内含子

仪器信息网内含子专题为您整合内含子相关的最新文章,在内含子专题,您不仅可以免费浏览内含子的资讯, 同时您还可以浏览内含子的相关资料、解决方案,参与社区内含子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

内含子相关的资讯

  • “垃圾DNA”不“垃圾” ——酵母可能依赖内含子度过艰难时期
    p style=" text-indent: 2em " strong 酵母可能依赖内含子帮助它们度过艰难时期。 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1082ae37-6879-49ea-89f6-bd66609032f0.jpg" title=" 酵母.jpg" alt=" 酵母.jpg" width=" 300" height=" 200" border=" 0" vspace=" 0" style=" width: 300px height: 200px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图片来源:STEVE GSCHMEISSNER /span br/ /p p   就像从电影中删掉的片段一样,生物基因中的一些序列最终也会被剪掉,细胞不会利用它们制造蛋白质。现在,两项研究发现,这些被称为内含子的片段有助于酵母在艰难时期存活。这项研究揭示了DNA的另一种可能的功能,科学家曾认为这种功能是无用的。 /p p   未参与该研究的美国加州旧金山州立大学进化分子生物学家Scott Roy说:“这些结果非常令人信服,也非常令人兴奋。”这项研究开启了了解“内含子作用的全新范式”。 /p p   加州大学洛杉矶分校酵母微生物学家Guillaume Chanfreau说,这也回答了一个长期存在的问题: strong 为什么酵母保留了以前被认为是“垃圾DNA”的东西 /strong 。 /p p   内含子普遍存在于植物和真菌中,也存在于人类和其他动物体内——在大约2万个基因中,每个基因平均携带8个内含子。在最初将它们视为垃圾之后,研究人员最近开始确定内含子的某些功能。例如,一些基因中的内含子可能有助于控制细胞制造多少相应的蛋白质。 /p p   为了确定剥夺内含子的影响,加拿大谢布鲁克大学RNA生物学家Sherif Abou Elela和同事系统地从酵母菌中删除内含子,并产生了数百个菌株。然后,研究人员将这些改良菌株与普通真菌一起培养。 /p p   当食物缺乏时,大多数缺乏内含子的菌株很快就死掉了,研究小组近日在《自然》上报道称,它们无法与普通酵母竞争。然而,在营养更丰富的培养基中,经过改造的酵母具有优势。Abou Elela说:“如果你处于好时期,内含子是一种负担。但在逆境中,它是有益的。” /p p   麻省理工学院分子生物学家David Bartel和同事也独立研究出了类似的结果。他们测量了酵母细胞中不同RNA分子的数量,同时注意到,在“拥挤”的培养基中生长的酵母积累了大量内含子。相关论文刊登于《自然》。 /p
  • 高内涵中标盘点:国产缺席,瑞孚迪、美谷分子份额超70%
    高内涵细胞成像分析系统由高速显微镜成像、图像分析、数据管理三个部分组成。分析系统在保持活细胞结构和功能完整性的前提下,可以在亚显微形态下同时检测不同条件对细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导等方面的影响,从单一实验中获取大量相关信息,确定其生物活性和潜在毒性,被广泛应用于药物筛选、细胞生物学和生物医学等研究领域。仪器信息网对2022-2023年高内涵细胞成像分析系统招中标信息进行统计,以期窥探中国高内涵细胞成像分析系统的市场现状。自2022年1月1日至2023年11月27日,笔者共统计到高内涵细胞成像分析系统中标数量为143台,中标金额达4.61亿余元。时间数量(台)金额(人民币:元)2022年1-12月832658176802023年1-11月60195318613.6(注:本文搜集信息来源于网络公开招投标平台,工业领域尤其生物制药企业很少走招中标,不完全统计分析仅供参考)“贴息贷款”显成效,稳中有升是趋势从近两年的中标数据来看,2022年1月-9月,市场需求较为平缓,单月中标数量最大不超过8台。2022年10月-2023年1月出现了高内涵细胞成像分析系统采购“狂潮”,尤其2022年12月的中标数量高达38台,成为历史新高,主要源于国家“贴息贷款”政策支持,市场需求得到极大释放,国内高校、科研院所、医院等单位纷纷采购高内涵细胞成像分析系统等高端科学仪器设备进行更新换代。进入2023年2月,国内高内涵细胞成像分析系统市场需求回归常态化,虽然11月中标数量又出现抬头趋势,但结合目前市场环境、时间等多方因素,预计2023年总体中标数量不会超过2022年。若抛开“贴息贷款”政策红利的影响,从2022年1月-9月和2023年2月-10月的中标情况来看,高内涵细胞成像分析系统的市场需求总体呈缓慢上升趋势,月平均中标数量由3.11(2022.01-09)上升到4.22(2023.02-10)。随着生命科学及制药行业进入高质量发展新阶段,作为药物筛选利器的高内涵细胞成像分析系统将迎来新一轮市场机遇和挑战。“粤京浙”需求旺盛,采购占比达46.85%聚焦高内涵细胞成像分析系统2022-2023年的中标情况,从采购地区分布来看,共涉及25个省份及直辖市。广东、北京、浙江、辽宁、上海、湖北、四川和山东的仪器采购数量≥5台,其中广东的采购量最大,分别在2022年采购了19台,以及2023年采购了8台高内涵细胞成像分析系统,其次是北京和浙江,均在两年内采购了20台仪器。粤京浙三地两年内合计采购占比达46.85%,遥遥领先国内其他地区,从整体分布来看,教育资源的集中分布在一定程度上对仪器采购有所影响。广东地区采购需求主要源自高校和科研院所,据本次统计,中科中山药物创新研究院共采购5台高内涵细胞成像分析系统,成为广东地区年度“采购大户”。另外,中山大学、广州医科大学、广州中医药大学和华南理工大学的仪器采购数量均>1。高校和医院是采购主力2022年第四季度,国家“贴息贷款”政策助力高校、医院等领域仪器设备采购需求集中释放。