投资预测

仪器信息网投资预测专题为您整合投资预测相关的最新文章,在投资预测专题,您不仅可以免费浏览投资预测的资讯, 同时您还可以浏览投资预测的相关资料、解决方案,参与社区投资预测话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

投资预测相关的资讯

  • 2014年全球研发经费预测 中国2022年超美国
    1 全球研发投入预测   根据《巴特尔》(Battelle)和《研发杂志》(R&D Magazine)的分析,2014年,全球研发支出预计增长3.8%(约600亿美元),增长至1.6亿亿美元。经历2013年研发支出上的平稳状态之后,估计美国支出将温和增长,而预计中国在研发投入上继续保持增长势头。   2014年研发投入模式没有显著改变,但是正发生区域性改变。亚洲占全球研发投入的比例继续增加,以中国、日本和朝鲜为主要代表国,而美国和欧洲研发投入比例呈现下降趋势。根据目前的研发投入增加趋势,中国的研发总投入将于2022年超越美国。   2 美国的研发投入预测   美国仍然是世界最大的研发投资者,通过高研究水平保持世界竞争力。此次预测认为美国将在研发方面投资其GDP总量的2.8%。美国的研究活力估计能增加3.2%,2014年的投资额度达4 650亿美元。这一影响巨大,将促使研发领域雇佣270多万美国人,并间接提供600万个就业岗位,这对美国经济而言影响也是很大的。   不过该展望具有一定程度的不确定性,因为联邦预算立法途径可能发生改变,不过增长是必然结果,此次报告认为投入增长的原因包括:普遍认为研发既有短期经济效应,也有长期经济回报 当其他国家加大研发投入奋起直追的时候,加大研发投入有助于维持美国在某一时期通过创新保持竞争力 两党都公开表示支持研发方面的公共资助。   对联邦政府的展望。美国联邦政府将在2014年资助研发1 230亿美元,增长幅度为1.5%,其中大部分资金分配给那些促进基础研究的部门,包括NIH(美国国立卫生研究院)、NSF(美国国家科学基金会)、美国能源部科学办公室(Department of Energy&rsquo s Office of Science)。   对产业界的展望。美国产业界对研发的资助预计比2013年有所回升,2014年将达3 075亿美元,增长幅度达4%。尽管许多私营公司和一些产业在2013年投入增加,不过整个产业界2013年的研发投入趋向平稳,主要由于全球经济发展放缓,一些特定产业的研发活动持续合理化,以及联邦政府预算搁置对私营业产生了影响。那些为联邦政府提供支持力的产业部门,特别是航空航天、国防和安保也受到影响,资助下降,不确定性增加。税收的影响使得许多公司抑制内部研发活力,且这一谨慎战略2014年将继续。   对学术界的展望。美国学术方面的研发投入将增加2.2%,达629亿美元。   3 从不同产业预测研发投入   生命科学:生物制药领域的支出占整个生命科学产业界(包括医疗器械、动物/农业生物科学和商业化的生命科学研究和测试行业)总支出的85%。全球产业界预计将从2013年的平稳状态中有所恢复,增加至2014年的2 010亿美元,增长幅度达3.1%。其中美国,将有小幅回升,幅度在2.2%,增加投入至930亿美元,而增长主要因为小型生物制药研发公司和医疗器械制造业的投入的增长。来年存在一个比较复杂的因素,就是&ldquo 负担得起的医疗保健法案&rdquo ,这将导致不确定性,或可能由于人们在医疗保健方面的支出形成新的市场。   信息与沟通技术:这一产业的投入是美国私营部门最大的研发投入者,大概占总投入的1/3,预计在2014年达1 460亿美元,增长幅度在5.4%。