精准诊断

仪器信息网精准诊断专题为您整合精准诊断相关的最新文章,在精准诊断专题,您不仅可以免费浏览精准诊断的资讯, 同时您还可以浏览精准诊断的相关资料、解决方案,参与社区精准诊断话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

精准诊断相关的资讯

  • 看不见的“针”让诊断更精准
    小分子探针是一类特殊的有机化合物,通常具有低分子量,可以与特定生物分子相互作用,通过物理富集或化学反应形成可测量的信号变化,以实现对特定生物目标的定位或调控。由于小分子探针分子量小、渗透性强,能够轻易地穿透细胞膜,因此这类探针常用于研究疾病在细胞水平的分子机制。  诊断疾病、寻找病灶、药物研发……如今,无论是基础研究还是临床应用,小分子探针都已成为科学家和医生从事生物医学研究的重要工具。不久前,厦门大学柔性电子(未来技术)研究院首席科学家黄维院士、李林教授、潘思骏副教授团队与新加坡国立大学邵慧琳教授团队在国际期刊《化学会评论》上,发表了关于小分子探针的最新综述,讨论了具有新功能的小分子探针结构和设计的最新进展,以及小分子探针与生物成像、蛋白质组学和其他新兴技术的集成发展。  通过融合其他新兴技术,小分子探针在医疗健康领域展现出令人振奋的应用潜力,有望进一步推动药物研发和临床诊断向个性化、精准化方向深入发展。  具备多重优势,成为疾病研究和诊断的有力工具  小分子探针是一类特殊的有机化合物,通常具有低分子量,可以与特定生物分子相互作用,通过物理富集或化学反应形成可测量的信号变化,如放射性信号、荧光信号等,以实现对特定生物目标的定位或调控。由于小分子探针分子量小、渗透性强,能够轻易地穿透细胞膜,因此这类探针常用于研究疾病在细胞水平的分子机制。  在实际研究中,小分子探针被用于跟踪生物分子的活动、检测细胞中的特定反应或研究特定的生物过程。例如附着荧光标签的小分子探针,可以帮助科学家直观地观察细胞内的特定分子如何移动并与其他分子互动,这使得小分子探针在生物医学研究中具有非常重要的应用价值。  “小分子探针合成简单、特异性高、生物相容性好且稳定性高,具有使用灵活、成本较低的特点,这些优势使其成为生物医学研究和临床应用的有力工具。”潘思骏介绍,在疾病研究方面,小分子探针可用于研究细胞内生物大分子的功能、信号通路和调控机制,阐述疾病发生发展过程中的分子机制;在药物研发领域,小分子探针可用于发现潜在药物靶点,筛选先导化合物,以及评估候选药物的靶点亲和力、选择性、脱靶效应等性质,从而提高辅助药物的临床转化成功率;在临床诊断方面,小分子探针可以用于检测疾病标志物、分析药物靶点相互作用,从而实现早期诊断和个性化治疗。  新兴技术加持,功能和应用范围不断拓宽  随着研究的不断深入,小分子探针的功能及应用范围不断拓宽,一方面兼具成像和组学能力的双功能探针开始涌现,另一方面融入其他新兴技术的小分子探针也展现出更完善的分析能力。  根据功能的不同,小分子探针主要分为成像探针和组学探针两大类。其中成像探针主要是与细胞和生物体中的目标分子相互作用以产生可视化信号,组学探针则是结合蛋白质组学、基因组学、代谢组学等新兴组学技术,对目标分子在细胞和生物体内的作用网络和功能图谱进行解析。近年来,同时具备成像和组学能力的双功能探针的出现,为研究者提供了更准确、全面的信息,极大提升了小分子探针的适用范围和准确性。  