锂离子

仪器信息网锂离子专题为您整合锂离子相关的最新文章,在锂离子专题,您不仅可以免费浏览锂离子的资讯, 同时您还可以浏览锂离子的相关资料、解决方案,参与社区锂离子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

锂离子相关的资讯

  • 赛默飞离子色谱助力锂离子电池品质提升
    赛默飞离子色谱助力锂离子电池品质提升关注我们,更多干货和惊喜好礼您是否留意到,有一样东西,没有它就没有智能手机和平板电脑,没有它也没有重生的苹果及现在的小米,没有它您也享受不到微信带来的各种便利,当然您更不能坐在舒适、安静及环保的新能源汽车里环游世界,这都是锂电池的功劳。不管您是生活在繁华的大都市还是宁静的小乡村,它影响着我们工作和生活的方方面面。锂电池是1912年由Gilbert N. Lewis早提出并研究,1991年索尼公司商品化了锂离子电池,2019年诺贝尔化学奖颁给了约翰B古迪纳夫等三人,以表彰他们在锂电领域做出的贡献。我国也非常重视锂电产业,近几年出台多部政策鼓励新能源汽车的发展,在政策的推动下,中国锂电产业规模迅猛增长。2018年,中国锂电产业规模约占产业规模的41%,跃居首位,且持续高速增长,据专家预测到2025年,我国锂电产业规模将超过6000亿元,市场前景广阔。锂离子电池的四大关键材料为正极、负极、电解液及隔膜,其中电解液在电池正负极之间进行离子和离子化合物的传输,它的含量和性能直接决定了电池的电导率、容量和输出电压,因此电解液中不同锂盐含量和配比直接影响电池的性能,故锂盐含量的监控就变得尤为重要。 赛默飞解决方案赛默飞Integrion高压离子色谱仪可助您轻松实现锂盐监控,若您选择小粒径柱,分析速度能让您有点小激动。 Thermo Scientific™ 图 常见6种锂盐快速分离色谱图(点击查看大图)Thermo Scientific™ Dionex™ Integrion 高压离子色谱仪图 碳酸酯溶剂在线去除系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析电解液中锂盐具有以下特点:仪器高耐压可达6000psi(PEEK材质),兼容小粒径色谱柱;分析效率高,15min内可完成常规锂盐的分析;柱容量高,分离度好,目标物之间无相互干扰,定量结果准确可靠;选配在线处理系统,兼容碳酸酯溶剂直接进样,无需担心样品水解。赛默飞离子色谱交流群飞飞Hi 老兄,新买的新能源汽车充满电放几天就没电了,咋回事呢?赛老师是电池里的杂质离子引起的“自放电”。飞飞杂质离子来自哪呢?赛老师电解液中碳酸酯和锂盐、正极和负极材料、隔膜和阻燃剂等都能引入杂质离子,即使ppb级别的杂质离子都能影响电池性能。飞飞什么手段能监控ppb级别的杂质离子呢?赛老师赛默飞家的Integrion离子色谱可以助您轻松实现ppb级别杂质离子准确定量,并且配备“只加水”特色技术,省去您配淋洗液的麻烦。图 电解液中常见杂质阴离子分离图谱(点击查看大图)图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 在线浓缩、中和、去除重金属离子及疏水性化合物系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析锂离子电池材料杂质离子特点:配备“只加水”技术,可帮您消除每次配制淋洗液的烦恼;多步高压梯度,多组分同时分析时,可兼顾分离度及分析效率;OH体系灵敏度优于碳酸体系,适用于痕量杂质分析;淋洗液和再生液通道完全隔离的微膜抑制器,无交叉污染;可满足电解液碳酸酯溶剂及锂盐、正极和负极材料、隔膜、阻燃剂及粘胶中ppb级别杂质离子监控;可满足标准GB/T 24533-2019及GB/T 18282-2014的要求;选配在线处理系统,实现样品在线浓缩、中和、去除重金属离子及疏水性化合物。