美国的公司在世界仍占据主导地位,研发投入约占全世界研发支出的一半甚至更多,2014年达2 570亿美元。云计算和相关技术将仍然是未来一段时间的主要研发点。   航空航天、国防和安保:经济和政策氛围暗示2014年将有小幅下调,预计缩减1.2%,达126亿美元。不过全球产业界的研发投入仍然保持稳定,主要因为非美国的航空公司,例如亚洲、俄国和欧洲的航空公司增加,2014年的投入将达264亿美元。   能源:美国的能源公司的研发投入水平将有所增加,达70亿美元,增幅为1.7%,全球增幅达4.8%,接近220亿美元。生物燃料将是最有发展前景的领域,尽管目前该产业仍然面临挑战,例如很难形成具有市场竞争力的产品。   化学和先进燃料:预测化学和先进燃料产业方面的增长趋势,基本上依赖全球经济的改善情况和这些产业所服务的市场需求情况。预计2014年美国将增加3.6%,达120亿美元,尽管全球研发投入预计增加4.7%,达450亿美元。   4 评论   Battelle的研究领导人员Martin Grueber认为,此次报告谨慎且乐观的认为美国的研发资助将在2013年平稳态势中有所改善,而这一改善将主要由于私营领域在研发上的投资增加而导致,而联邦资助预测起来难度增加,因为此前规定的预算步骤存在不确定性。   本文作者:中国科学院上海生命科学信息中心 游文娟
  • 通过DNA预测人类的样貌和声音
    p   这个月初,被认为是 21 世纪最著名的科学家之一的 J.Craig Venter 博士在华盛顿州立大学发表了演讲。如果你不知道他是谁的话,我们首先来介绍一下:他是第一个研究人造生命体的人,并且成功说服了政府在人类基因组序列项目 上投资 1 亿美元。 strong 在演讲期间,Venter 博士提到了他和他的同事们正在进行的一个激动人心的研究项目——用 DNA 预测人类的样貌和声音。这项研究被称为 Biological teleportation(生物传送),主要利用 3D 打印技术将生物传送到地球和火星等任何地方。 /strong br/ /p p   在长达一个小时的演讲过程中,Venter 博士表示,这项最具开创性的项目已经获得了许多个奖项,它能够通过某一个人的 DNA 精细的预测出他长什么样子,甚至是他的声音。 /p p   Venter 博士和他的同事们已经发现了一种方法来分离那些决定我们外貌的基因,这是该研究最关键的部分。Vernter 博士表示:“经过对数千人的基因样本进行测试,并且和志愿者脸型的 3D 模型进行对比之后,我们终于找到了这些基因。” /p p   目前,Venter 博士的研究团队已经可以成功预测人类眼睛的颜色,甚至比人们自己描述的还要准确,其原因在于,人类的左右眼之间的差别在 80% 左右,但是很多人没有意识到这一点。他补充道:“用你的基因组来预测你的样子,这是完全符合逻辑的。” /p p   Venter 博士在演讲中称:“从理论上来说,这样的研究是很科学的,只是我们没有想到这项技术从理论到现实只有这么短的一段时间。就我个人而言,我甚至没有想到它的结果会那么精确。” /p p   人的面部特征可能是由成百上千的基因形成的,每一个基因的影响都很小。相对来说,头发、眼睛、皮肤颜色和种族等特性都比较容易确定,但是跟高度和面型等遗传特性有关的基因分布非常散乱,如果 Venter 博士能够成功闯过这一关,那他真是太牛 X 了。 /p p   如果这项技术的预测精度真的那么高的话,那么人类可能会迎来一个疯狂的时代。每个人一出生就可以建立一个属于自己的基因数据库,所有的信息都包含在里面。 /p p   不过,根据 Venter 博士的描述,通过 DNA 预测声音的难度要相对高一些。就目前而言,他们已经可以从人类声音的数字记录中区分性别,并且预测该目标的年龄,甚至还可以通过从录音中预测出他的身高。此外,研究人员还找到了声音和脸部形状之间的关系。 /p
