仪器信息网APP
选仪器、听讲座、看资讯

神经系统疾病研究的新兴工具:脑类器官

  • 义翘神州
    2024/10/24
  • 私聊

生命科学仪器综合讨论

  • 前言

    大脑复杂的细胞组成和特定的结构,使得体外建模难度极大。近年来大脑类器官概括了大脑发育的许多关键特征,激发全球神经学领域相关科研人员的兴趣,研究成果不断的发表于高分期刊,将脑类器官用于各种生理和病理研究。细胞因子作为类器官培养基中的添加试剂,可以引导细胞按特定器官谱系进行分化。为助力脑类器官的培养与分化,义翘神州可提供人EGF、FGF2、NOG、BMP4等一系列脑类器官培养相关产品。

    01 脑类器官研究新进展

    目前大多数脑部模型主要是人类死后脑组织、非人灵长类动物组织或者体外2D细胞。由于资源限制和动物模型的物种差异性等原因,使脑类器官成为潜在研究脑部生理和病理的模型。脑类器官主要源自胚胎干细胞(ESC)或者诱导性多能干细胞(iPSC)。对于体外神经生物学和神经发育障碍的疾病的研究,也会用到不同部位的脑类器官,比如前脑、中脑、海马脑类器官等。目前使用脑类器官模型涉及到阿尔茨海默症、帕金森病、自闭症、精神分裂等,甚至包括渐冻症、结节性硬化症等罕见病。

    体外神经生物学和神经发育障碍疾病模型的脑类器官

    Type of organoid

    Disease modeled/potential application

    Cerebral/early brain organoids

    Genetically caused microcephaly

    Zika virus mediated microcephaly

    Miller–Dieker syndrome

    Midbrain organoids

    Potential to model Parkinson's disease

    Hypothalamus organoids

    Potential to model hormonal and metabolic disorders including Prader–Willi syndrome

    Adenohypophysis organoids

    Potential to model pituitary dysfunction

    Hippocampus organoids

    Potential to model cognitive dysfunctions due to Alzheimer's disease

    Cerebellum organoids

    Potential to model SCA and Dandy–Walker syndrome

    Dorsaltelencephalon organoids

    ASD

    Forebrain assembloids

    Timothy syndrome

    ASD, autism spectrum disorders; POMC, pro-opiomelanocortin.

    (源自:https://doi.org/10.1002/bies.201900011)



    02细胞因子在脑类器官中的应用

    细胞因子在类器官培养过程中发挥重要作用。在多能干细胞(PSC)培养中加入了FGF2构建3D脑类器官模型。对于不同部位的脑类器官的培养,会加入不同的细胞因子,比如对于用于研究脊髓小脑共济失调疾病的小脑类器官培养中,会加入FGF2、FGF19、SDF1等细胞因子。

    用于生成特异性脑类器官的因子摘要

    Type of organoid

    Cultured with

    Midbrain organoids

    Wnt activators and SMAD inhibitors

    Hypothalamus organoids

    Inhibitors that blocks TGF‐β pathways

    BMP-4 ligand and Wnt agonists

    Adenohypophysis organoids

    DAPT, SAG, BIO, BMP4, dorsomorphin, Wnt4, Wnt5, FGF8, Nodal, iWP2

    Hippocampus organoids

    Wnt inhibitor IWR1e, TGF‐β inhibitor SB431542, 10% FBS, GSK3 inhibitor CHIR99021, BMP4