赛默飞为电池研发者提供了离子与质谱联用方案,为电池充放电过程中副反应产物定性、为活性物质降解机理提供监控方案,助力研发者掌握电池内部化学变化规律,为我们提供更高性能的电池。图 六氟磷酸锂降解机理途径研究图 电解抑制器原理图(点击查看大图)图 离子色谱串联质谱(IC-MS/MS)(点击查看大图) 滑动查看更多 赛默飞离子色谱与质谱联用特点:Chromeleon变色龙统一操作软件,可实现离子色谱与质谱的同时控制;联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;可助您探索电池充放电过程内部化学变化的奥妙。 总结从电解液中锂盐含量的监控,到电池材料杂质离子检测,再到电池内部物质转化的研究,赛默飞离子色谱均能为您提供优质的解决方案。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 石墨烯“织就”锂离子“梦幻华服”
    p style=" text-indent: 2em " 如果说那薄如蝉翼、六角网格纹路质地的材料是巧夺天工的织锦,那么这位八零后的女科学家就是一位新锐的时尚设计师,她以新潮的艺术思维、灵巧的双手把“织锦”幻化成“梦幻华服”。她就是中国科学院金属研究所博士、北京圣盟科技有限公司首席科学家赵金平。而她和团队制作“梦幻华服”的“织锦”就是被称作“新材料之王”的石墨烯。 /p p style=" text-indent: 2em " 7月16日上午,在北京科技会堂,赵金平向汇聚于此的业内专家展示、讲解自己和团队取得的一项重大突破:石墨烯包裹改性锂离子电池正、负极材料技术。该技术形象地说就是给锂离子电极材料“量体裁衣”,从而大幅提升电池性能。 /p p style=" text-indent: 2em " ①独创两套包覆法 /p p style=" text-indent: 2em " 规模化试产成功 /p p style=" text-indent: 2em " 通过现场展示的放大5万倍的扫描电镜图,赵博士娓娓讲述着石墨烯“梦幻华服”特有的科技之美:“如此图所示,石墨烯非常均匀地包覆在三元材料锂离子表面,不仅不会破坏被包覆的三元材料,而且形成了更加稳定的结构。” /p p style=" text-indent: 2em " 传统电极材料在充放电循环过程中,体积极容易增大膨出,严重时会导致粉化,极大影响电池性能。石墨烯具有超高导电性、柔性,将其包覆在电极材料表面,如同为其“穿上”了量身定制的“魔法衣”,既能增强电子转移速率,提高导电性,又能约束其体积变化,大幅提高放电容量、充放电次数等性能。 /p p style=" text-indent: 2em " 近年来,国际上研究石墨烯包覆技术的学者很多,不过大多停留在学术探讨层面,极少实现技术,更不要说实现产业化。赵金平团队正是迎着技术难题而上,通过数年持之以恒努力,在全球率先实现了石墨烯包覆电极材料尤其是三元正极材料和碳硅负极材料等的技术突破,申请数项国家专利。特别难能可贵的是,该技术投入规模化试产成功,为商业化量产奠定了基础。 /p p style=" text-indent: 2em " 对石墨烯包覆技术的秘诀,赵金平透露说,就如同给电极材料制作衣服,要“合身”“美观”,就必须量体裁衣、个性化定制,也就是说,要针对不同电极材料的结构和表面特性,制作适宜的石墨烯材料,采用相应的包覆方法。具体来说,她带领团队针对正极材料和负极材料,分别开发了“两相界面包覆法”和“液氮冷萃法”。 /p p style=" text-indent: 2em " ②性能指标大幅提升 /p p style=" text-indent: 2em " 推动提前实现能量密度2020 /p p style=" text-indent: 2em " “就放电容量而言,经过500次循环后,石墨烯包覆的三元材料和加入了添加剂的石墨烯包覆的三元材料的容量保持率分别为87.3%和98.08%,其循环稳定性比传统三元材料分别提升了40%和50.56%。