  • 红外光谱全球市场预测 便携仪器增长速度最快
    Research and Markets发布的最新研究报告显示,预计红外光谱市场将在2022年达到12.6亿美元,2016年至2022年之间复合年增长率为6.5%。  红外光谱广泛应用于生物、制药、化学、食品饮料、环境、半导体等不同的领域,其中预计生物领域的复合年增长率最高。美国、德国、英国、意大利等国家在生物技术和制药工业方面的发展与进步将推动该行业的增长。  预测期内,预计便携红外的市场增长速度将高于其他类型的红外光谱仪,这个市场的增长主要是由于便携式光谱仪具有很多优势,如工作流程的改善、空间需求的减小、维护更加简单等。市场中常见的便携红外主要是傅里叶变换原理的,称为便携FT-IR。不过,2015年,台式谱仪占据最大的市场份额。  2015年,北美占据红外光谱最大的市场份额。预计,预测期内北美市场将主导红外光谱仪全球市场。政府在科研方面的投资增加,更加严格的药品管理法规和越来越多的食品安全问题是红外光谱北美市场增长的主要驱动因素 而亚太区预计市场增长速度最高。

投资预测相关的方案

投资预测相关的论坛

  • 【分享】2008年3月液制品行业发展预测与投资分析报告

    2008年3月液制品行业发展预测与投资分析报告,大家看看!!!!!![em0814][em0814][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=116767]2008年3月液制品行业发展预测与投资分析报告[/url]

投资预测相关的资料

投资预测相关的仪器

  • Thermo Scientific Prima PRO和Sentinel PRO:开启质谱新时代依托超过 30年在线质谱仪的成功研发应用经验,新一代 Thermo Scientific Prima PRO和Sentinel PRO在线质谱仪可从容应对石油化工应用的众多挑战,其中包括: 天然气处理 烯烃生产 裂解炉优化 环氧乙烷 /乙二醇 聚烯烃生产 合成氨 有毒挥发性有机化合物(VOC)的泄漏 凭借着经实践证明的更快、更全面的在线气体成分分析能力,Prima PRO可以对多流路气体进行精确分析,进而提高产量。它维护量少、易于操作并且可提供可靠、实时的数据到 DCS系统,从而确保投资回报率。基于和Prima PRO相同的操作平台, Sentinel PRO环境质谱仪以其众多同样的优势,被设计用于满足微量泄漏环境监测的需要。半连续监测 60-120个取样点及高灵敏度的检测能力,确保可靠的泄漏检测,从而提高生产装置的安全性和生产制度的规范性。此外,单台 Sentinel PRO或 Prima PRO可以轻松取代多台气相色谱仪(GC),减少取样时间,简化维护程序,更重要的是降低整体投资成本。操作原理Prima PRO、Sentinel PRO进行稳定、快速气体分析首选技术的基础是扫描磁扇质谱技术。利用这种技术,气体可以通过一个多流路进样阀源源不断的从取样系统到达离子源,在这里,气体分子被离子化和碎片化。离子被高能电场加速后进入电磁质量分析器,目标离子进入检测器。分子碎片能够产生重复性极好的“指纹”谱图,这可以让具有相似分子量的气体被精确测量而不受干扰。内置控制器使用一系列的工业标准协议,将气体浓度数据和其他诸如热值和碳平衡的计算数据直接传送到过程控制系统。