同时,结合放射性同位素、稳定同位素、荧光染料、亲和标签、生物正交化学、可逆共价基团、光激活基团等,小分子探针还开发出许多新功能。黄维介绍,结合生物正交化学,小分子探针实现了多个目标分子的同时标记和共定位分析;新型稳定同位素标签和定量质谱分析方法的创新,提高了组学分析的准确性和通量,加速了疾病分子机制的研究;采用双光子、近红外、长余辉等多种各具优势的成像策略,可以提高小分子探针在组织深度和分辨率方面的能力;结合人工智能和机器学习,可以实现海量数据分析,优化探针设计,并从复杂图像中提取关键信息。  黄维提出畅想,未来,结合柔性电子传感技术,小分子探针还有可能发展为穿戴或便携式的诊断仪器,创造全新的主动健康管理方式,这一策略有望推动小分子探针在精准医学和转化医学领域作出重要贡献。  加强基础研究,进一步提升临床转化率  从已有研究可以看出,科学家们对小分子探针持积极态度,认为其具备优良的分子特异性和生物相容性,因而在转化医学和临床应用方面具有广阔前景。例如在个性化医疗领域,小分子探针可以根据患者的疾病特点和治疗需求提供定制化的检测方法,帮助医生通过活体成像、组织活检、血液检测等临床试验技术,设计个体化手术与药物治疗方案,并能通过实时疗效监测来迅速优化方案,提升治疗效果。  但与所有新兴技术一样,小分子探针在临床转化过程中也面临挑战。潘思骏表示,首先,在不影响生物活性的前提下,设计和制造高度特异性的小分子探针是一个技术难题。其次,在临床试验中,小分子探针必须满足严格的生物安全性要求,包括毒性评估、代谢排除和潜在不良反应。此外,临床试验的复杂性也制约了小分子探针的应用,因为临床试验需要耗费大量时间和资源,患者的招募和数据分析也很复杂。最后,小分子探针的研发周期长,包括实验室的化学合成和生物实验过程,以及临床样本的测试与验证过程,同时其市场化也需要医学界对其安全性和有效性有充分的认可和信任。  黄维表示,要进一步提升小分子探针的临床转化率,还需加强基础研究,深入了解小分子探针的机制和性能,确保探针在复杂的临床组织和血液样本检测中具备真实的有效性和安全性。  此外,跨学科的合作也非常必要,融合不同学科的新兴技术优势,有望加速解决小分子探针在临床转化中面临的难题。黄维认为:“我们可以采用小分子探针和分析技术的协同发展策略,即通过同时构建新型探针和与之相匹配的临床分析技术,直接对人体或血液、腹水等临床易得样本进行特征图谱分析,为药物研发、疾病诊断和治疗监测找到更多精准化和个性化解决方案。”
  • 肿瘤精准诊断前沿技术及应用探讨
    精准医疗当下最大的应用领域当属肿瘤的精准医疗,而由于肿瘤复杂的发病机制和巨大的个体差异,导致肿瘤的治疗效率特别低。所以肿瘤的精准诊断是实现肿瘤精准治疗的基础。随着技术发展和进步,多种创新型诊断技术开始出现,新型诊断技术将逐渐替代原有技术成为肿瘤诊断的首选,将极大助力精准医疗,造福广大肿瘤患者。为促进肿瘤精准诊断技术研究及应用进展交流,仪器信息网网络讲堂联合中国微循环学会转化医学专业委员会将于2022年7月22日举办“肿瘤精准诊断前沿技术”网络研讨会,为肿瘤精准诊断研究领域的专家学者搭建沟通和交流的平台。主办单位:仪器信息网&中国微循环学会转化医学专业委员会大会亮点:1. 专家从高校到医院,主题从科研到临床全覆盖2. 