仪器信息网APP
选仪器、听讲座、看资讯

【金秋计划】负载胡桃醌的白及多糖-维生素E琥珀酸酯聚合物胶束的制备及表征

  • 城头变幻大王骑
    2024/09/12
  • 私聊

中药/天然药检测

  • 青龙衣green walnut husks来源于胡桃科胡桃属植物胡桃和胡桃楸的未成熟果实的干燥外果皮。胡桃醌是青龙衣中的萘醌类化合物,也是主要活性成分[1]。现代药理研究表明,胡桃醌具有抗炎、抗菌、抗肿瘤等作用[2-5],对多种肿瘤细胞增殖均有抑制作用。目前,已证实胡桃醌能抑制宫颈癌细胞生长,并诱导其凋亡、抑制细胞迁移、侵袭[6-7]。其对肝癌HepG2细胞的体内外抑制活性显著,能够上调死亡受体5(death receptor 5,DR5)表达,通过ROS介导的p53信号通路激活,促进自噬体形成,诱导细胞的凋亡与自噬[8]。胡桃醌对人乳腺癌MCF-7细胞抑制生长效果明显,与时间和浓度呈正相关,同时使Bcl-2相关X蛋白/B淋巴细胞瘤-2(Bcl-2 associated X protein/B-cell lymphoma-2,Bax/Bcl-2)比值升高,半胱氨酸天冬氨酸蛋白酶-3(cystein- asparate protease-3,Caspase-3)、Caspase-9被激活,诱导细胞凋亡[9]。但胡桃醌水溶性差,易升华,能随水蒸汽挥发,长期存放易发生氧化分解,限制了其在新药开发和在临床上的应用[10],因此,针对其药理活性及潜在应用,设计一种可有效提高胡桃醌稳定性的递药体系具有重要意义。

    两亲性嵌段共聚物是在自组装过程中将疏水性药物包覆或键合在聚合物中形成的载药纳米胶束,其能够弥补传统药物水溶性差、吸收率低等不足,可提高药物生物利用度,实现靶向控制释放,在抗癌药物递送中被广泛应用[11]。白及多糖(Bletilla striata polysaccharide,BSP)是从兰科白及属植物白及Bletilla striata (Thunb.) Reichb. f.的干燥块茎中提取得到的一类水溶性多糖,作为天然高分子材料,具有结构稳定、生物可降解、生物安全性高、易于修饰改造等特点,逐渐成为一种纳米药物递送系统的新型优良载体材料[12]。维生素E琥珀酸酯(vitamin E succinate,VES)是维生素E的类似物,因具有较长的脂肪链而疏水性较强,将其和白及多糖连接可提高包载药物的稳定性。VES还能够抑制肿瘤细胞生长和诱导肿瘤细胞凋亡,且只对肿瘤细胞有抑制作用,对正常的组织细胞无任何不良反应,因此VES具有药物和载体的双重作用[13-14],在递送药物的同时达到辅助治疗的效果。
    本实验以白及多糖为亲水端,VES为疏水端,合成两亲性嵌段共聚物BSP-VES,将其作为载体制备胡桃醌载药胶束(Jug/BSP-VES),同时考察制备过程中各因素对包封率和载药量的影响,采用星点设计-效应面法(central composite design-response surface methodology,CCD-RSM)优化Jug/BSP-VES胶束的处方和工艺,并进行质量评价,为传统中药青龙衣及其活性成分胡桃醌的开发及临床应用提供参考。
    1 仪器与材料
    1.1 仪器
    Agilent 1260 Series型高效液相色谱仪,美国安捷伦有限公司;DF-101S型集热式恒温加热磁力搅拌器,上海秋佐科学仪器有限公司;KQ-200KDB型超声波清洗器,昆山市超声仪器有限公司;UV-765型紫外-可见分光光度计,上海精密科学仪器有限公司;Advantage型台式托盘冻干机,美国VirTis公司;80-2型电动离心机,上海浦东物理光学仪器厂;Zetasizer Nano ZSE型纳米粒度电位仪,英国马尔文公司;FTIR-650型傅里叶变换红外光谱仪,天津港东科技股份有限公司;970CRT型荧光分光光度计,北京恒奥德仪器有限公司;Hula Dancer Digital型涡旋混合器,德国IKA公司;Talos F200S G2型透射电子显微镜(TEM),赛默飞仪器公司。