耐用性和容错性设计在显著降低维护要求的同时,可以保证 99.7%以上的投用率。新型号带来更高的投资回报率 快速在线气体分析(每个取样点 1至20秒),准确反映工艺 动态 全组分气体分析,提供更多的数据给先进过程控制系统(APC)高稳定性,90天的标定间隔(自动) 可靠,容错设计,确保投用率超过99.7% 占地面积小 最少的维护量需求,降低运营成本天然气加工原料气可能来源于附近的气田或其他加工过程(如炼油厂的尾气),以及油田收集的伴生气。因此,气体工厂来料的体积和成份会有很大的差别。通常天然气含有 85%的甲烷和数量不定的天然气凝液( NGL),包括液化乙烷(C2H6)、丙烷(C3H8)、正丁烷(n-C4H10)、异丁烷(i-C4H10)、戊烷和更重烃(C5+)、惰性气体(典型的是氮和氦),和硫化氢(H2S)、二氧化碳(CO2)等酸性气体。酸性气体通过采用膜分离技术或氨水溶液进行脱除。硫是通过硫装置(或 Claus装置),采用加热和催化两步法将硫化氢中的硫还原为单质硫。对于剩余气体(通常称之为尾气),要对其残留的硫化氢进行处理,随后焚烧。气体工厂在把原气分馏为残留气体、乙烷、丙烷、丁烷和天然汽油产品前要去除水蒸汽、微量的汞和氮气。分馏系统的各阶段依靠馏份的沸点差来分馏各个烷烃。Prima PRO:快速、精确的气体成分分析利用Prima PRO,可对加工气体的成分进行快速、高精度的在线分析。分析包括全面和精确的成分分析以及热值(粗热值和净热值)、密度、比重、华比指数、化学需气量和燃烧需气量指数(CARI)的计算。燃烧需气量用于加工厂燃烧气体时对燃烧的控制。Prima PRO还能为控制气体加工阶段的物料平衡方程提供精确的气体组成数据。Prima PRO还有下列优点: 减少能源消耗(燃气和电能) 提高液化产品的回收 精确测量产品的能值 减少向环境中的排放烯烃生产典型的烯烃厂有两个基本工段:裂解炉和分馏系统。烯烃裂解炉或热解炉将饱和烃裂解成较小的不饱和烃。生产较轻的烯烃,包括乙烯、丙烯和丁烯所用的主要工业方法是蒸汽裂解法。在这一过程中,用蒸汽稀释气态或液态的烃原料(即石脑油、液化石油气、氢裂粗柴油或简单乙烷和丙烷混合物),并在裂解炉内短时加热。典型的反应温度很高(约为 850℃),反应时间限制在一秒钟内。在现代的裂解炉中,驻留时间缩短到毫秒级,产生超音速气流,从而提高所需产品的产量。当达到裂解温度以后,气体在传输线热交换器中急速骤冷以停止反应。反应时的产量取决于进料的成份、烃与蒸汽的比例、裂解温度和炉内驻留时间。轻烃物料,包括乙烷、液化石油气或轻石脑油,产生的产品富含轻烯烃,包括乙烯、丙烯和丁二烯。石脑油和炼油厂液态原料不仅可生产出这些轻质烯烃的一部分,还能生产出富含芳香烃产品,适于高温热解汽油或燃油。较高的裂解度,有利于乙烯和苯的生成,而较低的裂解度则生产较多数量的丙烯、C4烃和液态产品。这一过程也会导致焦炭慢慢沉积在炉管或裂解盘管壁上。由于炭层会限制热传导和增加压降,因此反应器的效率会降低。设计反应条件时应使焦炭沉积的速率减小到最低。采用动力学模型预测焦炭层的厚度,以保证依赖炉温的裂解效果能被预测。蒸汽裂解炉通常只能运行几个月,就需从裂解线上分离出来除炭。蒸汽或蒸汽 /空气混合气通过裂解炉盘管,可以使硬质固体的炭层转化为一氧化碳和二氧化碳。当这一反应完成后,裂解炉就可重新使用。另一种方法是离线的低温机械式清除法,用低温碱性清洗剂去除盘管上的沉积炭是有效的。不管用何种方法,在除炭过程中每一台炉要至少停炉27小时。以下的内容介绍了如何利用Prima PRO使裂解炉的使用得以优化。