经过1000次循环后,加入了添加剂的石墨烯包覆的三元材料容量保持率还能达83.87%。”赵金平对石墨烯包覆后的三原材料性能指标如数家珍。 /p p style=" text-indent: 2em " 负极材料经过石墨烯包裹后不仅循环稳定性有所提升,其容量也大幅度提高。赵金平以氧化铁材料为例介绍说,通过“液氮冷萃法”,加入添加剂后,石墨烯均匀地包裹在氧化铁表面,其容量提高67.1%,稳定性提高18.2%。最值得期待的是石墨烯包裹硅负极材料的性能表现,目前,她和团队正在做相关实验和测试,相信相关数据一定会让人特别振奋。 /p p style=" text-indent: 2em " 在认真评审后,由国家新材料产业发展专家咨询委员会委员、清华大学材料科学与工程系教授翁端,国家“千人计划”专家、中科院大连化学物理研究所研究员吴忠帅,中国国际石墨烯资源产业联盟常务副理事长阮汝祥等10人组成的专家委员会认为,“石墨烯包覆锂离子电池正、负极材料技术达到国际先进水平,同意通过科技成果评价。”该技术应用到车用动力电池上,就可望实现单体能量密度达到300瓦时/千克,而这正是《智能汽车关键技术产业化实施方案》提出的2020年车用动力电池能量密度指标。 /p p style=" text-indent: 2em " 赵金平特别指出,石墨烯包裹技术和石墨烯基电池材料优异的性能已经通过国家动力电池创新中心和风帆有限责任公司的检测,后者还出具了相关样品的检测报告。在技术专利方面,目前,赵金平团队基于石墨烯的包裹技术已申请2项国家专利,还有数项专利正在申报中。 /p p style=" text-indent: 2em " ③突破源于3个方面 /p p style=" text-indent: 2em " 领先气质诠释创新中国 /p p style=" text-indent: 2em " 石墨烯作为电子迁移率超高、热传导效应性能超好的神奇二维碳纳米材料,自2004年被发现以来,特别是其发现者因此获得2010 年度诺贝尔物理学奖以来,成为耀眼的“明星”材料,将其用于提升锂离子电池性能的研究更是不断掀起热潮。然而,教育部查新工作站发布的相关科技查新报告显示,除了赵金平团队研发成果申请的专利外,在国内外已公开发表的文献和专利中,尚未见有利用针对锂离子电池正极材料的“两相界面包覆”工艺和针对负级材料的“液氮冷萃”工艺,制备比容量大、循环稳定性好的石墨烯改性锂离子电池电极材料的报道。 /p p style=" text-indent: 2em " 赵金平团队为何能取得原创性技术突破呢?在业内专家看来,大体上在于3个方面。一是优质石墨烯供应充足。赵金平团队的研究占据了一个先天优势:所在公司北京圣盟科技是全球石墨烯制备的领先企业,可以为技术开发提供高品质石墨烯支持,而这正是取得突破至关重要的基础条件。否则,以品质不高的石墨烯或者石墨粉投入科研,取得突破是难以想象的。二是长期的技术积累和不怕困难的拼搏精神。赵金平和团队在石墨烯科研领域耕耘了近10年,相关包覆技术创新是长期摸索的必然。迎难而上、苦心钻研的拼搏是成功的必备条件。在实验中,由于三元材料颗粒较大,石墨烯包裹困难,她带领团队硬是攻关了近一年半,锲而不舍,不断尝试,终获成功。三是中国石墨烯科研实力居前,引领世界。据《经济日报》今年年初报道,中国是石墨烯研究和应用开发最为活跃的国家之一,在全球石墨烯专利中,近六成来自中国。正是国内良好的石墨烯科技创新环境和氛围,培养造就了赵金平团队勇于创新的精神和能力。  /p
  • 浅谈现有锂离子电池检测标准