多种最新技术、手段全囊括会议日程时间报告题目及嘉宾09:3010:00肿瘤的精准诊断温文(中国医科大学附属盛京医院 副教授)10:0010:30空间组学技术在肿瘤诊断方面的应用探索李鹏飞(布鲁克 质谱成像应用主管)10:3011:00近红外二区荧光小分子探针及生物分析孙耀(华中师范大学 教授)11:0011:30肺结节、早期肺癌临床实践探讨传奇2谭先华(武汉市第五医院 副主任)午休14:0014:30精准医学----肿瘤风险评估及预后工具研发和临床应用研究郭向前(河南大学 副院长/教授)14:3015:00激光捕获显微切割系统在肿瘤微基因组学的应用杨欣桦(赛默飞世尔科技 基因科学事业部 技术与产品管理经理)15:0015:30高性能磁共振成像造影剂的设计及肿瘤诊疗应用研究赵征寰(重庆医科大学 教授)15:3016:00循环肿瘤细胞体内捕获技术及应用王卿卿(河北德路通生物科技有限公司 研发总监)点击二维码即可报名,免费参会!
  • 全面精准医疗时代来临在即 肿瘤精准诊断迎来三大突破!
    2015年,美国“精准医疗计划”的高调启动在全球范围内引起广泛关注,成为医疗发展的新方向。精准医疗是通过基因组、蛋白组等组学技术,一句患者内在生物学信息及临床特点,在分子水平为疾病提供更加精细的分类及诊断,从而对患者进行个性化精准治疗的一种新型医疗模式。肿瘤是严重威胁人类健康的疾病之一。据最新数据统计,全球每年肿瘤新发病例1400万,死亡820万,全球患肿瘤病例超过2500万。近20年来,我国癌症发病率和死亡率一直呈现上升趋势。而仅在我国,每分钟就有6.4人被确诊为癌症。因此,对肿瘤的研究成为精准医疗领域最重要的方向之一。肿瘤的精准诊断是精准诊疗的重要保证。与以往通过特殊染色、光学或者电子显微镜、免疫组化等方式对肿瘤进行分类、分型和分期不同的是,精准医疗时代下肿瘤标志物检测、液体活检、基因测序等方法兴起,新型诊断技术将逐渐替代原有技术成为肿瘤早筛的首选,肿瘤筛查成为健康人群体检常规项目指日可待。基因检测:整个精准医疗的基石基因测序是整个精准医疗的基石,也是精准医疗中发展得相对比较成熟的行业,一直受到广泛的关注。基因测序技术对于肿瘤个体化治疗主要有两方面应用:一是检测患者携带的肿瘤基因,二是检测肿瘤靶向药的靶点。肿瘤基因检测就是利用基因测序技术,检测出肿瘤患者的致病基因,寻找患者适用的肿瘤靶向治疗药物或者其他适宜的治疗手段,实现肿瘤个体化治疗。很多人第一次听说这项神奇的检测,是从一位好莱坞明星开始的。著名好莱坞明星安吉丽娜朱莉的母亲和小姨都是乳腺癌患者,都携带突变的 BRCA1 基因,她的母亲于 49 岁确诊乳腺癌,56 岁因卵巢癌去世。 2013 年,朱莉做了 BRCA 基因检测,结果显示也携带有 BRCA1 基因突变。结合家族史,医生评估她患乳腺癌和卵巢癌的几率非常高。最终,朱莉决定预防性切除乳房。2 年后,摘除了卵巢和输卵管。她的经历引起了轰动,也引发了全球对肿瘤基因检测的关注。通过基因检测分析相关基因的突变状态,了解敏感突变和耐药突变,能够帮助医生为患者“量身定制”最优的靶向用药治疗方案。此外,肿瘤遗传基因检测,可以帮助患者家属明确患癌风险,提早预防。肿瘤标志物检测:POCT领域下一个增长点肿瘤标志物,是由恶性肿瘤细胞产生,或是正常细胞受到肿瘤环境刺激所产生的物质。这些物质根据自身特点分布在身体不同的脏器中。肿瘤标志物身体分布图肿瘤标志物分为肿瘤组织特有的和机体对肿瘤组织的应激反应产生的两类。肿瘤标志物能反映肿瘤发生、发展,监测肿瘤对治疗反应的一类物质。肿瘤标志物存在于肿瘤患者的组织、体液和排泄物中,能够用免疫学、生物学及化学的方法检测到。