飞机测试

仪器信息网飞机测试专题为您整合飞机测试相关的最新文章,在飞机测试专题,您不仅可以免费浏览飞机测试的资讯, 同时您还可以浏览飞机测试的相关资料、解决方案,参与社区飞机测试话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

飞机测试相关的资讯

  • 检查飞机是否进“水”的利器—热成像仪
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp FLIR公司研制了一种新型热成像仪,或可改观飞机中复合材料湿气检测问题。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/a06fa3cb-1eeb-45d6-b8aa-6e236e7fbf77.jpg" title=" 1-9-2.jpg" width=" 450" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 268px " / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 对于一架飞机来说,由于质量和强度要求,其机身结构大多使用碳纤维等复合材料。使用这些复合材料的飞机结构基本都保持了一种“蜂窝”状,一旦水蒸气等湿气进入这种结构,飞机将变得十分危险,但这种情况又是难以避免的。当飞机飞行到一定高度时,遇到高空中的冷空气,这些湿气会凝结成冰。这样一来,材料会被张裂,原本稳定的“蜂窝”结构变得脆弱。而如果这个过程反复的发生,材料结构遭到破坏,会严重影响飞机飞行的稳定性。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 由于湿气的危害,检查飞机中的湿气就变得尤为重要。众所周知,热成像仪是检查飞机结构是否进入湿气的一个重要的工具。通常,进行这项检测最好的时间段是飞机降落后的一小时以内,因为在这个时间段中,飞机部件材料与冷冻液之间的温度差达到最大值,会在成像仪中形成足够明显的对比度。但当一架飞机停放在机场几天之后,没有办法得到完美的成像效果时,又该如何进行检查呢?答案是:FLIR公司研制的新型热成像仪。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong & nbsp 热成像仪检查的优势 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp Thermografisch Adviesbureau BV是一家在检测湿气是否进入飞机结构方面具有多年经验的公司。这家公司的老板Ralf Grispen表示:“热成像仪进行检测是一种高效快速的检测方式,而传统的检测方法,例如通过锤子敲击材料表面,通过听声音的差别进行检测等与之相比准确度较差且受时间影响。此外,热成像仪可以通过温度差来展示飞机结构的全貌,并且可以清晰的展示出水分的分布。最重要的是,热成像仪可以报告、分析并且解释可能隐藏的大量湿气”。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong & nbsp 热量差的挑战 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp Ralf Grispen先生接下来补充道:“使用热成像仪来检测的最佳时间是飞机降落后的一个小时之内,这是你可以得到复合材料和湿气之间差别效果最好的热量图像”。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 由于湿气和复合材料具有不同的热性能。当加热或冷却达到热平衡后,可以观察到湿气和材料之间的不同。通过热成像仪,可以清晰的观察到材料表面热量分布。然而,要想一直得到好的热分析效果仍然是困难的。在2015年,Thermografisch Adviesbureau BV的团队受邀来到波音公司进行一家飞机机翼的检测,这架飞机在几天前已经停放在飞机库中。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp “在这种情况下,由于飞机库的密闭环境,湿气和飞机结构材料之间的热量差并不明显。因此在飞机降落后检测才是最佳的。我们想挑战这个热量差的难题,于是我们通过各种方法来增加热量差,一种方法是进行加热让被检测的材料达到一个恒定的温度,这种方法通常也叫做加热热成像。但其缺点是通过加热后会发生短暂的热传导效应而使图像不稳定。尽管加热热成像是一种精确度高的检测方法,但是实际情况下却应用较少。