从采购单位分布来看,2022-2023年来自国内高校的高内涵细胞成像分析系统采购比例接近5成,其中清华大学、华中科技大学、南昌大学、东北师范大学、浙江大学和中山大学均采购2台以上。与此同时,随着高内涵成像技术在3D类器官、干细胞及神经细胞等研究领域中起到重大推进作用,医院成为了除高校外最大的采购单位,占比为28.67%。此外,科研院所、政府单位、疾控、实验中心和生物企业采购占比分别为10.49%、4.9%、2.8%、2.1%和1.4%。200-400万高内涵细胞成像分析系统表现亮眼从招标采购的高内涵细胞成像分析系统价格区间来看,价值在200-300万区间范围内的中端仪器采购数量最多,占比为30.71%;其次是300-400万的高内涵细胞成像分析系统,采购数量为37台,占比为26.43%;然而价值超过500万的高端产品采购需求较弱,采购占比仅为15%。一方面是受限于采购单位的经费支出,另一方面则是大部分用户对于高内涵细胞成像分析系统性能要求并非十分苛刻,而中端产品恰恰能够满足多数日常实验需求,因此,价值在200-400万的中端高内涵细胞成像分析系统成为了广大用户心目中最佳选择。Revvity和Molecular Devices领衔市场,占比超70%在品牌分析中,本次共统计到10个高内涵细胞成像分析系统品牌,包括Revvity(瑞孚迪,美国)、Molecular Devices(美谷分子,美国)、Thermo Fisher Scientific(赛默飞,美国)、Agilent(安捷伦,美国)、YOKOGAWA(横河电机,日本)、Olympus(奥林巴斯,日本)、ZEISS(蔡司,德国)、Andor(牛津仪器,英国)、Nikon(尼康,日本)和Axion BioSystems(美国),全部为进口品牌,国产品牌仍属于空白状态。从2022年中标金额来看,Revvity和Molecular Devices两家品牌占据大部分市场份额,在市场中占据绝对优势,其中标金额占比分别为41.56%和31.29%。其次是Thermo Fisher Scientific,凭借6.04%市场占有率排名第三,Olympus和Agilent则分别为第四、五名。此外,Nikon、ZEISS和Axion BioSystems等品牌也存在一定的竞争力。从2023年中标金额来看,市场格局几乎没有改变。Revvity和Molecular Devices仍牢牢占据七成以上的市场份额,Thermo Fisher Scientific和Agilent的市场排名继续保持第三和第五,而YOKOGAWA凭借2023年亮眼的业绩表现取得了第四名的良好成绩,其市场占有率为4.5%。根据2022-2023年各主要中标品牌和型号的数据信息,仪器信息网也同时绘制了近两年我国招投标市场“出镜率”较高的高内涵细胞成像分析系统明星仪器型号,榜单如下:2022-2023年高内涵细胞成像分析系统中标市场明星仪器榜序号品牌仪器型号1RevvityOperetta CLS2Molecular DevicesImageXpress Micro Confocal3RevvityOpera Phenix Plus4Molecular DevicesImageXpress Confocal HT.ai5Molecular DevicesImageXpress Pico6Thermo Fisher ScientificCellInsight CX7 LZR PRO7OlympusIXplore SpinSR8AgilentBioTek Cytation C109AgilentBioTek Cytation 510NikonBioPipeline Live11ZEISSAxio Vert.A112Thermo Fisher ScientificCellInsight CX513YOKOGAWACellVoyager CV800014AndorDragonfly CR-DFLY-202-4015Axion BioSystemsCyto smart Omni以上,是仪器信息网为大家搜集整理的2022-2023年高内涵细胞成像分析系统中标盘点的相关内容,更多仪器,请点击进入“高内涵细胞成像分析系统”专场。为帮助用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术”主题约稿活动。欢迎大家投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • Nature Methods:冷冻电镜解析高分辨率RNA结构
    作为强大的结构解析工具,冷冻电镜在解析蛋白质结构中具有超强能力。RNA作为另外一种生物大分子,在生命活动中发挥着与蛋白质同等关键的作用,解析它们的三维结构也是科学家们持久探索的问题。但RNA由于分子量小,柔性大等因素,无论是依靠冷冻电镜还是其他结构解析手段,这一目的在往日很难实现。近日,哈佛大学廖茂富博士和尹鹏博士合作,利用ROCK技术改造RNA,赋能冷冻电镜技术,解析了多种RNA的高分辨结构,进一步扩展了冷冻电镜技术的应用场景,也为揭示RNA参与的生命活动,以及围绕RNA的药物开发,打开了全新局面。作为遗传分子DNA的姊妹,RNA支持着我们生活的世界。进化生物学家曾提出假设,认为在DNA和它所编码的蛋白质出现之前,RNA就已经存在并具有自我复制功能。而现代科学发现,只有不到3%的人类基因组被转录成信使RNA(mRNA)分子,并在后续被翻译成蛋白质。相比之下,82%的基因组被转录成具有其他未知功能的RNA分子。为了了解单个RNA分子的功能,在原子和分子键的层面上对其三维结构进行解析是极其必要的。通过对DNA和蛋白质分子进行结晶处理,研究人员已经可以通过X射线晶体学方法或核磁共振方法进行常规的结构研究。然而,由于RNA的分子构成和结构柔性特点,它们往往难以结晶,因此这些需要结晶的方法并不适用于解析RNA分子的结构。 近日,哈佛大学韦斯生物启发工程研究所(Wyss)的尹鹏博士和哈佛大学医学院(HMS)的廖茂富博士合作完成了一项研究,报告了一种对RNA分子进行结构研究的新技术"ROCK"。该技术可以将多个相同的RNA分子组装成一个高度组织化的结构,大大降低单个RNA分子的灵活性,并使其分子量成倍增加。