    1.2 试药
    胡桃醌原料药(批号A2007171,质量分数≥97%)、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)、4-二甲氨基吡啶(DMAP),上海阿拉丁试剂有限公司;白及多糖,批号GH210721,西安国豪生物科技有限公司;胡桃醌对照品,批号RFS-H07511804026,质量分数>98%,成都瑞芬思生物科技有限公司;VES,批号VS1210200734,西安海斯夫生物科技有限公司;芘,分析纯,上海九鼎化学有限公司。
    2 方法与结果
    2.1 BSP-VES聚合物的合成
    称取3.2 g BSP超声溶解于30 mL DMSO中。另称取适量VES、DMAP和EDC(nVES∶nDMAP∶nEDC=1∶1∶1.2)溶于DMSO后磁力搅拌活化1 h,BSP溶液缓慢滴入,密封圆底烧瓶,38 ℃水浴搅拌下反应48 h,室温冷却后移至透析袋(截留相对分子质量3 500)中用纯化水透析2 d以除去未反应试剂。将溶液3 500 r/min离心(离心半径10 cm)15 min取上清液,?20 ℃冰箱中预冻,随后进行冷冻干燥,得到棕色絮状疏松固体,置于4 ℃冰箱中冷藏备用,反应式见图1。
    图片
    2.2 BSP-VES的表征及结果
    2.2.1 核磁共振氢谱(1H-NMR)检测 以D2O为溶剂,对BSP-VES合成产物进行1H-NMR分析。结果如图2所示,δ 3.0~4.0处宽峰为白及多糖上甘露糖和葡萄糖单元中的亚甲基和次甲基(CH2-O和CH-O)的质子峰,δ 0.8~1.0附近为VES中甲基(e)、亚甲基信号峰,δ 5.31处为白及多糖(1,6)糖苷键(a)的质子化学位移。以上结果表明合成产物为BSP-VES[15]。
    图片
    2.2.2 红外光谱(IR)检测 采用IR法分别对BSP、VES、BSP-VES进行表征,红外扫描范围为4 000~500 cm?1,结果如图3所示。BSP的结果图(图3-a)中,3 384.56、2 921.63 cm?1为O-H和C-H的伸缩振动峰,1 149.37、1 076.08、1 025.94 cm?1为吡喃糖苷构型的特征峰。VES的结果图(图3-b)中,2 923.56 cm?1为-CH2、-CH的伸缩振动峰,1 749.12、1 710.55 cm?1为羧基和酯基中C=O伸缩振动峰,1 373.07、1 157.08 cm?1为-CH3和C-O的伸缩振动峰。BSP-VES的结果图(图3-c),其中2 921.63 cm?1处的C-H伸缩振动峰增强,说明有VES中大量-CH2、-CH3的引入,1 739.48 cm?1为酯基中C=O伸缩振动峰,1 567.84 cm?1为VES中苯环骨架振动峰,揭示了VES的引入[16]。
    图片
    2.3 Jug/BSP-VES胶束的制备
    采用溶剂挥发法制备Jug/BSP-VES胶束[17]。称取20 mg的BSP-VES于15 mL水中,称取2 mg胡桃醌溶于3 mL无水乙醇中,在搅拌下将含药溶液滴加至水相中,在30 ℃下搅拌6 h,有机溶剂挥发完全后即得Jug/BSP-VES胶束溶液。预冻后,置于冻干机中,取出即得冻干粉。
    2.4 Jug/BSP-VES中胡桃醌含量测定方法
    2.4.1 色谱条件 色谱柱为依利特Kromasil(250 mm×4.6 mm,5 μm);流动相为甲醇-水(70∶30);检测波长248 nm;柱温25 ℃;体积流量1.0 mL/min;进样量10 μL。