已知肿瘤标志物特异性不强,实用性上监测重于诊断。检测肿瘤标志物的目的价值在于:发现原发肿瘤,高危人群的筛查,良恶性肿瘤的鉴别诊断,肿瘤发展程度的判断,肿瘤治疗效果的观察及评价,肿瘤复发及预后预测等,在诊断层面比较重要的标志物有CA199(胰腺癌)、CA724(胃癌)、AFP(肝癌、睾丸癌和卵巢癌)、βHCG(睾丸癌、子宫癌和卵巢癌)和CEA(甲状腺髓样癌),大多数情况下,需要多种标志物联合检验判断。肿瘤标志物和肿瘤的类型、肿瘤的部位并不都是一一对应的关系,例如,乳腺癌和胃肠道肿瘤和肺癌均可引起CEA的升高。肿瘤标志物一般多为蛋白检测,目前常用方法包括胶乳增强免疫比浊法、化学发光、POCT等。在常规大型设备检验中,化学发光因其免疫诊断的普适性和高利润率成为肿瘤标志物首选方法;而随着关键核心原料突破,实现原料自产后,胶乳增强免疫比浊法因其仪器的高覆盖率和检测价格较低,有望逐步替代化学发光法的部分项目;POCT因其快速、操作简便,对于癌症患者的实时监控优势逐渐显现。技术层面来看,生化免疫方法适合体检等大样本量检测,而POCT则适合特异性强、样本量少的肿瘤筛查和癌症患者的实时监控。液体活检:无创肿瘤诊断利器液体活检:非介入性、重复取样。液体活检是指一种非侵入式的血液测试,能监测肿瘤或转移灶释放到血液的循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA)碎片,是检测肿瘤和癌症、辅助治疗的突破性技术,被评为“2015年度十大突破技术”之一。液体活检主要包括ctDNA、CTCs、外周RNA和外泌体四个种类的检测,鉴于目前液体活检技术仍未成熟,癌症早期血液中ctDNA、CTC等数量较低,用于肿瘤早期筛查仍存在一定局限性,因此临床上癌症患者的病情监测和用药指导应用最多。ctDNA(循环肿瘤DNA),cfDNA的特殊形式,肿瘤细胞脱落产生,外周血中含量极低,易被血浆中物质解离,常用二代深度测序+数字PCR联合测序,需要对所有cfDNA进行测序,找到ctDNA,含量较CTC多。作为一种无创检测,ctDNA检测最常用的检材是外周血,尿液和唾液、脑脊液、胸腹水等也能够检测到ctDNA液体活检相比于传统侵入式组织活检具有依从性佳、标本易获取等优势,ctDNA的分析是一种有希望的微创替代肿瘤活检方法。外周RNA,具有和肿瘤相关的分子生物学特性,有助于恶性肿瘤的早期诊断、鉴别诊断、疗效观察及预后监测。RNA分子在血中极不稳定,多与DNA、蛋白等形成复合物或杂交体,如何从血液中分离出未被降解的RNA,RNA信息与肿瘤的相关性等都有待进一步研究。外泌体检测,携带母细胞的多种蛋白质、脂类、DNA和RNA等重要信息。肿瘤细胞的外泌体和正常细胞的外泌体的差异在于,肿瘤的外泌体会促进肿瘤的生长和转移,肿瘤的周围组织细胞分泌的外泌体具有杀伤肿瘤细胞的能力。液体活检是目前医学领域的研究热点,其在恶性肿瘤精准治疗中的应用已凸显巨大潜力,期待通过对液体活检的深入研究,为肿瘤患者带来更多临床获益。新兴起的肿瘤精准诊断技术极有可能成为未来颠覆医疗领域的技术,使临床诊治产生质的飞跃。为促进肿瘤精准诊断技术研究及应用进展交流,仪器信息网网络讲堂将于2021年7月1日举办“肿瘤精准诊断前沿技术”网络研讨会,定向邀请肿瘤检测技术研发及应用领域权威专家/学者做精彩报告分享。精彩报告提前预览权威报告专家专业解读、点击此处免费报名参会