    p   由于安全问题而发生锂离子电池产品召回的案例日益增多。Li+的活性和高能量密度的特性,会给锂离子电池安全性带来较大的问题。目前,对锂离子电池的安全性能,尤其是一些潜在的微小结构缺陷所带来的安全隐患的筛查,检验方法和标准落后于锂离子电池技术的发展,评价方法和评价体系尚未适应锂离子电池安全性能评估的要求。有鉴于此,本文作者对国内外现有的一些具有代表性的标准进行了归纳和分析,以期为检测技术的发展提供参考。 /p p    strong 1 电池安全性能检测标准简介 /strong /p p   目前,应用得较为广泛的国际标准是国际电工委员会(IEC)的锂离子电池标准。根据各自的需求,国际航空运输协会(IATA)、联合国危险货物运输专家委员会及国际民用航空组织(ICAO)等机构,也制定了相关的锂离子电池运输安全标准,并得到广泛应用。此外,一些国家及组织,如美国保险商实验室(UL)、美国电气及电子工程师学会(IEEE)和日本国家标准局(JIS)制定的关于锂离子电池的安全标准,也有广泛的影响。这些标准的检测项目相似,但是测试的条件有所不同。 /p p   应用较多、影响范围较广泛的国际标准有4个。联合国《联合国危险物品运输试验和标准手册》(UN38.3) /p p   和IEC62281:2012《运输中锂原电池和电池组及锂蓄电池和电池组的安全》均侧重于锂离子电池在运输中的安全测试和安全要求,主要针对锂离子电池在运输过程中的外部环境及机械振动进行模拟,试验项目包括高度模拟、温度试验、振动、冲击、外短路、撞击、过度充电和强制放电等8项,要求电池在测试过程中,应保证包装不脱落、不变形、无质量损失、不漏液、不泄放、不短路、不破裂、不爆炸且不着火。UL1642:2009《锂电池》适用于在产品中作电源用的一次(非充电的)和二次(可充电的)锂电池,标准的目的是减少锂电池在产品使用时着火或爆炸的危险。标准中关于电池的电性能测试,包括短路试验、不正常充电试验和强制放电试验 机械试验包括挤压试验、撞击试验、冲击试验和振动试验 环境试验包括热滥用、温度循环试验、高空模拟试验和抛射体试验等。试验要求,被测电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧,且包装不破裂。IEEE1625:2008《笔记本电脑用可充电电池标准》和IEEE1725:2006《移动电话用可充电电池标准》主要是对便携式计算机和蜂窝电话用蓄电池的设计、生产和开发建立统一的准则,主要涉及电池和电池组有关的电子、物理结构、化学成分、加工流程、质量控制及包装技术等领域。相对于其他电池标准普遍重视电池或电池组的情况,上述标准分别对电芯、电池、主机节点、电源附件、消费者和环境等几个方面进行了综合性考虑。这两项标准均侧重于设计和制造过程,针对电池后期的使用问题,尤其是安全性问题涉及不多。 /p p   目前,国内外常用的锂离子电池标准列表归纳于表1。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34f9e075-349d-4134-93b8-3c9ec7601566.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p    strong 2 现有标准的侧重点分析 /strong /p p   现行的主要标准可概括为以下几类: /p p    strong 2.1 主要针对运输过程中的外部环境和机械振动 /strong /p p   如UN38.3、IEC62281:2012等,通过高度模拟、温度试验、振动、冲击、外短路和撞击等测试项目,模拟锂离子电池在运输过程中可能发生的危险,对于锂离子电池在使用过程中的安全问题涉及较少。 /p p    strong 2.2 主要针对设计和制造过程 /strong /p p   如IEEE1625、IEEE1725等。以IEEE1725为例,标准将手机锂离子电池系统分为4个板块,即电芯、电池组、主机及电池充电器部分,全面明确地对电芯的设计、原材料、制造工艺和成品测试评估等进行了要求,为电芯乃至手机等通信产品的安全性提供可靠评估保障。上述标准主要针对电池的设计和制造过程,对于锂离子电池后期使用中的安全问题涉及不多。且诸如此类的IEEE锂离子电池标准,由于对象为不同设备中的锂离子电池的设计和制造,针对性较强,适用范围受到一定的限制。 /p p    strong 2.3 主要针对锂离子电池电性能和安全性 /strong /p p   如UL1642、GB8897.4等,通过短路、不正常充电、强制放电试验挤压、撞击、冲击、振动、热滥用、温度循环、高空模拟试验及抛射体等测试项目,要求被测锂离子电池在试验过程中不起火、不爆炸、不漏液、不排气、不燃烧且包装不破裂。比较上述两类标准,此类标准的核心是锂离子电池的安全性,更注意温度导致的电池安全风险,但判定依据难以量化,只能用被测电池的爆炸、起火、冒烟、泄漏、破裂和变形等来区分,不利于检出可能存在潜在危险的电池。 /p p    strong 3 现有标准的不足 /strong /p p   过充过程成为了导致锂离子电池发生不安全行为的危险因素:当发生过充时,由于发生了不可逆的化学反应,电能转变成热能,导致电池温度迅速升高,从而引发一系列的化学反应。尤其是当散热性较差时,往往导致比单纯的热冲击更严重的问题,可能发生电池起火,甚至爆炸。 /p p   根据对现有主要标准的分析不难发现,现有的标准对锂离子电池安全性能的检测方法和评判依据还显得不足。这些标准中,有部分是针对锂离子电池的外部环境和设计制造过程的标准 即便是针对安全性能的标准,也缺少明确的可量化衡量的检测方法和评判体系,尤其是爆炸、起火、冒烟、泄漏、破裂和变形等判断依据,过于宽泛。 /p p   迫切需要一种针对锂离子电池热效应及电池温度变化,可定量分析并判定安全风险的检测方法。近几年,国内外研究者在不断研究更科学、高效的检测方法和手段,其中通过对于热效应及电池温度方面的研究,取得不少进展。通过检测电池的表面温度,结合电化学模型,利用量热法计算得到电池充电过程中放出的热量和热传导系数,之后建立热效应理论模型,可模拟计算电池内部的温度,进而来描述电池的热行为。人们已经建立了多种类型的热效应模型,但采取的测温手段主要是传统的热电偶测温法。热电偶操作比较复杂,且只能有限布点,不能全面地掌握样品温度分布 同时,热电偶还带有延时性,不能及时反映锂离子电池的温度变化情况,不利于建立实时温度变化曲线。 /p p   在理论研究方面,目前,人们倾向于利用理论模拟的方法体现锂离子电池的热安全性能,并设计了很多模型,通过分析热性能来计算,得到锂离子电池在不同工作环境下的温度曲线。这些理论模型的原理是通过测量锂离子电池的表面温度来评价内部温度,再与利用热电偶等方式测出的温度进行比对,一方面说明理论模型的预判性和正确性 另一方面对安全性进行评价。理论模型的建立可以使学者对于锂离子电池的热效应有较全面的认识,但对于安全性能的检测和评价却不直观。 /p p    strong 4 结束语 /strong br/ /p p   安全性能已经成为锂离子电池的一个重要指标,成为除成本因素外另一个制约锂离子电池应用的关键指标。由于锂离子电池的特性,在最初的使用阶段并不会显示出电化学行为的异常。这些潜在的缺陷给判断锂离子电池是否合格带来困难。本文作者归纳和总结了国内外常用的锂离子电池安全性能检测标准,通过分析发现,目前国内外对锂离子电池安全性的潜在风险缺乏检测方法和评判依据,未形成快速、有效的锂离子电池安全性检测方法或筛选方法。 /p p   随着消费者对锂离子电池电性能及安全性要求的日益提升,各电池制造商以及各国主管部门、行业协会等有必要对锂离子电池安全性能的检测手段进行研究,建立一套直观、快速、有效的检测方法,在现有标准体系的范围内,提高要求,进一步细化标准,明确判定依据,弥补现有锂离子电池检测标准和体系的不足,提高锂离子电池安全性能检测水平,保证锂离子电池行业的可持续发展,维护消费者在电池使用过程中的安全。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Battery Bimonthly(电池),2015,45(3),(蔡春皓,段冀渊,寿晓立,杨荣静, 中华人民共和国上海出入境检验检疫局) /i /span /p