    2.4.2 溶液的配制
    (1)对照品溶液的配制:精密称取胡桃醌对照品5.0 mg,置于25 mL量瓶中,甲醇溶解并定容,得质量浓度为200 μg/mL的对照品储备液。
    (2)供试品溶液的配制:精密吸取Jug/BSP-VES胶束溶液0.5 mL至10 mL量瓶中,甲醇破乳并定容至刻度,摇匀,即得Jug/BSP-VES供试品溶液。空白胶束供试品溶液同法操作。
    2.4.3 专属性考察 分别取适量空白胶束供试液、适当浓度的胡桃醌对照品溶液及Jug/BSP-VES供试品溶液各10 μL,注入液相色谱仪,按“2.4.1”项下色谱条件测定,记录色谱图。结果见图4,空白胶束在胡桃醌处无干扰,专属性良好。
    图片
    2.4.4 线性关系考察 取“2.4.2”项下对照品溶液适量,加甲醇稀释,得到系列质量浓度为1、5、10、30、50、70、100 μg/mL的对照品溶液,按“2.4.1”项下色谱条件进样测定,记录峰面积,以峰面积(Y)对质量浓度(X)进行线性方程拟合,得回归方程为Y=44.786 X-38.423,r=0.999 8,结果表明胡桃醌在1~100 μg/mL线性关系良好。
    2.4.5 精密度试验 取“2.4.4”项下低、中、高3个质量浓度(分别为5、30、70 μg/mL)胡桃醌对照品溶液,同1 d内各质量浓度分别进样5次,计算日内精密度;各质量浓度连续进样5 d,计算日间精密度。日内与日间精密度RSD均小于2.0%,表明仪器的精密度良好。
    2.4.6 稳定性试验 精密吸取同一供试品溶液在0、2、4、8、12、24 h下,按照“2.4.1”项下色谱条件进行测定,结果峰面积的RSD值为0.596%,表明供试品溶液在24 h内稳定性良好。
    2.4.7 重复性试验 取同一批Jug/BSP-VES 6份,按“2.4.2”项方法制备供试品溶液,按照“2.4.1”项下色谱条件进行测定,计算胡桃醌质量浓度的RSD值为1.03%,表明测定方法的重复性良好。
    2.4.8 加样回收率试验 精密量取200 μg/mL胡桃醌对照品溶液0.25、1.50、3.50 mL各3份于10 mL量瓶中,加入BSP-VES聚合物,用甲醇定容,分别得到胡桃醌质量浓度为5、30、70 μg/mL的溶液,按“2.4.1”项下色谱条件测定胡桃醌的含量,测得加样回收率均在99%~102%,RSD均小于2.0%,表明检测结果准确可靠。
    2.5 胡桃醌包封率、载药量的测定
    采用离心法进行聚合物胶束药物包封率和载药量的测定[18]。精密吸取Jug/BSP-VES胶束溶液1 mL至1.5 mL离心管中,3 000 r/min离心(离心半径8 cm)10 min,除去游离药物,吸取0.5 mL上清液,甲醇破乳并定容至刻度,摇匀,按“2.4.1”项下色谱条件进样分析。另取Jug/BSP-VES胶束溶液0.5 mL至10 mL量瓶中,甲醇破乳并定容至刻度,摇匀,按“2.4.1”项下色谱条件进样分析。将所得峰面积带入线性方程计算胡桃醌的包封率和载药量。
    包封率=W胶束中药物量/W总药量
    载药量=W胶束中药物量/W胶束质量
    2.6 单因素考察
    2.6.1 有机溶剂种类考察 固定其他条件不变,即有机溶剂用量为3 mL,挥发时间为6 h,制备温度为30 ℃,载药比为10∶1,水相用量为15 mL,分别加入有机溶剂氯仿、丙酮、甲醇、无水乙醇,考察不同有机溶剂种类对载药量和包封率的影响。结果(表1)显示,以无水乙醇为溶剂时,制备的胶束溶液包封率和载药量最高,因此,选择无水乙醇作为溶剂来制备Jug/BSP-VES胶束。
    图片