因为为了得到这样一个热量成像图是非常消耗时间的,而且性价比比较低,所以这并不是一个很好的选择。Ralf Grispen先生向我们讲述了他们的主要思路。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp strong 热成像仪的成功 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 为了满足热量差的需求,Thermografisch Adviesbureau BV的团队需要进一步的探究。他们首先决定在飞机库中使用移动冷库以及干冰直接冷却机翼,通过这种方法来尽可能模拟飞机的飞行环境和飞机降落后的热量差。此外,通过操纵起重机来移动机翼保证了每个结构可以得到仔细的检查。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp “我们希望可以向客户也同时向自己证明研发的热成像仪的效果。我们准备了一个小的测试样本,该样本具有和波音客机上机翼相同的材料,向其中注入水分,之后进行下一步的检测。通过FLIR P660型热成像仪我们成功的进行飞机复合材料的进水检测,通过所得到的热成像图和原图进行比对,清晰的发现了这些水分的存在“。Ralf Grispen先生补充道。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong & nbsp 保证检测的质量 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 针对上述情况,Ralf Grispen先生推荐了一款FLIR P660型的热成像仪。“通过多年的使用证明FLIR P660型的热成像仪是一台可靠的热成像仪,可以提供清晰度较高的分析图片以及详细的数据。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 最后他表达了自己对于热分析仪的看法,“未来热成像仪在飞机工业上会扮演更为重要的角色,尤其是随着越来越多的复合材料在飞机上得到应用,这种重要性会进一步放大。热成像仪作为飞机进水检测的主要方法,拥有着其他方法无法比拟的性价比,对于保证飞机结构和乘客安全,选择热分析仪是必须的”。 /p p br/ /p
  • 大型飞机装配中的高精度测量技术研究进展
    新一代飞机向着大型、重载、长寿等方向发展,对其装配质量、精度等提出更高的要求。装配中几何尺寸、物理损伤等的高精度测量是调控飞机装配工艺、保证装配指标的基础和关键,对飞机服役性能有着重要的影响。本文围绕新一代飞机结构尺寸大幅增加、承力结构复材化发展下的需求,论述了大型飞机装配中高精度测量技术的研究进展,具体从大空间点位高精度测量方法、大型结构外形高精度测量方法、复合材料结构装配缺陷高精度检测技术等方面对国内外理论研究和技术应用进行了梳理和总结,并指明相关技术的未来发展趋势和前景。1 飞机装配那些事儿 飞机装配是飞机制造的关键环节,装配过程中涉及的学科范围广、技术标准要求高,属于典型的高端装备制造技术。飞机装配是将各种零、组、部件按照规定的技术条件和质量要求进行配合与连接,并进行检验与试验的工艺过程,装配的质量直接决定了飞机产品的外形精度、制造质量和服役性能等。 新一代飞机向着大型、重载、长寿等方向发展,其制造也向着高精度、低成本、柔性化、智能化等方向转变,对装配的精度、效率与质量均提出了更高的要求。此外,以纤维增强型复合材料为代表的轻质高强材料也逐渐由次承力结构升级为主承力结构。对此,开展大型飞机的大空间高精度测量、复合材料损伤的高精度检测方向的研究,是新一代飞机高效、高质装配的强有力支撑。图1高精度测量技术在飞机装配现场的应用2 飞机装配大空间测量场高精度测量方法 传统大空间测量场多使用单台或者单种测量设备进行构建,为满足大尺寸部件的高精度测量需求,组合式测量系统应运而生。通过组合多个测量设备或不同测量系统,往往可以达到一个较好的效果。 由于大空间测量场的特点,需要对其进行坐标配准,即将测量点坐标转换到全局坐标系下,并将数据进行融合。坐标配准、环境等因素往往会影响测量场的精度,所以还需要对测量场进行不确定度评估,并对误差进行补偿。因此,测量场配置优化、坐标系配准和不确定性评估等三个方面的内容是影响大空间测量场测量精度和效率的关键技术。图2 组合式大尺寸测量3 飞机大部件装配外形数字化高精度测量方法 飞机装配是保证飞机外形精度的重要环节,提高飞机部件装配外形检测水平对于提升飞机制造质量具有重要意义。飞机装配部件外形尺寸大、曲面形状复杂、型面测量数据量大,传统单一测量设备测量精度和效率之间的矛盾突出。