锂离子相关的方案

锂离子相关的论坛

  • 锂离子电池

    请问哪位高人,锂离子电池电压下降过快的根本原因是什么,该怎样具体解决?

  • 【资料】(锂离子)锂电池的认识

    锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li+MnO2=LiMnO2该反应为氧化还原反应,放电。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。现在锂电池已经成为了主流。目录锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 电池的基本性能 锂离子电池的特征 锂电池的保护电路 简易充电电路 单节锂电池的应用举例 锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池 锂电池型号 锂锰电池常规型号 圆柱锂离子电池常见型号 方型锂离子电池关于乘飞机携带锂电池的规定 相关规定的条文 禁止托运的原因锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景电池的基本性能锂离子电池的特征锂电池的保护电路简易充电电路单节锂电池的应用举例锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池锂电池原理简介[/size

锂离子相关的资料

锂离子相关的仪器

  • 产品简介ZR-1630型尘埃粒子计数器是一款便携式精密粒子计数器,可实现对气体中尘埃粒子数目的检测,利用光散射原理对采样空气中粒径为0.3μm~10.0μm悬浮微粒大小和粒子数量进行测量。本仪器内置真空泵,通过流量控制技术实现28.3L/min的稳定流量;可实时采集多达6通道粒径尺寸粒子数;仪器内置HEPA过滤器,回收废气防止污染环境。主要应用于洁净室的洁净度检测、空气过滤器及滤材性能检测等相关领域。适用于洁净车间、生物实验室、药厂、检验检测机构、安全柜生产厂家等等单位进行相关测量。执行标准 GB/T 6167-2007  尘埃粒子计数器性能试验方法 JJF 1190-2008   尘埃粒子计数器校准规范 技术特点 支持6通道粒径尺寸粒子数据同时采集; 自净时间小于5分钟; 内置真空泵,稳定控制流量为28.3L/min; 标配等速采样探头; 标配温湿度采样探头; 自动记录保存各通道累计计数值; 内置HEPA过滤器; 支持U盘导出数据、打印机打印采样数据; 内置锂离子电池,可连续工作4小时以上; 7英寸触控彩屏,汉字图形化显示。
    留言咨询
  • ZR-1620型 尘埃粒子计数器1 产品简介ZR-1620型 尘埃粒子计数器是一款手持式精密粒子计数器,可实现对气体中尘埃粒子数目的检测。本仪器内置真空泵,通过流量控制技术实现2.83L/min的稳定流量;使用精密粒子计数器模块测定气体中粒子数目,实时采集6通道粒径尺寸粒子数;根据参数设置,自动记录保存采样数据,支持U盘导出数据、蓝牙打印机打印采样数据;内置HEPA过滤器,回收废气防止污染环境。适用范围:▲工厂洁净车间;▲各种洁净室;▲其它可应用的场合。2 技术特点▲支持6通道粒径尺寸粒子数据同时采集;▲自净时间小于5分钟;▲内置真空泵,稳定控制流量为2.83L/min;▲标配等速采样探头;▲标配温湿度采样探头;▲自动记录保存各通道累计计数值;▲内置HEPA过滤器;▲支持U盘导出数据、蓝牙打印机打印采样数据;▲内置锂离子电池,可连续工作3小时;▲3.5英寸触控彩屏,汉字图形化显示;3 执行标准GB/T 6167-2007  尘埃粒子计数器性能试验方法JJF 1190-2008   尘埃粒子计数器校准规范4 工作原理本仪器内置真空泵,气流以2.83L/min的稳定流量经过粒子计数器模块;由内部电路识别6通道粒径尺寸的粒子,根据仪器采样参数设置,自动记录并保存各通道粒子累计计数值;废气进入内置HEPA过滤器,回收颗粒物防止污染环境。5 工作条件▲工作电源:DC12V,2A▲环境温度:(-20~50)℃▲环境湿度:≤85%RH▲大气压力:(60~130)kPa ▲适用环境: 非防爆场合▲应有防雨、雪、尘以及日光爆晒等侵袭的措施
    留言咨询
  • ZR-E03E型便携式锂离子交直流电源是一款小巧的具备交直流输出供电功能的便携式移动电源。可同时提供DC12V和AC220V电源输出,体积小,重量轻,携带方便。适合于环境监测,应急检测,野外科学研究等活动的户外供电需求技术特点 可同时提供DC12V和AC220V电源输出,满足多种仪器供电需求; 使用高效锂离子电池组,安全可靠,体积小,重量轻,寿命长; 具有防尘,防雨功能; 采用微电脑控制,具有充放电时间、功率、电量等显示功能; 交流采用纯正弦波输出,性能好,干扰少; 具备短路、过载、过温、欠压等保护功能。主要参数主要参数参数范围额定容量10.8V,35.7Ah直流输出电压9~12.6V交流输出电压AC220V主机尺寸(长206×宽149×高266)mm主机重量约 4.5kg
    留言咨询