    2.6.2 有机溶剂用量考察 固定其他条件不变,即有机溶剂为无水乙醇,挥发时间为6 h,制备温度为30 ℃,载药比为10,水相用量为15 mL,加入一定量的BSP-VES和胡桃醌分别溶解于1、2、3、4、5 mL无水乙醇中,考察不同有机溶剂用量对载药量和包封率的影响。结果(表2)显示,当有机溶剂用量为3 mL时胡桃醌的载药量和包封率最高,因此,选择3 mL作为有机溶剂用量。
    图片
    2.6.3 挥发时间考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,制备温度为30 ℃,载药比为10,水相用量为15 mL,考察挥发时间在4、5、6、7、8 h时,不同挥发时间对载药量和包封率的影响。结果(表3)显示,当挥发时间为6 h时胡桃醌的载药量和包封率最高,因此,选择6 h作为挥发时间来制备Jug/BSP-VES胶束。
    图片
    2.6.4 制备温度考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,挥发时间为6 h,载药比为10,水相用量为15 mL,考察制备温度在25、30、35、40、45 ℃时,不同制备温度对载药量和包封率的影响。结果(表4)显示,随着制备温度的增加,胡桃醌的载药量与包封率先升高后降低,因此将25~35 ℃的制备温度作为待优化项进行CCD-RSM实验。
    图片
    2.6.5 载药比考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,挥发时间为6 h,制备温度为30 ℃,水相用量为15 mL,精密称取药物2 mg,加入不同质量的载体,即载药比分别为6、8、10、12、14时,考察不同载药比对载药量和包封率的影响。结果(表5)显示,随着载体量的增加,胡桃醌的包封率先升高后降低,因此将8、10、12的载药比作为待优化项进行CCD-RSM实验。
    图片
    2.6.6 水相用量考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,挥发时间为6 h,制备温度为30 ℃,载药比为10,考察水相用量在5、10、15、20、25 mL时,不同水相用量对载药量和包封率的影响。结果(表6)显示,随着水相用量的增加,胡桃醌的载药量与包封率先升高后降低,因此将10~20 mL的水相用量作为待优化项进行CCD-RSM实验。
    图片
    2.7 CCD-RSM优化处方
    在单因素考察实验基础上,进一步采用CCD- RSM优化制剂工艺。选取载药比(X1)、水相体积(X2)、制备温度(X3)3个因素,每个因素设定5个水平(?1.682、?1、0、+1、+1.682)。以胡桃醌包封率(Y1)和胡桃醌载药量(Y2)为考察指标进行3因素,5水平的CCD-RSM实验,结果见表7。采用Design-Expert统计软件对表7数据进行统计处理,并获得Y1、Y2值对自变量X1、X2、X3的多元线性回归方程,各考察指标的2项式拟合方程如下Y1=90.010+0.165 9 X1+0.700 4 X2-0.107 1 X3-0.656 4 X1X2-1.020 X1X3-0.516 1 X2X3-4.430 X12-3.520 X22-4.100 X32;Y2=6.430-0.408 3 X1+0.288 5 X2-0.210 6 X3+0.251 8 X1X2-0.380 1 X1X3-0.374 7 X2X3-0.004 7 X12-0.057 7 X22-0.111 9 X32。各方程的方差分析结果见表8,结果表明该模型与实际试验拟合程度良好,且各因素影响显著用该模型分析和预测胶束的制备工艺是合适的。
    图片
    图片
    利用Design-Expert统计软件绘制自变量对因变量的效应面和等高线图,结果见图5。最终确定最佳条件范围得到的最优处方:BSP-VES与胡桃醌的投药量分别为20 mg和2 mg,水相用量15 mL,制备温度30 ℃。预测在此条件下制备Jug/BSP-VES的包封率和载药量分别为90.047%、6.559%。