随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。本章将具体针对数字化测量技术在飞机外形轮廓及蒙皮表面质量检测过程中的应用以及大规模点云数据的处理方法展开介绍。3.1 飞机大尺寸外形轮廓高精度检测航空产品中的大部件装配曲面外形准确度决定着飞机的气动/隐身性能,采用合理的方式对飞机大部件装配外形进行检测尤为重要。飞机曲面外形具有尺寸大、形状复杂、测量数据量大的特点,通常采用数字化测量方法实现大部件外形的高精度测量。早期数字化测量多采用接触式测量方法,以三坐标测量机为代表,常应用于整体叶片型面、中间整流罩的检测过程中。接触式测量具有测量精度高的优点,但缺点是效率低、易划伤目标表面且无法实现自动化测量。激光扫描法、结构光法、激光雷达法、摄影测量法等非接触式测量方法的出现提升了测量范围和测量效率,而且可开发性和自动化程度高的特点使它们在飞机大部件外形自动化测量方面展现出优势。表1列举了几种数字化测量系统并对其主要参数及优缺点进行了分析对比。表 1. 外形数字化测量系统对比但随着测量要求的进一步提高,单一设备无法兼顾测量精度和测量效率的矛盾愈发明显,近年来许多学者通过构建数字化组合测量系统,使设备性能互补,从而提高测量精度与效率。将关节臂测量仪、激光跟踪仪以及摄影测量组合,在飞机内襟翼上翼面外形精度测量上进行应用与验证,在保证外形测量精度的同时进一步提高了测量效率。此外,结合结构光重建和摄影测量技术也可实现高精度、高效率、非接触的大尺寸飞机结构外形的三维重建,精度可达到亚毫米量级(0.16 mm以下)。如图6所示。图 3 基于后方摄像机视觉定位的全局三维重建原理图为了进一步提升飞机大部件曲面外形的测量精度,需要对数字化测量系统进行站位规划与测量轨迹规划。测量仪器的站位规划是数字化测量的前提,站位的合理性直接影响着测量效率和精度。早期测量站位主要由操作者的经验决定,往往需要反复调整才能满足测量要求,测量效率低,难以满足现代飞机高效的测量需求。针对激光雷达测量飞机大部件外形测量需求,采用基于区域生长算法的站位规划方法得到初始站位,之后引入测量不确定度对其进行优化,该方法相比于经验法和聚类算法更具可行性和有效性。而对于飞机大型蒙皮柔性测量系统,效率优化的扫描站位规划被提出,提升了扫描效率和完整性。此外,规划轨迹可以使测量设备在满足测量条件的情况下充分发挥性能,最大程度上降低系统误差,提高扫描数据的精确度,从而提升测量精度与测量效率。对于包含激光跟踪仪和工业机器人的自动化扫描系统中的测量轨迹规划问题,首先在CATIA中按照结构特征类别进行轨迹的初始规划,之后对测量误差进行分析,建立系统误差预测模型并通过粒子群算法对测量轨迹做进一步优化,可达到快速找到满足扫描约束的同时系统误差最小的姿态的目的,从而提高曲面扫描的测量精度。为了提升结构光的检测精度,一种以改进贪心算法为基础的覆盖路径规划方法被提出,降低了视点数目,提升了结构光检测精度,从而提升了曲面外形测量精度,如图4所示。图 4 测量不确定度对比图。(a)文献方法;(b)目标采样法3.2 飞机部件外形表面质量高精度检测高精度数字化测量技术也广泛应用于飞机外形表面质量检测过程中,包括蒙皮对缝检测以及铆钉平齐度检测等。飞机蒙皮主要通过铆钉固定在机翼骨架外围,其作用是维持飞机的气动外形,必须承担一定的局部气动力,装配时要保证蒙皮对缝的间隙及阶差在允许范围内。此外,蒙皮表面铆钉平齐度对飞机的隐身性能及气动性能也有着比较重要的影响,随着新一代战机对隐身性能及气动外形的要求越来越高,相应地对飞机蒙皮铆接质量提出了更高要求。传统的蒙皮对缝检测采用塞尺测量,对人工操作要求高、效率低、误差较大,且不能有效采集和处理测量数据。随着数字化测量技术的不断发展,为了提高缝隙测量的精度和效率,国内外学者以线结构光视觉测量和激光扫描为代表的非接触测量方法应用于对缝检测中,如图8所示,相关的数字化检测设备,包括美国Origin Technologies公司的Laser Gauge系列产品、德国8Tree公司的Gap Check相关产品等均采用非接触测量方法快速测量蒙皮阶差和间隙。线结构光视觉传感器可以实现对蒙皮对缝阶差与间隙的尺寸测量,阶差和间隙的重复测量精度分别达到了0.04 mm和0.05 mm以下。针对二维激光对缝检测多次测量重复精度不高的问题,基于三维激光扫描的蒙皮对缝检测方法被提出,其间隙和阶差测量精度可分别达到0.04 mm和0.02 mm。此外,有学者利用机器视觉的方法,提出了一种基于改进优化算法的飞机蒙皮对缝视觉测量方法,达到精确测量蒙皮对缝间隙的目的,测量精度达到了0.02 mm以下。图 5 基于线结构光的阶差与间隙测量模型对于铆钉齐平度的检测,传统的检测靠人工抽检来实现,即采用传统卡尺或指针式三脚千分表手动检测,测量误差大且有较大局限性。