应用于具有不同大小和功能的知名模型RNA作为基准,该团队表明ROCK技术能够将冷冻电镜 (cryo-EM) 方法应用在包含RNA亚基的生物大分子的结构解析上。他们的研究结果发表在《自然-方法》上。 与廖茂富博士一起领导这项研究的尹鹏博士说:「ROCK技术正在打破目前针对RNA进行结构研究的限制,使RNA分子的近原子级分辨率结构得以揭示,这一过程往往难以甚至无法用传统的方法实现。我们期望这一进展能为基础研究和药物开发的许多领域注入活力,包括正在蓬勃发展的RNA疗法。」获得对RNA的控制权 尹鹏博士的研究团队开发了多种方法,包括DNA砖块和DNA折纸术,这些方法使DNA和RNA分子能够根据不同的规则和需求进行自我组装,从而形成超大分子。他们假设,这种策略也能够将自然存在的RNA分子组装成高度有序的环形复合物,通过将特定分子连接在一起的方式,对柔性进行限制。许多RNA以复杂但可预测的方式折叠,在小片段之间进行碱基配对交互。其结果往往会将稳定的 "核心 "和 "茎环 "向圆环外侧凸出。 在ROCK技术(通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)中,目的RNA被设计成通过吻式发夹序列(红色)自组装成一个封闭的同源环,这些序列定位在在功能非必要的外周螺旋上(蓝色)。在确定了可编辑的非必要外周螺旋后,连接吻式发夹模体和目的RNA核心的螺旋的长度被计算优化。带有目的RNA的多个单独亚基的RNA构建体被转录、组装,通过凝胶电泳纯化,并通过冷冻电镜进行结构解析。 「在我们的方法中,我们构建了吻式发夹,可以将同一RNA两个拷贝的不同外围茎环连接起来,使之形成一个整体稳定的环,其中包含了目的RNA的多个拷贝。我们推测,这些高阶环可以通过冷冻电镜进行高分辨率结构解析,该技术已首次成功应用于RNA分子的结构解析。」 —刘迪,第一作者 描绘稳定的RNA 在冷冻电镜方法中,许多生物大分子的单一颗粒在低温下被瞬间冻结,以阻止它们的运动。随后,在电子显微镜和计算算法的帮助下,对颗粒各个方向的二维表面投影进行比较,以重建其三维结构,实现生物大分子的可视化。彭和刘与廖和他的前研究生弗朗索瓦塞洛(François Thélot)博士合作进行了该工作,后者是该研究的另一位第一作者。廖和他的团队在冷冻电镜领域、以及对特定蛋白质形成的单颗粒的实验和计算分析中做出了重要贡献。 廖茂富说:「与传统方法相比,冷冻电镜在解析包括蛋白质、DNA和RNA在内的生物分子的高分辨率结构细节方面有很大的优势,但是大多数RNA的小分子量和高柔性使其结构难以解析。我们组装RNA多聚体的新方法同时解决了这两个问题,通过增加RNA的分子量,并降低其柔性,我们的方法为基于冷冻电镜方法解析RNA结构这一领域打开了大门。」由于整合了RNA纳米技术和冷冻电镜方法,该团队将这一复合技术命名为"ROCK" (RNA oligomerization-enabled cryo-EM via installing kissing loops, 通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)。 为了证实ROCK技术的可行性,该团队将研究聚焦于四膜虫(一种单细胞生物)的大内含子RNA和固氮弧菌(一种固氮细菌)的小内含子RNA,以及FMN核糖开关。内含子RNA是散布在新转录RNA序列中的非编码RNA序列,必须被 "剪接"出来才能形成成熟RNA。FMN核糖开关存在于一些细菌RNA中,这些细菌会参与由维生素B2衍生的黄素代谢物的生物合成。在与RNA结合后,黄素单核苷酸(FMN)将切换其三维构象,并抑制其母RNA的合成。 在对四膜虫 I 组内含子的结构解析过程中,研究人员收集了约十万张ROCK技术处理的单颗粒冷冻电镜图像,通过一系列计算分析步骤重建了其结构,整体分辨率达到了2.98Å,结构核心的分辨率达到了2.85Å。最终的模型提供了四膜虫 I 组内含子的详细视图,包括之前未知的外围结构域(以土黄色和紫色显示),它们构成了围绕核心的条带。 研究小组称,他们将四膜虫 I 组内含子组装成一个环状结构,使样品更加均匀,并能够利用组装结构的对称性来进行计算。虽然数据采集两的规模并不大,但ROCK技术的优势使研究小组能够以前所未有的分辨率解析该结构。RNA的核心结构以2.85Å的分辨率解析,揭示了核苷酸碱基和糖骨架结构的详细特征。研究小组还称如果没有ROCK技术加持,在当前的资源条件下,他们不可能做到这一点。 冷冻电镜还能够捕捉不同构象的分子。研究小组通过将ROCK方法应用于固氮弧菌内含子RNA和FMN核糖开关结构解析中,确定了固氮弧菌内含子在其自我剪切过程中的不同构象,揭示了FMN核糖开关配体结合部位的相对刚性的构象。 这项研究生动演示了RNA纳米技术如何推动着其他学科的发展。将天然状态的RNA分子结构进行可视化,对理解不同细胞类型、组织和生物体的生物及病理过程产生巨大的影响,甚至能够实现新的药物开发方法。 相关文献摘要高分辨率的结构研究对于理解各种RNA的折叠和功能至关重要。在此,我们提出了一种纳米结构工程策略,利用单颗粒冷冻电镜(cryo-EM)对纯RNA结构进行高效的结构测定。即ROCK技术(通过安装吻式发夹实现RNA寡聚化的冷冻电镜技术): 将吻式发夹序列安装到RNA的非必要功能茎上,使其自组装成具有多倍分子量和降低结构柔性的同源封闭环。ROCK技术能够以2.98 Å的整体分辨率(核心部分为2.85 Å)对四膜虫 I 组内含子进行冷冻电镜三维重构,以建立完整的RNA模型,包括以前未知的外围域。ROCK技术被进一步地应用于两个较小的RNA: 固氮弧菌 I 组内含子和FMN核糖开关,揭示了前者的构象变化和后者的结合配体。ROCK技术有望大大促进冷冻电镜在RNA结构研究中的应用。评论来源:Science Dailyhttps://www.news-medical.net/news/20220503/New-method-enables-the-structural-analysis-of-RNA-molecules.aspx文献来源:Nature Methodshttps://www.nature.com/articles/s41592-022-01455-w#citeas水木未来视界丨iss. 18