    图片
    2.8 最优处方的验证试验
    按最优处方平行制备3批Jug/BSP-VES胶束溶液,测定其中胡桃醌的包封率、载药量。胡桃醌的平均包封率为(88.44±1.24)%、RSD值为1.79%,胡桃醌平均载药量为(6.54±0.02)%、RSD值为1.90%,RSD值均<3%,表明模型预测可靠,工艺重现性较好。
    2.9 Jug/BSP-VES胶束的表征
    2.9.1 Jug/BSP-VES胶束溶液外观及形态观察 取制备好的Jug/BSP-VES溶液,观察外观及丁达尔现象;取适量Jug/BSP-VES溶液纯水稀释,滴加至专用铜网上,待风干后,通过透射电子显微镜(TEM)观察形态并拍照。结果如图6所示,Jug/BSP-VES胶束溶液为黄色澄清溶液,丁达尔效应明显;在TEM下观察到Jug/BSP-VES胶束呈类球形,分散均匀。
    图片
    2.9.2 BSP-VES临界聚集浓度(critical aggregation concentration,CAC)的测定 采用芘荧光探针法检测聚合物的CAC。配制质量浓度为1 mg/mL的芘溶液和1 mg/mL的BSP-VES母液。取9个西林瓶,各加入0.25 mL芘溶液,氮气吹干后各加入不同质量浓度的1 mL BSP-VES溶液。稀释后BSP-VES溶液的质量浓度分别为100.00、50.00、10.00、5.00、1.00、0.50、0.10、0.05、0.01 μg/mL。涡旋5 min后超声30 min,室温避光静置24 h。荧光分光光度计的激发波长为330 nm,测定各溶液中芘的荧光吸收,以373、384 nm处样品的荧光光度值之比(I373/I384)对质量浓度的对数作图,两条切线的交点为CAC值。结果如图7所示,当BSP-VES质量浓度较低时,I373/I384值较小,当BSP-VES质量浓度增大时,I373/I384值增大,取图中两直线相交处为BSP-VES的CAC值,经计算,CAC值为5.95 μg/mL。
    图片
    2.9.3 包封率和载药量的测定 按最优处方制备Jug/BSP-VES胶束溶液,测定其包封率和载药量,方法同“2.5”项。结果发现Jug/BSP-VES胶束溶液的包封率为(89.140±1.163)%(n=3),载药量为(6.493±0.087)%(n=3)。
    2.9.4 粒径及ζ电位测定 按最优处方制备Jug/ BSP-VES胶束溶液,Zetasizer Nano ZSE纳米粒度电位仪测定其粒径、粒度分布及ζ电位。结果如图8所示,测得Jug/BSP-VES胶束溶液的平均粒径为(120.30±2.80)nm,PDI为0.169±0.014,ζ电位为(?27.00±1.25)mV。
    图片
    2.9.5 差示扫描量热法(differential scanning calorimetry,DSC) 分别称取适量胡桃醌、BSP- VES、胡桃醌原料药物理混合物和Jug/BSP-VES胶束样品置于铝制样品盘中压制,氮气为保护气,扫描范围25~350 ℃,加热速率10 ℃/min。结果如图9所示。胡桃醌的特征吸收峰在156 ℃,BSP-VES的特征吸收峰为184 ℃,与胡桃醌的特征峰不重叠;物理混合物中,二者特征峰均出现,而Jug/ BSP-VES胶束的热量曲线上无胡桃醌的特征峰,说明胡桃醌已被成功包载进载体,特征吸收峰消失。
    图片
    2.9.6 储存稳定性考察 按最优处方制备Jug/ BSP-VES胶束溶液,在pH 4.5,4 ℃和25 ℃条件下测定其在第1、3、7、15 d的粒径和包封率。结果如表9所示,在4 ℃下,Jug/BSP-VES的粒径和包封率无较大变化,说明储存稳定性较好;在25 ℃下储存效果相对较差,随时间增加,胶束溶液粒径变大,包封率降低,因此4 ℃为Jug/BSP-VES胶束溶液的最优储存条件。