精准诊断相关的方案

精准诊断相关的论坛

  • 【云唐】动物疫病快速诊断仪在畜牧业中的应用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404180952299010_7782_5604214_3.jpg!w690x690.jpg[/img]  动物疫病快速诊断仪在畜牧业中的应用已经日益广泛,它不仅提高了畜牧业的生产效率,还为动物疫病的防控提供了有力的技术支持。  在现代畜牧业中,动物疫病的防控一直是重中之重。疫病的爆发不仅会导致动物的大量死亡,还会给畜牧业带来巨大的经济损失。而动物疫病快速诊断仪的应用,使得疫病的防控工作变得更加高效和准确。  这种快速诊断仪具有高度的灵敏度和特异性,能够在短时间内准确地检测出动物体内的病原体。与传统的诊断方法相比,它省去了繁琐的样本处理和长时间的等待,大大提高了诊断的效率和准确性。此外,它还可以对多种疫病进行同时检测,使得疫病的防控工作更加全面和精准。  在畜牧业生产中,动物疫病快速诊断仪的应用不仅仅局限于疫病的防控。它还可以用于监测动物的健康状况,及时发现和处理潜在的健康问题。这对于提高动物的生产性能和保障畜牧业的可持续发展具有重要意义。  综上所述,动物疫病快速诊断仪在畜牧业中的应用具有广阔的前景和重要的意义。随着技术的不断进步和成本的降低,相信它将在畜牧业中发挥更加重要的作用,为畜牧业的可持续发展提供有力的支持。

  • 【分享】WS 279-2008 鼠疫诊断标准

    WS 279-2008 鼠疫诊断标准2008-02-28发布,2008-09-01实施,现行有效。该标准实施之日起,GB 15991-1995《鼠疫诊断标准》同时废止。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=147883]WS 279-2008 鼠疫诊断标准[/url]

  • 【分享】WS 283-2008 炭疽诊断标准

    WS 283-2008 炭疽诊断标准2008-02-28发布,2008-09-01实施,现行有效。该标准实施之日起,GB 17015-1997《炭疽诊断标准及处理原则》废止。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=147888]WS 283-2008 炭疽诊断标准[/url]