内含子相关的方案

  • 重组蛋白表征——肽图分析
    肽图分析是蛋白质鉴定,特别是重组蛋白鉴定的最常用的方法。它通过酶解(一般使用胰蛋白酶)将蛋白质打碎形成肽段,然后以可重现的方式进行肽段的分离和鉴定。肽图分析是一种非常有用的方法,已成为生物技术领域中最有价值的工具之一,它能检测和监控单个氨基酸改变、氧化、去酰胺化,以及其它降解形式。它还能直接检测常见的单克隆抗体修饰变异,如 N 端环化,C 端赖氨酸处理,N- 糖基化,以及内含子表达等非预期的变异。肽图是蛋白质及其酶解产物的指纹图谱,它能提供待测蛋白质的全面信息。肽图分析包含四个主要步骤,蛋白质的分离和纯化;肽键的选择性酶切;多肽的色谱分离;多肽的分析和鉴定。对测试样品与参考标准品或对照样品进行同步的酶解和分析。肽图应该包括足够数量的肽段以进行有效的分析;它不仅要提供蛋白质鉴定所需的必要信息,还应尽可能地涵盖完整的蛋白质序列。
  • 高内涵成像分析技术在肿瘤学研究中的应用综述-Molecular Devices
    恶性肿瘤作为全球较大的公共卫生问题之一,极大地危害人类的健康,并将成为新世纪人类的第一杀手。深入研究肿瘤学的发病机制,进一步寻找有效、低毒、的新型抗肿瘤药物已是各大科研机构及药物研发企业的一项首要任务。 为满足生命科学及药物研发的快速发展,高内涵成像分析技术作为一项新技术平台,在保证自动化、高效率和高通量的前提下,结合日趋成熟的显微成像技术,以自动快速捕获包括小型模式动物、细胞及亚细胞结构的各种生物学现象,并结合专门的图像分析系统和生物信息学软件,提供全自动、高通量的图像获取及分析完全解决方案。高内涵成像分析技术为肿瘤学的研究及抗肿瘤药物的研发,提供了一个全新的、集高分辨率、智能化、自动化、海量数据为一体的高通量筛选评价平台
  • 高内涵成像技术在单抗结合检测中的应用-Molecular Devices Micro
    单抗结合检测方法的发展大大提高了细胞及免疫磁珠的高通量,高内涵分析效率。这种不用冲洗,基于荧光微孔分析技术(fluorometric microvolume assay technology, FMAT)的方法可以快速的针对更少量的细胞进行筛选,而且在传统样本检测中由于多次洗板造成的细胞损失也完全可以避免。抗体的发现在诊断疾病,研发疫苗和治疗疾病的过程中起到重要作用。研究者们利用杂交瘤细胞或者形成克隆来筛选高表达克隆株,检测细胞表面的抗体结合效率,观测抗体或配体在细胞内的内化。在传统的FMAT检测方法的已有优点之上,利用ImageXpress? Micro 宽场高内涵分析系统进行操作的单抗结合检测方法可以让科学家们在同一个平板孔中检测多种不同细胞的表面抗体结合情况。这一系统也可以将检测规模提升到1536孔板,并且只需要2-3微升的样本。即使用更低的二抗浓度,其检测范围和灵敏度也不会下降,甚至有所提高。优点:?无需冲洗的检测方法提高效率,减小浪费?应用范围广,可用于贴壁细胞,悬浮细胞及免疫磁珠?可用任何波长的荧光标记?高敏感度可检测低丰度抗原