裂解炉优化的基本原理在任何给定时刻,产量取决于许多因素,包括原料成份、稀释蒸汽流量、烃流量、盘管温度分布(即炉子燃烧率和燃料能量)、炉子抽力和盘管焦炭成份。模型预测控制(MPC)利用多种测量参数,如盘管出口温度和进料率等来预测上述因素。这样,温度和驻留时间可以优化,在使焦炭沉积率最小的同时,实现烯烃的最高产量。虽然众多过程变量的关系是复杂的,但如果裂解度太低,乙烯产量将会很低。如果裂解度太高,则积炭率也会高,产量的减少也将是不可接受的。裂解度技术比较当动力学模型没有成份反馈时,实际的裂解度如何随时间变化。在这种情况下,一台气体裂解装置通常有62%的乙烯产率。使用在线气相色谱仪(GC)测量实际裂解度指数的益处(如丙烯/乙烯比和丙烯/甲烷比)。采用这种六分钟间隔的定时测量,就能通过提高裂解度的设定值来强化对裂解度的控制。这种升级一般能使气体裂解装置的产量提高 5%。这就是为什么世界上多数乙烯装置将气相色谱仪用于过程控制的原因。图4c说明了在一个更现代化的装置上用 Prima PRO取代气相色谱仪所带来的更强的控制。由于Prima PRO快速分析,可以用一台在线质谱仪(MS)取代 5台气相色谱仪,并把取样间隔从6分钟缩减到2分钟,从而得到另外 2%的增产。应注意到,由于在这个动力特性很强的过程中速度是很重要的,气相色谱分析将限定在 C1到C3分析。它能满足对于实际裂解度指数的测量,但不能提供足够的数据使动力学模型能精确地预测由于重烃的凝结和聚合作用所产生的焦炭沉积率。因此,在一般的装置中,对于速度很低的 C1烃到C4烃的扩展分析要用附加的气相色谱仪,以提供动力学模型所需数据。对于液态物料裂解炉,这种分析还要进一步扩展到 C5烃,以计算动力裂解因子(KSF),这一因子用于根据市场条件优化特种烯烃的生产。通常会将附 加的扩展分析色谱仪多路配置,使每一台气相色谱仪能监测 4到5台炉。然而,使用一台Prima PRO就能监测炉内裂解产物而无需额外的装置。Prima PRO的扩展分析还能提供对重烃进行监测的附加功能,重烃通常被 Thermo Scientific PyGas自清洗取样器所去除。这一数据能预测当样品处理系统发生故障时的维护能力,从而保证更可靠的运行。裂解度控制成本/效益分析Prima PRO解决方案一台配置了60个取样口和24个标定口的Prima PRO 在线质谱仪。如图7所示,一对有类似配置的冗余质谱仪系统可以取代15个气相色谱仪,这能节省约33%的成本,并具有更先进的分析性能。另外,两台Prima PRO可安装在相对便宜的分析小屋中,大约是气相色谱仪的分析小屋成本的25%。维护成本也只有气相色谱仪方案成本的20%左右。虽然Prima PRO的标定气体消耗要高一些,但与气相色谱仪的购置成本和维护费用相比,其费用是极低的。另外,Prima PRO不需要助燃气或载气,这是一种更经济的解决方案。气相色谱仪解决方案气相色谱仪的典型配置,用10台气相色谱仪控制裂解度,5台气相色谱仪提供所需数据用于APC动力模型分析。此方案的成本约100万美元;另外,在所有季节中都要进行维护。有些气相色谱仪能够完全补偿气候的影响,装在室外无需庞大、昂贵的分析小屋,而大多数则不能。一个预制的分析小屋包括全套的样品预处理系统、通讯设施及其他必要的公用工程,分析小屋在为维护人员提供良好工作环境的同时,大的分析小屋也带来了更高的制造成本。如果有很多气相色谱仪需要维护,总拥有成本就会很高:每年每台气相色谱仪大约要7000美元的维护费,这还不包括载气、助燃气和标定气体的消耗等费用。环氧乙烷 /乙二醇环氧乙烷(EO)是通过氧化银催化剂直接氧化乙烯而成的。由于环氧乙烷分子活性极强,因此生产通常与容易运输的乙二醇生产结合在一起。