    图片
    2.9.7 体外释放考察 采用透析法考察胡桃醌和Jug/BSP-VES胶束溶液的体外释药情况。分别将胡桃醌、Jug/BSP-VES胶束溶液置于透析袋(截留相对分子质量3 500)中,透析袋两端夹紧,分别浸没在含有0.5%聚山梨酯-80的醋酸-醋酸钠缓冲液(Ph 4.5)中;恒温水浴(37.0±0.5)℃,转速100 r/min,每组平行进行3组试验,分别于选定的时间点收集5 mL样品,收集后补加等量同温的释放介质,所得到的样品经微孔滤膜滤过后进行HPLC分析,体外释药曲线如图10所示。胡桃醌溶液在6 h时释放到80%左右,Jug/BSP-VES胶束在48 h时的释放率为(82.13±2.51)%,达到了明显的缓释作用,表明将原料药制备成胶束可减缓药物的释放速度。
    图片
    3 讨论
    胡桃醌作为抗肿瘤活性成分具有一定的毒性,对金鱼的半数致死量(median lethal dose,LD50)为1.3 mg/L,对小鼠ig给药、ip的LD50值分别为2.5、25.0 mg/kg[19-20]。此外,胡桃醌及其代谢产物能与肾脏细胞溶质蛋白共价结合,造成肾脏毒性[21]。研究表明,酒精能使胡桃醌中的毒性成分转变为其他物质[22],以酒精作为溶剂的胡桃醌制剂通常不显毒性。本研究通过BSP与VES发生酯化反应成功制备了BSP-VES胶束,以胡桃醌为模型药物,通过溶剂挥发法制备了Jug/BSP-VES载药胶束。Jug/ BSP-VES载药胶束外观呈类球型,粒度测定结果显示,Jug/BSP-VES胶束溶液的粒径图显示峰形呈单峰,分布范围较窄,说明胶束溶液粒径均一。TEM下观察到的Jug/BSP-VES胶束,其粒径比粒度仪测定结果较小,可能是由于在制样过程中胶束水分的挥干导致粒子发生皱缩所致。BSP-VES作为两亲性高分子材料,在水相中的浓度超过临界胶束浓度后可形成胶束,制备方法简便。
    本实验设计了一种可提高胡桃醌稳定性的载药胶束,拟制成温敏凝胶剂、采用阴道给药的方式,用于治疗阴道炎症、宫颈癌术后等。正常人体阴道pH值范围在3.5~4.8[23],因此,体外释放实验采用的是pH 4.5并含有0.5%聚山梨酯-80的醋酸-醋酸盐缓冲液[24],来模拟阴道中的酸性环境。在稳定性研究中,也重点考察了上述条件下载药胶束的储存稳定性,而并未采用通常的PBS(0.01 mol/L,pH 7.4)缓冲体系和含10% FBS的PBS(0.01 mol/L,pH 7.4)缓冲体系。另外,本实验所制备的Jug/BSP-VES载药胶束处方中尽可能减少了辅料种类,以避免腔道用药过程中的副作用及不良反应。
    在单因素实验中,本实验考察各因素对处方工艺的影响。制备温度的高低主要影响有机溶剂除去的速度,温度过高或过低,引起有机溶剂挥发速度过快或过慢,均不利于胶束对药物的包载[25]。因考虑到温度对制备的影响较大,在25~35 ℃时Jug/ BSP-VES胶束中的胡桃醌含量不稳定,因此,对制备温度作进一步实验。
    对有机溶剂用量的考察中,有机溶剂用量过少时,容易造成药物不能完全溶解,随着有机溶剂用量的增加,药物在溶剂中均匀分散,能与胶束较好地结合,当有机溶剂用量过多时,在有限的时间内,容易造成挥发不完全导致包封率降低[25],因此选择3 mL作为有机溶剂用量。
    综上所述,本研究制备的Jug/BSP-VES胶束,通过单因素实验与CCD-RSM优化后,包封率好,粒径均一,稳定性良好,为胡桃醌制剂的应用开发奠定了基础。
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...