内含子相关的论坛

  • 红杏出墙——肥胖易感基因FTO的家丑

    FTO,是脂肪含量和肥胖相关基因(fatmassandobesity-associatedgene)的简称,看名字就像个胖子:就好像肥罗,奥胖一样。人们对FTO和肥胖关系的了解,最初来源于FTO基因上的一段。人们发现,FTO基因的内含子上的一些基因变异和肥胖有关。沿着这个线索,人们在随后的研究中发现这个基因和肥胖的复杂关系。亚当用肋骨制造了夏娃,如果把FTO看成是张三的话,他的内含子上和肥胖相关的基因变异,真的可以称为是张三的贤“内”助了。然而现在张三很苦恼,别人眼中的贤内助,在他看来,不如称为贱“内”,因为她和李四似乎眉来眼去,有红杏出墙的征兆。最近人们发现,FTO内含子上的这些同肥胖相关的基因变异,不仅和FTO没有太大的关系,反倒和一个遥远的基因IRX3的表达关系更密切。IRX3和体重及脂肪组成密切相关。IRX3缺陷的小鼠的体重比对照下降20%到30%。这是怎么回事?如果用张三和李四显得有些复杂,我们可以用另一个系统:FTO是黄河,内含子上和肥胖相关的基因变异是风陵渡,IRX3则是长江。风陵渡扼的不是黄河的咽喉,反而是长江水道,这是怎么做到的呢?在地图上绝无可能,在基因表达层面却没有那么难。内含子一般被认为是负责调控所在的基因的,就像风陵渡影响黄河水势。但是基因组结构复杂,就像千回百转的河流,而且不在一个平面上进行,而是在细胞核内的空间盘绕往复,这样,FTO的黄河就和IRX3的长江在空间接近,也许FTO内含子里面的风陵渡,就因而接近了IRX3,并且影响了其走向。从分子生物学角度,这叫做long-rangeinteraction。以前,这种相互作用研究的较少,但是现在,人们对这种long-rangeinteraction越来越重视,许多复杂疾病相关的基因变异,可能都是通过这种长距作用来发挥功能。其实张三不用尴尬,最好的结局是他的老婆和李四兄妹相称,大家一起来调节肥胖,就像风尘三侠:李靖,红拂女,虬髯客一样,又或者像老顽童,瑛姑,段皇爷一样,这是皆大欢喜的场面。Nature(2014)doi:10.1038/nature13138.