先对乙烯、压缩氧气和循环气预热,然后将这些气体注入装有氧化银催化剂环管反应器中的一个。由于生产中的目标分子不是二氧化碳和水,所以可通过氯化合物添加剂来改进选择性。催化剂的活性随时间而降低,要求逐步提高反应温度。为了增强反应器的燃烧率,要加入甲烷。 Prima PRO:最佳气体分析解决方案 Prima PRO能利用精确测量选择性和测量碳氧分子平衡实现气体分析过程的最优化。采集的数据经常用于控制氯添加剂。Prima PRO也能用于催化剂的开发研究,其目的是在高活化率的条件下增加催化效率。聚烯烃生产聚乙烯(PE)主要按其密度和支链分为几种不同的类别。聚乙烯的物理性能主要取决于几个变量,包括支链的长度和类型,晶体结构和分子量。高密度聚乙烯(HDPE)的支链少,因此具有较强内部分子力和抗拉强度。选择适当的催化剂和反应条件可以减少支链。线性低密度聚乙烯(LLDPE)是一种有大量短支链的聚合物,通常由乙烯与短链α烯烃(如:1-丁烯、1-己烯和1-辛烯)发生共聚作用形成。可利用一个或两个流化床气相反应器的交换工艺来制造全范围聚合物。这些聚合反应器的进料为乙烯、氢气、共聚单体和循环气。聚合物的质量是通过气体组份来控制的,这就需要准确、快速在线分析Prima PRO:精确,快速和多流路监测实验期间生成的数据。其中将专为监测五个工艺流路而配置的Prima PRO与专为监测反应器进料气体组分而整理的GC数据进行比较。Prima PRO清楚追踪了氢气/乙烯比的变化,精度高于GC。此外,Prima PRO更新DCS的速度要比单流路GC快九倍,即便Prima PRO测量五个流路亦是如此。在前四十个PMS数据点中,DCS试图利用GC数据来控制这个比率。当控制切换至Prima PRO数据时,此比率变化的监测得到显著改进,包括: 产品质量更稳定 分子量分布更集中 不合格产品更少 稳态动力学有所改进合成氨从烃进料中除去硫,然后与蒸汽混合通过镍基催化剂,生成氢气和一氧化碳。通过将蒸汽 /碳比维持在 3:1以上,将单质碳的形成减至最低限度,从而保护催化剂。未反应的甲烷(称作“损耗”)亦需控制在较低水平,以便优化转化炉 /变换炉的性能。在次级重整 /裂化装置中,空气在流量控制条件下引入,使氢 /氮比为 3:1。空气中的氧气可将大部分 CO氧化成 CO2,同时加入蒸汽,以便将剩余的 CO转化为CO2和氢气。在吸收塔中除去大部分CO2,微量的碳在催化剂作用下转化成甲烷。转炉进料气与循环气混合,转炉入口处的氢 /氮比(H:N)再次受到严格控制,以实现NH3转化效率的最大化。进气中所包含的惰性气体(如:氩气和氦气)的聚集情况需要予以监测,因为这些气体如果不定期清除的话,会成为重要的稀释剂。Prima PRO:稳定,可靠的在线气体分析 进气组分和热值计算精度最高;因严格控制蒸气/碳比(±0.01%)而减少消耗掉的能量 精确控制氢 /氮比(±0.003%),使产量最大准确测量甲烷损耗,以降低生产成本与较慢的色谱或稳定性较差的质谱控制作用相比,高取样率(在不到两分钟内10至12流路)可使产量提高1%至2%总成本极低 快速收回成本 有毒挥发性有机物(VOC)的泄漏只要化学品生产装置存在,就存在有毒挥发性有机物泄漏的潜在危险,监管机构通常都会要求工厂监测环境气体成分,以避免工人受到长期接触的伤害。有各种形式的捕获装置包括真空罐(苏玛罐)、可挥发性有机物报警器或吹扫和捕获装置。收集到的样品需要送往环境实验室进行分析。另外,还可利用电化学传感器来即时显示是否存在浓度超过预定水平的目标分子。还有一种定量方法是使用开路式傅利叶变换红外光谱仪测定VOC是否在警戒线以内。利用这些不同技术获得的数据,通常都用来满足当地法规的要求。