精准诊断相关的资料

精准诊断相关的仪器

  • 一、前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。二、汤姆逊散射(Thomson Scattering)基于激光技术发展起来的汤姆逊散射诊断原本用于高温聚变等离子体的测量,借助激光技术和光电探测技术的突飞猛进,汤姆逊散射在近年也大量应用于低温等离子体的密度和电子温度的测量。汤姆逊散射具有空间分辨率高(局域测量),测量值稳定可靠等优点。测量的物理量:电子温度:下限0.1e密度:下限1019m-3.图1. 汤姆逊散射分析系统结构示意图2.1、激光束在等离子体中的束斑大小(束径DLP)激光束经过透镜聚焦,等离子体应该位于透镜的焦点,以达到激光束在等离子体中有最小的束径,最高的功率密度。DLP = f´ q其中f是聚焦透镜的焦距,q是激光束发散角,考虑各种综合因素,实际束径是上述公式的2倍左右。假设使用f=1000mm的聚焦透镜和q=0.5mrad的激光束,DLP大约是1mm。2.2、收集光学系统的光纤的像斑(fP)与等离子体中激光束径DLP的匹配为了有效的收集激光束上的散射光子,光纤的像斑fP应该完全覆盖激光的束径。理想情况是光纤的像斑与DLP尺寸完全相同,并且二者完全重合,这样激光的散射光最大,同时背景非散射光最小。但是考虑到实际的准直的难度,这样的理想条件在有限的资金投入下很难实现。建议fP是DLP的两倍,既能有效的收集散射光子,也能比较容易准直。如果DLP =1mm, fP =2mm是比较合适的。2.3、光纤的芯径、布局和光谱仪以及ICCD的选择汤姆逊散射谱线展宽与温度的关系如下:汤姆逊散射角度 Theta=90度;me是电子质量,c是光速,kB是玻尔兹曼常数,公式右边分母下面:是激光的波长 532nm;分子是谱线展宽,不过是1/e展宽因此汤姆逊散射光谱的半高宽△λ1/e(nm)与等离子体温度Te(ev)的关系可以简化为△λ1/e=1.487×Te1/2Te eV0.10.20.30.4124510△λ1/e nm0.470.530.810.941.492.102.973.324.70表1. 电子温度与汤姆逊散射谱半高宽对应值在光谱仪没有入射狭缝或者入射狭缝宽度超过光纤的芯径的情况下,光纤的芯径实际决定了谱仪的实际分辨率(仪器展宽):△λof = fof ´ LSPfof是光纤的芯径,LSP是谱仪的倒线色散率。针对于此应用,可以考虑选择两款光谱仪,分别是:1、Zolix 北京卓立汉光仪器有限公司的Omni系列 750mm的谱仪,如果使用1200l/mm的光栅,LSP = 1nm/mm。测量电子温度的原则是仪器展宽应该与最低温度的展宽相当,才能有效的测量到最低温度。2、选用207(670mm焦距)光谱仪,在搭配1200l/mm光栅的情况下,LSP=1.24nm/mm,可以满足要求。同时可以考虑搭配1800l/mm光栅,这样的话可以兼容高电子温度和低电子温度的同时测量,以及同时兼顾高分辨和宽光谱。原则上,使用芯径400mm的光纤,△λof=0.4-0.48nm,完全符合0.1eV的测量要求。但是还是建议谱仪安装入射狭缝,靠狭缝来控制分辨率,不仅确保0.1 eV的测量要求,还能实现更低的温度测量。同时在调试阶段,靠狭缝来控制通光量,以免532nm的激光杂散光太强,对ICCD造成破坏。另一方面ICCD的尺寸决定了光纤的排布数量。光纤数量越多,对汤姆逊散射这种微弱光测量是越有利的。在信号很弱的时候,可以把几道合成一道使用,以增加信噪比,提高信号质量。因此在波长覆盖范围(CCD的横向尺寸)满足要求的情况下,ICCD的纵向尺寸应该尽量大一些,以便容纳更多的光纤。选用iStar 334T探测器,这款CCD的尺寸是13.3 ´ 13.3 mm,对焦距目前的光谱仪无论是Omni-750还是207在搭配1200l/mm光栅的情况下,波长覆盖范围是13nm左右,同时纵向13.3mm,容纳的光纤数量也更多,可以做更多的多道光谱。如果已有更大面阵的CCDsCMOS或高速相机,可以考虑使用Zolix 卓立汉光的IIM系列镜头耦合像增强模组与之配合,达到类似ICCD的功能和效果,同时获得更大的相机选取自由度;IIM 内部可以选择25mm 尺寸的增强器,1:1耦合到CCD, 可以获得更大的成像面,双层增强器也可以获得更高的增益;光纤的布局是一字型密集排布,在13mm的长度内,尽量的密布尽可能多的光纤。同时光纤应该严格排列在一条直线上,整排光纤的偏心距小于20mm。2.4、收集透镜的选择等离子体中心到透镜的距离L和光纤的芯径,及像斑决定了收集透镜的焦距。举例如下:如果像斑要求是fP =2mm,光纤芯径400mm, 则物像比是4,如果L=320mm, 则透镜的焦距就是320/4=80mm。同时如果观测的等离子体范围是50mm,那光纤一字排开的范围就是50mm/4=12.5mm。这个宽度和连接谱仪一侧的光纤束的尺寸很接近了,连接收集透镜一侧光纤也应该是密集排布,这样两端容纳的光纤数量就是匹配的。2.5、瑞利散射的滤除与使用瑞利散射信号通常也可以用来测试重粒子的相关信息比如中性原子。但是相比于瑞利散射法来说,作为弹性散射的汤姆逊散射法更多用于自由电子的测试。和离子与原子相比,由于自由电子的速度更快,质量更轻,因此具备更宽的光谱展宽。比较强的杂散光信号与更强的瑞利散射信号则可以通过例如布儒斯特窗、笼式结构或者黑丝挡板的方式滤除掉。图2 滤除瑞利散射的笼式结构示意光路因此在实际的测试过程中,如何合理地使用这些信号为等离子体诊断服务,则是另一个相关的话题。