    Cerebellum organoids

    SB431542, FGF2, FGF19, SDF1

    Dorsaltelencephalon organoids

    Noggin, FGF2, rhDKK1, EGF, ascorbic acid, BDNF, GDNF, cAMP

    Dorsaltelencephalon organoids

    Dorsomorphin, SB431542, FGF2, EGF

    Subpallium: IWP2, SHH agonist SAG, BDNF, NT3, allopregnalone, retinoic acid

    Pallium: BDNF, NT3

    Photosensitive organoids



    BDNF


    Retinal organoids

    IWR1e, Matrigel, 10% FBS, SAG, CHIR99021, retinoic acid

    Hypothalamus organoids

    SMAD, BMP, Nodal and activin signaling pathway inhibitors

    Cerebellar plate neuroepithelium

    FGF2,4,8, SAG, retinoic acid, BDNF, GDNF, NT3



    BDNF, brain‐derived neurotrophic factor; BMP, bone morphogenetic protein; cAMP, cyclic adenosine monophosphate; EGF, epidermal growth factor; FBS, fetal bovine serum; FGF, fibroblast growth factor; GDNF, glial cell‐derived neurotrophic factor. (源自:https://doi.org/10.1002/bies.201900011)

    ?义翘神州细胞因子产品数据

    Human FGF2 Protein, Cat: GMP-10014-HNAE

    高纯度:

    ≥ 95 % as determined by SDS-PAGE.



    结合活性



    Cell proliferation assay using Balb/C 3T3 mouse embryonic fibroblasts. The specific activity is >1,000 IU/μg.

    Human Noggin Protein, Cat: 10267-HNAH

    高纯度:



    ≥95% as determined by SDS-PAGE. ≥95% as determined by SEC-HPLC.



    高批间一致性



    Inhibit BMP4-induced alkaline phosphatase production by MC3T3E1 mouse preosteoblast cells.

    脑类器官培养相关的细胞因子

    货号

    靶点

    内毒素

    纯度及活性



    10605-HNAE


    EGF

    <5 EU/mg

    ≥95%,Active



    GMP-10605-HNAE


    EGF

    <5 EU/mg

    ≥95%,Active



    GMP-10014-HNAE


    FGF2

    <10 EU/mg

    ≥95%,Active



    10609-HNAE2


    BMP4

    <1 EU/mg

    ≥95%,Active



    10267-HNAH


    NOG

    <10 EU/mg

    ≥95%,Active



    :SDS-PAGE & SEC-HPLC

    【参考文献】

    1. Antoine Verger et al. FDA Approval of Lecanemab: The Real Start of Widespread Amyloid PET Use? — The EANM Neuroimaging Committee Perspective. European Journal of Nuclear Medicine and Molecular Imaging, 2023. https://doi.org/10.1007/s00259-023-06177-5.

    2. Yujung Chang et al. Modelling Neurodegenerative Diseases with 3D Brain Organoids. Biological Reviews, 2020. https://doi.org/10.1111/brv.12626.

    3. Jihoon Kim, Bon-Kyoung Koo, and Juergen A. Knoblich, Human Organoids: Model Systems for Human Biology and Medicine, Nature Reviews Molecular Cell Biology, 2020. https://doi.org/10.1038/s41580-020-0259-3.

    4. Guini Song et al. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Frontiers in Cellular Neuroscience, 2021. https://www.frontiersin.org/articles/10.3389/fncel.2021.646921.

    5. Jay Gopalakrishnan. The Emergence of Stem Cell-Based Brain Organoids: Trends and Challenges. BioEssays, 2019. https://doi.org/10.1002/bies.201900011.

    6. Madeline A. Lancaster and Juergen A. Knoblich. Generation of Cerebral Organoids from Human Pluripotent Stem Cells. Nature Protocols, 2014. https://doi.org/10.1038/nprot.2014.158.

    7. Sebastian, R., et al. Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat Commun, 2023. https://doi.org/10.1038/s41467-023-39420-6

    8. Jimena Andersen, et al. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell, 2020, doi:10.1016/j.cell.2020.11.017.

    9. Yueqi Wang, et al. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nature Communications, 2022. https://doi.org/10.1038/s41467-022-33364-z

    10. Fleck, J.S., et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature, 2022. https://doi.org/10.1038/s41586-022-05279-8

    11. Oliver L. Eichmüller, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science, 2022. Doi: 10.1126/science.abf5546
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...