然而,这些技术都不能提供满足诉讼依据要求的时间和空间的分辩率。Sentinel PRO环境质谱仪:简单全面的数据采集Sentinel PRO环境质谱仪能够在15分钟以内监测100个以上的取样点,并在0.01至1ppm精度范围内检测特定物质。凭借其速度和精度,它可监测所有关键区域的短时泄漏,并提供准确的8小时、时间加权平均泄露数据。由于具有大量可用的取样点,许多取样点可位于靠近潜在泄漏点的地方,如:阀杆处等,以便在有毒危害发生之前进行泄漏检测和修复。尽管安装这种装置的主要目的是为了保护操作人员和符合环保法规,但其使用效果往往超越了对泄露防护的要求。
    留言咨询
  • Thermo Scientific Velos ProTM 质谱仪扩展了离子阱工作流程的适用性,因为它具有增强的定量性能、更快的扫描速度、阱-HCD(更高能量的碰撞解离)池以及提高的耐用性,从而展示了其彻底重新定义的离子阱质谱仪性能。 为了扩展性能从而具有超高分辨率和准确质量数,Velos Pro 离子阱可与业内领先的Thermo Scientific Orbitrap技术结合为Orbitrap Velos Pro&trade 和Orbitrap Elite&trade 组合质谱仪。在6月5-9日将于丹佛举办的ASMS会议期间,您可以于Centennial Ballroom D 内的Hyatt Regency 的Thermo Scientific 接待室看到这款全新的质谱仪。 Velos Pro 所体现的四项技术创新扩展了离子阱质谱仪的性能和多功能性: 新的检测电子设备使系统的线性定量能力可达6个数量级的动态范围,提高结果的重复性和可靠性。 高达66,000 Da/sec的扫描速度可实现高通量分析,同时兼容最快速的U-HPLC系统,无需牺牲数据品质。 最新阱-HCD 裂解提供补充性的类似三重四极杆的裂解,有助于结构解析、序列归属以及同位素标记的肽定量。 最新设计的离子光学系统具有创新的&ldquo neutral-blocking(中性阻挡)&rdquo 技术,可减少停机时间并提高各种应用领域中系统的耐用性。阱-HCD裂解为蛋白质组学的定量应用提供一个成本更低的基于离子阱技术的工作流程。因为阱-HCD在低质量数下产生高离子强度,使得一个独立的离子阱系统可以利用同位素标记的肽执行相对定量,包括需要串联质量标签(TMT)的应用。对于定性蛋白质组学,阱-HCD裂解提供了更高的序列覆盖率以及更可靠的序列归属和翻译后修饰(PTM)识别。阱-HCD的快速扫描能力可执行其他裂解方法,包括碰撞诱导解离(CID)、脉冲碰撞能量诱导解离(PQD)和电子转移解离(ETD),每次分析生成更多MS/MS质谱数据,从而识别更多蛋白质和肽。可自动选择最佳裂解技术的Thermo Scientific Data Dependent Decision Tree(Thermo Scientific 数据依赖决策树)算法,现在已经包含了最新的阱-HCD裂解技术。对于小分子应用,比如代谢组学研究,Velos Pro离子阱质谱仪在同一个灵活的系统内提供定性和定量工作流程。其快速扫描和最新检测能力显著提高了定量性能,并为一系列应用的结果解析实验提供了更丰富的补充性MSn信息。阱-HCD裂解为新型化合物(比如代谢物)的识别提供了一个补充性的裂解方法。 LTQ Velos&trade 和LTQ Orbitrap Velos&trade 系统可以升级为最新Velos Pro系统,帮助客户扩展最初投资以涵盖最新的离子阱技术。关键特性新型宽动态范围离散打拿极检测系统提供6个数量级的线性定量范围独特的双压线性离子阱同时提高扫描速度和质量数分辨率专利的S-lens离子光学提高离子传输效率并缩短阱填充时间,提高仪器灵敏度和数据采集速率Generation II 离子光学提高耐用性并减少停机时间Trap-HCD与CID、PQD 和ETD结合,提供最佳结构信息Predictive Automatic Gain Control(预测自动增益控制)减少周期时间,提高数据采集速率可升级至具有准确质量数和超高分辨率的Orbitrap*技术