如图3[1]所示,为实际测试过程中得到的瑞利与汤姆逊散射信号如图4[2]所示,为实际测试过程中得到的滤除瑞利散射后的汤姆逊散射信号图3 包含瑞利散射与汤姆逊散射的实测信号图4 滤除瑞利散射后的汤姆逊信号2.6其他附属部件光电倍增管谱仪第二出射口配宽度可调的狭缝三维调整光学支架,用以调节镜头的方位和方向三、整体解决方案汇总推荐根据用户需求,一般推荐的配置如下:光谱仪:Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750i光谱仪搭配1200l/mm和1800l/mm的全息光栅高光通量光谱仪,搭配120*140mm 或110*110mm 的大尺寸,高分辨率的1200l/mm光栅和1800l/mm光栅探测器:ICCD, 18mm 增强器,13*13mm 探测面;Zolix卓立汉光 公司的IIM-A系列 镜头耦合像增强模组,配合更大面阵的CCD或sCMOS相机, 18mm或25mm 的大面积增强器,灵活的CCD 相机选择; DG645数字延迟脉冲发生器:用于系统触发控制标准A光源,用于系统强度校准其他的配件:包括多道光纤,收集光路,可以后续一并考虑,先购买标准部件参考文献[1] Yong WANG, Cong LI, Jielin SHI, et al. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Sci. Technol. 19 (2017) 115403 (8pp) [2] Ma P, Su M, Cao S, et al. Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020.
    留言咨询
  • OLI是一款低成本高精度光学链路诊断系统。其原理基于光学相干检测技术,利用白光的低相干性可实现光纤链路或光学器件的微损伤检测。通过读取最终干涉曲线的峰值大小,精确测量整个扫描范围内的回波损耗,进而判断此测量范围内链路的性能。该系统轻松查找并精准定位器件内部断点、微损伤点以及链路连接点。其事件点定位精度高达几十微米,最低可探测到-80dB光学弱信号,广泛用于光纤或光器件损伤检测以及产品批量出货合格判定。产品特点:可定制扫描测量长度支持多通道测量升级高采样分辨率和定位精度可定制引纤长度,便于匹配实际测量环境产品应用:光纤微裂纹检测 产线自动化检测FA光纤阵列链路性能检测硅光芯片、PLC波导瑕疵损耗检测光器件、光模块内部耦合点、连接点性能检测产品参数:主要参数基础参数工作波长1290~1330/1530~1570nm测量长度112 45 90cm采样分辨率1μm定位精度0.3mm测量时间21~15s回损测量范围-10~-100dB回损重复精度±3dB硬件输入电压AC 220/110V;DC 12V-主机功率60w通讯接口USB-引纤长度35m光纤接口FC/APC-尺寸W 345 * D 390 * H 165mm重量7.5kg储存温度0~50℃工作温度0~40℃储存与工作湿度10~70%RH备注:1.测量长度指设备最大测量长度,在该最大测量长度内可任意选择测量区间段;2.测量时间与测试长度相关,可任意选择扫描长度,测量时间1s@2cm、15s@90cm;3.标准版引纤长度为5m,可定制其他长度。
    留言咨询
  • 动物疾病快速诊断仪 400-860-5168转3452
    动物疾病快速诊断仪仪器简介:CSY-E96D动物疾病快速诊断仪采用固相酶联免疫吸附ELISA的原理,即酶联免疫法;可定量快速畜牧类疾病诊断如禽流感、猪瘟、猪蓝耳、伪狂犬等疾病,广泛应用于养殖场、屠宰场、肉产品深加工企业、检验检疫单位使用。技术参数:☆波长范围:300nm-1000nm☆波长准确度:±2nm☆吸光度范围: 0.000~4.000ABS☆分辨率 :0.001Abs☆稳定性 : ±0.001A/hr☆透射比重复性: ≤0.5%T☆光源 : 进口LED☆样品池 : 微孔板★动物疾病快速诊断仪96通道设计,9通道光路系统,其中8路光源用于96孔板的光路信号检测。另外一道光路用于校准光源,作光源系统的补偿及光源工作情况的监测。★准确性高:采用进口特制LED光源,具有良好的波长准确度和重复性,全面提高检测结果的 准确性。★动物疾病快速诊断仪自动化程度高:仪器自动诊断系统故障、波长校准:自动校准★仪器使用寿命长:采用LED光源,自动开关节能设计,非连续工作模式。使用寿命可达10年★仪器自动硬盘存储测量数据。内置微型热敏打印机,终身无需更换色带,可实时打 印检测结果检测报告可打印样品名称,黄曲霉毒素含量,是否合格,检测日期 ,检测单位。更能体现 检测结果的权威性,并利于公示★动物疾病快速诊断仪内置振荡功能,可根据需要编辑振荡形式,促使终止液充分混匀,保证结果的可靠性。★ 内置以太网卡接口,可实现无线传输数据,无线上网,收发邮件等★windows电脑操作程序,彩色液晶触摸屏操作,操作简捷方便★动物疾病快速诊断仪具有查询、打印、汇总、报表等功能,可直接输出检测结果,软件终身免费升级★配备RS-232接口和USB口,可通过计算机进行数据处理、统计分析以及结果上传。如选配本公司食品安全监控网络软件,可根据用户要求组建省、市、地、县等各级网络。以上是动物疾病快速诊断仪的技术参数,如果您想了解更多动物疾病快速诊断仪产品信息,请致电深圳市芬析仪器制造有限公司
    留言咨询