  • 优化基因表达的关键因素

    在基因表达研究中,研究者比较注意选择合适的表达载体和宿主系统,而往往忽视基因本身是否与载体和宿主系统为最佳匹配这样一个实质性问题。基因的最佳化表达可以通过对基因的重新设计和合成来实现,如消除稀有密码子而利用最佳化密码子,二级结构最小化,调整GC含量等。以下就密码子最佳化、翻译终止效率和真核细胞中异源蛋白表达的问题加以说明。密码子最佳化(codon optimization)遗传密码有64种,但是绝大多数生物倾向于利用这些密码子中的一部分。那些被最频繁利用的称为最佳密码子(optimal codons),那些不被经常利用的称为稀有或利用率低的密码子(rare or low-usage codons)。实际上用做蛋白表达或生产的每种生物(包括大肠杆菌,酵母 ,哺乳动物细胞,Pichia,植物细胞和昆虫细胞)都表现出某种程度的密码子利用的差异或偏爱。大肠杆菌、酵母 、果蝇、灵长类等每种生物都有独特的8个密码子极少被利用。有趣的是,灵长类和酵母 有6个同样的利用率低的密码子。大肠杆菌、酵母 和果蝇中编码丰度高的蛋白质的基因明显避免低利用率的密码子。因此,重组蛋白的表达可能受密码子利用的影响(尤其在异源表达系统中)的事实并不很奇怪。你的基因利用的密码子可能不是你正在利用的蛋白生产系统进行高水平表达所偏爱的密码子,这种情况是可能的。利用偏爱密码子(preferred codons)并避免利用率低的或稀有的密码子可以合成基因,基因的这种重新设计叫密码子最佳化。在同源表达系统中,同较低水平表达的基因相比,较高表达的基因可能有很不同的密码子偏爱。通过对密码子利用的归类分析,人们可以真正预测任何基因在酵母 中的表达水平。在诸如Zea mays的其他生物中,大量高表达基因强烈偏爱以G或C结尾的密码子。而且,在Dictyostelium中,同低水平表达的基因比较,高表达基因有较大数目的偏爱密码子。在大肠杆菌中表达哺乳动物基因是不可预测和具有挑战的。例如直到最近才实现了人血红蛋白的过表达。为了达到血红蛋白的好的表达水平,Alpha-球蛋白cDNA不得不用大肠杆菌偏爱的密码子进行重新合成。在异源宿主中实现象血红蛋白这样复杂的蛋白质的过表达可能需要最佳化密码子,这些研究者为此提供了令人信服的资料。成簇的低利用率的密码子抑制了核糖体的运动,这是基因不能以合适水平表达的一个明显机制。核糖体翻译由九个密码子组成的信使(含几个低利用率密码子或全部为低利用率密码子)时的运动速度要比翻译不含低利用率密码子的同样长的信使的速度慢。即使低利用率密码子簇位于3'端,信使最后也会被核糖体”拥挤”而损害,核糖体又回到5'端。3'端低利用率密码子簇的抑制效应可以和全部信使都由低利用率密码子组成的抑制效应一样大。如果低利用率密码子簇位于5'端,其效应是起始核糖体数目的全面减少,导致蛋白合成中信使的低效率。散在分布的稀有密码子对翻译的效应还未很好地研究,但是有证据表明这种情况的确对翻译效率有负面效应。其他因素也可以影响蛋白表达,包括使mRNA去稳定的序列。重新设计合成基因可以去除或改变这些序列,导致高水平表达。消除稀有密码子、去除任何去稳定序列和利用最佳密码子的基因的重新设计都可能增加蛋白产量,使的蛋白生产更有效和经济。翻译终止效率蛋白表达水平受许多不同因素和过程影响。蛋白稳定性、mRNA稳定性和翻译效率在蛋白生产和积累中起主要作用。翻译过程分为起始、延伸和终止三个期。对于翻译的起始,原核mRNA需要5'端非翻译前导序列中有一段叫Shine-Dalgarno序列的特异核糖体结合序列。在真核细胞,有效的起始依赖于围绕在起始密码子ATG上下游的一段叫Kozak序列的序列。密码子利用或偏爱对延伸有深刻的影响。例如,如果mRNA有很多成簇的稀有密码子,这可能对核糖体的运动速度造成负面影响,大大减低了蛋白表达水平。翻译终止是蛋白生产必须的一步,但其对蛋白表达水平的影响还没有被研究清楚。但是最近的科学研究表明终止对蛋白表达水平有很大的影响。总的来说,更有效的翻译终止导致更好的蛋白表达。绝大多数生物都有偏爱的围绕终止密码子的序列框架。酵母 和哺乳动物偏爱的终止密码子分别是UAA和UGA。单子叶植物最常利用UGA,而昆虫和大肠杆菌倾向于用UAA。翻译终止效率可能受紧接着终止密码子的下游碱基和紧靠终止密码子的上游序列影响。在酵母 中通过改变围绕终止密码子的局部序列框架,翻译终止效率可能被减低几个100倍。对于UGA和UAA,紧接着终止密码子的下游碱基对有效终止的影响力大小次序为GU,AC;对于UAG是U、ACG。对于大肠杆菌,翻译终止效率可因终止密码子及临近的下游碱基的不同而显著不同,从80%(UAAU)到7%(UGAC)。对于UAAN和UAGN系列,终止密码子下游碱基对翻译的有效终止的影响力大小次序为UGA、C。UAG极少被大肠杆菌利用,相比UAAN和UGAN,UAG表现了有效的终止,但其后的碱基对有效终止的影响力为GU,AC。对于哺乳动物,偏爱的终止密码子为UGA,其后的碱基可以对in vivo翻译终止有8倍的影响(A、GC、U)。对于UAAN系列,in vivo终止效率可以有70倍的差别,UGAN系列为8倍。如果终止密码子附近序列没有最佳化,可能发生明显增加的翻译通读,因此减少了蛋白表达。例如,在兔网状细胞无细胞翻译系统里,UGAC的翻译通读可以高达10%,而第四个碱基如果为A,G或C,翻译通读为1%。总的来说,翻译起始框架、翻译终止序列框架和密码子利用应该仔细选择,以利于蛋白的最高水平表达。翻译终止序列框架能几倍地改变蛋白生产水平。真核细胞中的异源蛋白表达异源蛋白质在细菌中表达是目前使用的主要的蛋白生产系统。大肠杆菌一直是最经济的系统之一。然而为了生产需要特异修饰、胞外分泌或有特异折叠需要的蛋白质,其他表达系统也是需要的。真核细胞在表达原核来源的基因、真核基因的cDNA拷贝或其他无内含子的基因时可能表现很多特异问题。富含AT的基因在很多真核细胞中表达时会遭遇很剧烈的障碍。主要的真核信号序列如 加poly-A的位点、酵母 转录终止位点和真核mRNA去稳定序列都是富含AT的。内含子序列也趋向于富含AT,尽管他们有参与剪切过程的很特异的识别序列。虽然绝大多数原核基因没有剪切或聚腺苷过程,但这些真核过程需要的保守序列可能存在于原核基因中,因此当这些基因在真核细胞中表达时可能引起特异的问题。而且诸如哺乳动物和单子叶植物细胞的特异真核表达系统可能不能有效地表达无内含子的基因。 真核mRNA在离开细胞核进而在胞浆的核糖体上被翻译前需要特异的处理和修饰。这些过程包括去除内含子、5'端甲基化帽子形成和3'端加poly-A。内含子去除需要5'剪切位点、G75/G100U100A65AG65U保守序列、3'剪切位点、富含密啶NC66A100G100/G56保守序列和C72T98R77A100Y75保守序列。有效的加poly-A和mRNA剪切需要一个由两个部分组成的信号:加poly-A保守序列AAUAAA和在切割位点内的50个碱基的富含GT的序列。酵母 真核转录终止序列(几个不同的富含AT序列,如含TTTTTATA,TATATA,TACATA,TAGTAGTA的一个38bp区域)被研究的最清楚。这些结果来自对酵母 突变体CYCI mRNA的mRNA水平和相对长度的确定的实验。近期用in vivo质粒稳定性分析的研究结果证明:TATATA似乎和原始的38bp野生型区域一样有效地终止转录,而TAGATATATATGTAA和TACATA效率差些,TTTTTTTATA几乎没有效率。所有这些序列在反方向时没有终止转录功能。不幸的是几乎没有其他真核表达系统转录终止序列方面的信息。内含子对几个哺乳动物基因的正常表达是必需的,包括Beta-球蛋白、SV40 late mRNA和二氢叶酸还原酶基因。单子叶植物细胞充分表达乙醇脱氢酶的cDNA拷贝、报告基因氯霉素乙酰转移酶、Beta葡萄糖苷酸酶和其他缺乏内含子的基因时也依赖内含子。转录区域内引入内含子可以通过未确定的转录后机制增强表达。(免疫球蛋白基因)内含子可能也包含转录增强子,因此通过转录机制增强表达。 总的来讲,如果存在某些DNA序列,真核异源蛋白表达可能是个难题。为避免剧烈的表达减少,需要对基因进行扫描,确认是否含上述提及的富含AT的序列。而且,在几个真核系统表达无内含子基因可能需要引入内含子以实现外源蛋白的充分表达。

