3-13所示。利用SVM-DA定性方法可以实现不同厂家的原料识别,模型结果较好,同时证明了sup-NIR在同一厂家原料鉴别中应用的可行性。



    4 讨论和结论

    本实验采用sup-NIR1520分析仪对76种不同的原料进行光谱采集,并利用化学计量学方法建立了原料药的快速识别库,证明了sup-NIR1520分析仪在药用原料快速识别应用方面的可行性。并以其中一种原料雷尼替丁为例,搜集不同厂家A和B的雷尼替丁,利用sup-NIR1520采集光谱并利用SVM-DA建立定性分析模型,考察了此仪器在不同厂家原料识别中的应用可行性。两种实验考察结果说明了sup-NIR可以准确的识别原料种类及不同厂家。
    药用原料识别体系与辅料识别体系建立的方法基本原理相同,主要依靠光谱间的相关系数值以及常用的PLS-DA定性分析方法。结合两种方法的优点大大提高了识别体系的准确性和简便性。由外部验证结果可知,识别体系的识别率达到100%,拒绝率为97%,相比较于辅料识别体系来说,原料库的种类增加几十种,所以导致识别体系的组成十分复杂,准确率也相应的有所降低,但仍然可以满足日常的快速识别需求。对于不同厂家原料的识别建立了SVM-DA定性模型,模型校正集的识别率和拒绝率均为100%,验证集的识别率和拒绝率分别为100%,88.9%,说明不同厂家的原料间满足某种非线性关系。整体来看模型的正确率较高,可以满足一般的识别要求。本研究首次将sup-NIR分析仪应用到药用原料识别体系的建立并首次应用到同一原料不同厂家的鉴别。为仪器在原料生产及使用厂家的推广提供了很好的理论研究基础。

    参考文献

    汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述. 计算机应用研究, 2014, 31(5):1281-1286.
    钟雄斌. 基于高光谱技术的不同品种猪肉品质检测模型维护方法研究. 华中农业大学, 2014.









1
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...