锂离子相关的耗材

  • 安捷伦 1420-0523电池,3V,0.5A,锂离子
    维修部件部件号 :1420-0523Battery, 3 V, 0.5 A, Lithium ion, mainboard,used with series 6890 gas chromatography systems电池,3V,0.5A,锂离子,主板,与6890系列气相色谱系统一起使用
  • 安捷伦 5190-3192用于封盖器的备用锂离子电池
    封盖器、启盖器和附件部件号 :5190-3192用于封盖器的备用锂离子电池封盖和启盖工具电子封盖器和启盖器安捷伦电子手持封盖器旨在取代费力的手动封盖器,能够完成每一次紧密可重现的密封。可调节的超薄钢钳夹紧密贴合顶空瓶,使用户能够在拥挤的自动进样盘上直接对顶空瓶进行封盖。安捷伦的电子启盖器采用和封盖器相同的手持式设计,可以直接取下瓶盖,旨在为实验室回收或再利用样品瓶。• 每次充电可以完成更多的样品瓶封盖——新型锂电池时间延长三倍• 提高封盖速度——新型号动力增强50%(6.4 伏电池)• 更省力——重量轻意味着省力• 改进电源指示信号——当电池需要充电时清楚地显示• 左右手均可轻松使用——顶端显示更易查看• 充电更有效——充电时不会过热• 提高效率——显著延长马达寿命
  • 美国TSI 9306 AeroTrak 手持式粒子计数器
    美国TSI 9306 AeroTrak 手持式粒子计数器,产品详情,办事处,代理TSI AeroTrak? 9306 型手持式粒子计数器向对多功能手持式粒子污染监测感兴趣的客户提供了最多的功能和最大的灵活性。9306 型的特点是采用配有拇指控制按钮的人体工程学手柄,便于单手操作。3.6 英寸(9.1 厘米)彩色触摸屏界面使之易于配置和操作。9306 型可生成 ISO 14644-1、欧盟 GMP 附录 1及 FS209E 符合性报告。内存可存储多达一万个粒子计数数据的样本报告,并且可方便地在屏幕上查看、使用 TrakPro? LITE 软件下载或直接使用可选外部打印机打印报告。美国TSI 9306 AeroTrak 手持式粒子计数器,特点和优势,操作规格符合 ISO 21501-4 标准中所有要求0.3 至 25 μm 粒径范围0.1 CFM (2.83 L/min) 流速可同时检测多达六个通道的粒子数据9306-V2 型提供独特的通道粒径可调功能综合手柄,适于单手操作可拆解、可充电锂离子电池长寿命激光二极管USB 和以太网输出一万个样本记录存储,250 个位置通过 Web 浏览器进行本地或远程配置可生成 ISO 14644-1、欧盟 GMP 和 FS209E 符合性报告兼容 TrakPro? Lite 和 FMS 5 软件包提供可选温度/相对湿度 (RH) 传感器美国TSI 9306 AeroTrak 手持式粒子计数器,特点和优势,应用范围向下追踪粒子污染源分类无尘区查找过滤器泄漏进行 IAQ 调研
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制