内含子相关的资料

内含子相关的仪器

  • CellInsight CX7 LZR 激光共聚焦高内涵分析平台Thermo Scientific™ CellInsight™ 高内涵筛选系统采用高分辨率成像设备,对细胞样品进行快速、自动化、高通量图片采集,运用一体化操作和分析软件,实时分析获得细胞群体的荧光强度、形态结构、时间和空间数据,综合得到生物学特征信息。CellInsight™ CX7 LZR 激光共聚焦高内涵分析平台则延续了这一创新。 高内涵分析的应用范围非常广泛,涉及肿瘤癌症、心血管疾病、免疫疾病、代谢疾病、神经退行性疾病、抗体药研发等多个领域,我们可以提供一键式细胞增殖、细胞凋亡、细胞毒分析、干细胞分化、信号通路分析、神经生长分化等分析方案。CellInsight CX7 LZR激光共聚焦高内涵分析平台拥有出众的性能,适用于细胞分析中的各种实验和细胞类型。 ? 利用激光光源进行共聚焦或三维成像,穿透厚样本? 通过缩短曝光时间并采用激光自动聚焦功能,加快图像采集速度 ? 采用785 nm激光激发近红外荧光染料,拓展您的多重分析能力? 控制激光光源强度,降低对样本的光漂白和光毒性,用于活细胞成像和分析? 具有超高的性价比的激光高内涵平台,在合理的预算下,可完成数百种不同的生物学分析? 可选配活细胞模块,精确控制温度、湿度、CO2和O2浓度,进行活细胞动态成像、运动轨迹追踪、细胞分裂观察,还可调控缺氧环境,研究细胞的氧应激? 采用4色LED和白光明场成像,实现高通量彩色免疫组化分析? 可选配自动化机械臂,开展高通量药物研发和筛选 卓越的成像性能七色激光共聚焦成像 共聚焦成像配备有7 根独立的激光器,利用高速转盘技术,可提供更强大的功能。采用双转盘多针孔技术,可实现薄样本和厚样本在不同荧光条件下的共聚焦成像。将高NA 物镜、激光照明和超灵敏CCD 照相机技术相结合,使共聚焦扫描时间缩短至少一半,成像质量显著提升。 双转盘共聚焦采用高速转盘共聚焦技术,提供40 μm和70 μm两种针孔孔径,提供适合厚样本的多色共聚焦成像,并对不同放大倍数的物镜进行优化匹配,避免非焦面信号影响,图像保真不变形。普通宽场荧光成像 可利用CellInsight CX7 LZR 平台的宽场成像性能,进行高通量的细胞水平的表型分析。利用7 色激光激发,标记更多靶点,从每个细胞中采集更多信息。相信您可以利用大尺寸芯片的制冷CCD 照相机和集成激光自动聚焦模块,在短时间内筛选更多化合物,而不会错过任何一个稀有的细胞事件。 彩色免疫组化及明场相差成像 采用彩色LED 光源进行RGB 和琥珀色照明,您可以使用经典染料 (如苏木精-伊红(H&E)) 对您的组织学样本进行彩色免疫组化检测。 您还可以结合荧光检测与明场相差成像,进行多重分析,为结果验证和相关性研究创造新的方法。图1. CellInsight CX7 LZR 激光共聚焦平台采集的图像,小鼠肾脏细胞采用DAPI和lexa Fluor™ 488小麦胚芽凝集素标记。图2. CellInsight CX7 LZR 激光共聚焦平台采集的共聚焦图像,肝细胞球体采用Hoechst™ 33342染料、钙黄绿素AM和乙啶同型二聚体标记。图3. CellInsight CX7 LZR 激光共聚焦平台采集的共聚焦图像,细胞采用DAPI、Alexa Fluor 568鬼笔环肽和Alexa Fluor™ 488二抗标记。 图4. CellInsight CX7 LZR 激光共聚焦平台采集场图像,细胞采用DAPI和Alexa Fluor™ 488鬼笔环肽荧光染料标记。 直观的软件,功能强大的分析Thermo Scientific™ HCS Studio™ 细胞分析软件是CellInsight CX7 LZR 激光共聚焦高内涵分析平台和所有Thermo Scientific™ 高内涵分析产品背后的引擎。这款直观的基于图形界面的软件可以逐个不断地采集细胞数据,直至提供达到统计学相关的分析性能的结果。您可以更快速地获得更有意义的结果,因为:? 您可以在简单的基于图标的界面中快速生成您的分析方法 ? 多个通道和多成像模式下,全自动图像采集 ? 智能采集——保证分析的细胞数达到统计学相关性要求,提高扫描速度 ? 数据实时处理,无需人工干预 ? 在数分钟内就可以完成从图像采集、获取图表结果和分析群体统计学结果的步骤 Thermo Scientific™ 高内涵筛选系统是高内涵技术的发明者,1999年生产了世界上第一台高内涵筛选系统。在近20年的发展历程中,拥有很多相关技术专利,全球超过1000台装机量,发表高质量科技文献超过1000篇。与国际知名研究院所、跨国制药企业保持长期良好的合作关系,共同致力于创新开发细胞高内涵检测方法。从细胞培养、成像检测、定量分析到数据挖掘整个工作流程。
    留言咨询