精准诊断相关的耗材

  • 体外诊断用光纤解决方案
    莱尼生产的定制化光纤是采用紫外光传导性石英/石英(高 OH)、 红外光传导性石英/石英(低 OH)、塑料或光学玻璃制成,具有不同的折射率光纤来满足不同客户系统对光纤性能的要求。单根光纤涂覆玻璃包层(可经受高达 150°C 高压灭菌)或聚酰亚胺(可在高达 300°C 下使用),以适应组件和温度要求。玻璃光纤束:- 传输波长:380nm~1100nm- 96路光纤光路CV%≤3%;- 单传光束透过率≥60%(550nm)- 耐温:-40℃~150℃- 弯曲率半径≥10D- 断、暗丝率≤2%(参考企标)特性- 模块体积小- 安装易弯折- 结构简单且可定制化- 光学性能稳定- 避免光路干扰- 荧光本底低应用- 病毒检测- 生化诊断- 免疫诊断- 分子生物学诊断- 生物靶标治疗- 荧光定量 PCR- POCT- 酶标仪- 生化仪- 生物化学- 分子生物学- 分子影像学- 免疫学
  • 普迈WHEATON 诊断瓶
    WHEATON PC诊断瓶是样本,存储,生产和蒸汽灭菌生物制品包装的理想容器,也是试剂和缓冲液存放和运输的理想容器。提供未灭菌瓶盖独立包装,WHEATON PC诊断瓶可防破碎。PC诊断瓶WPRPC0010WPRPC0005尺寸/容积10mL5mL瓶盖尺寸20-41520-415单位/盒100100
  • 油品诊断系统专用取样瓶 / 净化瓶
    便携式油品诊断系统专用取样瓶 / 净化瓶美国HIAC PODS便携式油品诊断系统 油油污染度检测仪 油颗粒度仪 专用取样瓶 / 净化瓶此取样瓶是美国HIAC PODS便携式油品诊断系统专用的取样瓶,是美国原厂原装的取样瓶,上海有库存。油液颗粒度检测仪、油液颗粒计数器、油液颗粒技术系统、油液粒子计数器、油液颗粒度分析仪,颗粒度检测仪、颗粒计数器、油液激光颗粒计数器、颗粒计数系统、自动颗粒计数器便携式污染检测仪油污染度检测仪 美国 PALL 便携式污染度检测仪HPCA-2 显微镜法颗粒计数器 美国HPCA-2便携式油污染度检测仪 美国颇尔 PALL HPCA-2便携式污染度检测仪 美国PALLHPCA-2油污染度检测仪(黑白箱)

精准诊断相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制