    留言咨询
  • 风光功率预测 400-860-5168转4733
    旗云中天风光功率预测服务内容 为发电集团提供区域内光/风功率预测提升方案,为电力交易提供数据保障减少因预测不准所导致的罚款; 为电网提供区域范围内的光/风功率预测精度提升方案,为维护电网安全稳定运行提供基础数据。产品优势 根据国际风光资源监测规范,严格控制气象环境监测设备质量,优化场站和区域气象环境监测方案,数据精度高、代表性强、传输稳定; 应用历史气象实测、卫星实测、模型等多种方法对观测数据进行清洗,得到最具价值数据集; 基于数值气象预报同化技术和人工智能算法优化区域数值天气预报,可提供公里级高精度预报数据,较行业平均预报精度提升3%~5%; 根据高精度气象历史数据和预报数据,构建气象和功率的人工智能模型、物理模型、统计模型,形成面向不同环境的天气过程的高精度功率预测。功率预测精度提升技术路线 高精度光伏气象监测:水平总辐射、倾斜总辐射、积灰污染比、风速、风向、环境温湿压、背板温度、云量、数据采集通信; 数值天气预报算法:实测数据前处理、四维同化技术、全球高精度气象预报、人工智能算法预报订正; 功率预测优化模型:辐射预报优化模型、背板温度分区优化模型、积灰-发电效率优化模型、风速风向修正模型、专家修正、功率预测提升技术服务群。功率预测技改服务效果 0-4小时的超短期预测精度较现有情况提升3-5%以上; 日前预测可在场站当前精度基础上提升1%-3%。
    留言咨询

投资预测相关的耗材

  • EpiQuest 抗原表位预测软件
    抗原表位预测软件EpiQuest™ 目前,免疫研究者手头都有几个可用的表位预测软件。在某种程度上,一个人认为的表位仍是一个相当不清楚的定义,预测潜在的T细胞表位仍是一个艰巨的任务。EpiQuest™ 是一套独特的分析线性蛋白质序列的软件套件,用于分析B细胞、T细胞表位、区域复杂性(免疫学、功能性)。它是基于AptuumBio开发的新算法,到目前为止是其他软件所无法比拟的。欲了解更多信息,请联系我公司技术人员。关于该软件的使用请下载本文附有的PDF 文档。
  • 美国世铨300kN高精度轮辐式负荷传感器
    主要作用折叠传感器广泛应用于社会发展及人类生活的各个领域,如工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等。据前瞻产业研究院发布的《中国传感器制造行业发展前景与投资预测分析报告前瞻》显示,近年来,国内传感器应用主要分布在机械设备制造、家用电器、科学仪器仪表、医疗卫生、通信电子以及汽车等领域。人们为了从外界获取信息,必须借助于感觉器官。传感器汇总图片精选(6张)而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。
  • 一体化轴向炬管2010090400
    安捷伦ICP-OES矩管 易于点燃并保持燃烧状态,减少停机时间 均匀稳定的等离子体保证结果的重现性 为您的仪器提供质量保证,以保护您的投资订货信息:

投资预测相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制