  • Thermo Scientific CellInsight CX5高内涵分析系统Thermo Scientific™ CellInsight™ CX5高内涵分析系统体积小巧但功能强大,可以将自动化定量细胞分析带到每个细胞生物学或筛选实验室。采用CellInsight CX5系统,可对单个细胞进行多达五种荧光颜色的分析,为您的细胞研究带来变革。在一次实验中同时得到成像和定量结果,并且该结果具有统计学意义。从定性到定量的飞跃Thermo Scientific™ CellInsight™ CX5最具代表性的飞跃是将以往传统检测手段对生物学现象主观的定性描述带入客观的定量体系中。对各种细胞实验分析,对生物学变化的图像采集仅仅是Thermo Scientific™ CellInsight™ CX5的工作基础,其强大而独特之处在于利用配套的Thermo Scientific™ HCS Studio™ 细胞分析软件中预设的复杂而精确的算法对图像的细微之处进行面面俱到的分析,而得出数以百种的图像参数,用于反应某一特定的生物学现象。Thermo Scientific™ CellInsight™ CX5遵循以下工作流程:1)记录单个细胞的多个靶点在形态、数量和空间分布上的变化;2)根据记录的变化差异将细胞群体中的每个细胞进行独立划分亚群;3)对归于同一亚群的细胞独立给出考评指标;4)以系统生物学的研究方法论进行信息学统计,回归生物学宏观的表型现象和微观内部作用机制;5)快速得出客观具有统计学意义的生物学结论。功能强大的软件Thermo Scientific™ HCS Studio™ 细胞分析软件提供了简单的工作流程,帮助您开发并优化分析,且不丢失关键功能。在预设的30多种分析模块基础上,利用简单直接的任务导向方法进行图像算法开发,新用户可以立即高效地完成分析,并根据细胞系和特定的表型进行优化。设计更复杂的实验分析时,HCS Studio细胞分析软件可以实现无缝扩展,提供各种算法、可视化和在线帮助工具,降低模型开发的复杂度并缩短时间,让您从头开始构建自己的分析,通过即时反馈掌控数百种方案。HCS Studio细胞分析软件包括30多种一键式分析,可为您提供智能的默认选项,使您快速地接近所需要的实验答案。丰富的预设应用分析借助强大的Thermo Scientific™ HCS Studio™ 细胞分析软件,您可以在CellInsight™ CX5平台上开展多学科的细胞生物分析,涵盖肿瘤学、免疫学、毒理学、药学、神经生物学、组织学等领域。以下列举了部分实验类型:? 细胞健康和毒性:细胞坏死、细胞凋亡、细胞自噬、内质网应激、细胞器健康、氧化应激、基因毒性、肝脏毒性、神经毒性等;? 肿瘤学:细胞粘附、细胞周期、细胞增殖、细胞形态变化、细胞伸展、细胞存活、克隆形成、血管生产、细胞迁移、趋化实验、细胞侵袭等;? 信号通路:靶点共定位、细胞骨架重排、DNA复制、受体内吞、离子通道、微核形成、激酶活性、有丝分裂、细胞计数、核质转位、质膜转位、受体激活、钙平衡、转录因子研究等;? 其它应用:神经突触生成、iPS、干细胞分化和增殖、组织切片、病毒感染、线虫、斑马鱼、肌管分析、3D培养检测等。
    留言咨询
  • CellInsight CX7高内涵细胞分析和筛选平台Thermo Scientific™ Cellinsight™ CX7高容量分析平台是一款集成式台式仪器,综合自动化细胞显微成像和形态学大数据分析多种技术,能满足大部分实验室研究和药物筛选要求。可以结合任意一种成像模式——明场、宽场和共聚焦 ——从您的样本中提取所需的生物学信息。各种成像模式均可应用专利的激光自动聚焦技术,实现快速且可重复的读取,即便是在样本孔零散分布的情况下。全方位整合式共聚焦成像,提高了厚样本的分辨率7通道荧光和5通道彩色明场成像全自动化和激光自动聚焦,适合高通量自动化图像采集和定量分析集成软件,优化的应用方案采用LED光源进行彩色明场成像,对组织样本进行形态学分析。此外,您还可以使用经典的多重分析染料,如苏木精-伊红 (H&E) 及荧光探针,为组织切片的数据相关性提供新的可能。对于共聚焦成像,双转盘模式,提供了适合厚组织样本和3D基质的清晰成像。宽场成像模式使用与共聚焦相同的光源——7色固态LED光引擎,可提供广泛的激发光谱,最大程度地提高了多重分析的性能。低温制冷科研级CCD照相机可在各种成像模式下提供高灵敏度和分辨率。缩短了通道切换时间,最大程度减少了光强度波动,有助于缩短扫描时间,并提升定量性能。操作十分简单:Cellinsight CX7平台可以采用自动化机械手操作的筛选反应板,或者您可以自己上样。高效分析HCS数据HCS要真正达到易操作,必须满足初学者的要求,同时不影响经验丰富的用户常用的功能。Thermo Scientific™ HCS Studio™ 细胞分析软件提供了基于图标的操作指南,利用反应板图和注释工具设置分析并高效管理您的实验设计。新用户有超过30种现成的分析可供选择,可以通过优化满足特定的细胞系或表型要求。您可以使用直观的图标,轻松选择分析和优化的实验方案,确认设置,并开始收集过程数据,如: 细胞凋亡 自噬 细胞周期 DNA损伤 浸润 运动 肌管形成 神经轴突生长 突触发生经验丰富的用户可以使用灵活的软件工具从头开始构建自己的分析。他们可以通过即时反馈掌控数百种方案,包括: 背景校正 目标分割 点/颗粒检测 ROI感兴趣的区域 检测灵敏度 特殊图像格式 图像对比度 表型阈值设置对于进行自定义分析的研究人员而言,获得结果的时间是一项关键衡量标准。越快获得结果,就可以越快速地做出决策,调整参数,评价结果或重复实验。HCS Studio软件用户可以快速发现提供数据实时处理的智能软件的优势,只需采集需要的数据即可生成具有统计学意义的结果。对于诸如检测96孔板中的神经轴突生长等分析,Cellinsight CX7平台可以在4分钟内读取反应板并报告结果。此外,HCS Studio软件的分析性能工具可使您根据多个检测标准测量分析性能,并选择能提供最佳Z-prime结果的参数。分析结束时,您可以直接使用结果,无需汇集数据并进行离线处理。
    留言咨询

内含子相关的耗材

内含子相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制