非接触式数字化测量技术在铆钉平齐度检测方面同样展现出优势,构建双目多线结构光测量系统对铆钉齐平度进行测量,可实现对蒙皮表面铆钉头部凸台或凹坑特征的精准测量,精度可达到0.03 mm以下,但该系统无法同时测量多个铆钉。而基于3D激光扫描仪的图像采集系统,利用深度学习算法分析处理采集到的图像,可以同时检测多个结果,效率高,重复检测精度达到0.015 mm,精度相比人工抽检提高较大。此外,针对铆钉逐一检测任务量大且检测可靠度低的不足,基于面结构光的铆钉平齐度检测方法先提出了一种图像噪声轮廓分割方法,之后基于图像-点云映射策略实现了快速且稳定的分割铆钉点云,铆钉平齐度测量偏差达到了0.006 mm以下。如图6所示。图 6 铆钉标准件及平齐度测量结果。(a)标准件;(b)测量结果随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。4 面向复合材料装配缺陷的高精度检测技术 航空复合材料具有重量轻、比刚度大等优点,既能减轻飞机重量,也提高了飞机的整体互换性,方便维护,在飞机制造领域得到了广泛的应用。但此类复合材料由于装配时的应力变化会产生脱粘、分层、夹杂等装配缺陷,对产品的安全使用及长时间服役造成严重威胁,因此需要对复合材料装配过程中产生的缺陷进行高精度检测。 针对不断装机应用的各种新的航空复合材料、新的复合材料成型工艺、新的复合材料结构和新的检测与缺陷评估要求,从检测方法分类上,主要体现在:激光检测、超声检测、X射线检测和太赫兹检测技术等。近几年,随着众多学者对信号处理、图像处理和三维信号重构等技术的研究,使得检测精度和缺陷数据后处理能力逐步提升,面向复合材料装配缺陷高精度检测方法及技术逐步趋于智能化、自动化、可视化。图4 复合材料缺陷三维可视化[1]5 飞机装配测量为我国飞机制造保驾护航 大尺寸高精度测量技术已经成为但广泛应用中的核心关键技术尚处在积累阶段,需要不断的应用验证。数字化测量系统正朝着便携、网络、高效、精密方向发展,飞机装配大尺寸高精度测量技术也已从单一技术走向多传感器技术的融合。 对于飞机装配大空间测量场高精度测量,传统方法多基于单台或单种测量设备,导致精度及效率不足,通过测量场配置优化、坐标系优化、精度评估与补偿等技术来提升测量场的构建效率及精度是当前及未来的提升方向。而对于飞机大部件装配外形数字化高精度测量,飞机部件装配外形尺寸大、曲面形状复杂,型面测量数据量大,单一设备测量精度和效率之间矛盾突出。通过优化测量轨迹、提高视觉检测精度、大规模点云数据融合等技术手段充分发挥各测量设备的优点,来保证飞机大尺寸外形轮廓和飞机外形表面质量检测应用过程中的效率及精度。 因此,组合式数字化测量系统及多技术的融合研究是未来发展和提升的重要方向。在保持高检测精度的前提下,智能化、可视化、自动化的无损检测是未来的发展方向。 在数字化工厂和智能制造的背景下,根据目前大型飞机装配中的高精度测量技术及系统的特点,未来应立足于具体型号及实际应用场景,深入开展高精度测量技术及系统的应用和研究,并形成相应技术体系,充分发挥数字化高精度测量技术的优势。未来,多数字化测量系统协同工作,大空间数字化测量场构建,部件装配外形数字化及装配缺陷检测,这对提高我国飞机制造的水平和核心竞争力具有十分重要的意义。参考文献:[1] Qin L, Zhang S, Song Y, et al. 3D ultrasonic imaging based on synthetic aperture focusing technique and space-dependent threshold for detecting submillimetre flaws in strongly scattering metallic materials[J]. NDT & E International. 2021, 124: 102523.原文下载:张开富, 史越, 骆彬, 童长鑫, 潘婷, 乔木. 大型飞机装配中的高精度测量技术研究进展.pdf通讯作者介绍 张开富,西北工业大学教授、博士生导师,教育部“长江学者”特聘教授、冯如航空科技精英奖获得者,飞行器高性能装配工业和信息化部重点实验室负责人,兼任中国图学学常务理事、中国机械工程学会生产工程分会技术委员会委员。长期从事航空航天制造领域先进装配与连接、结构损伤及疲劳等研究工作,主持国家自然科学基金、国家重点研发计划、重大型号攻关计划等项目近20项,发表高水平学术论文70余篇、授权中国发明专利27件,主持制定航空行业标准2项,以第一完成人获国家科学技术进步二等奖、陕西省自然科学奖一等奖、陕西省科学技术一等奖各1项。课题组介绍 西北工业大学航空宇航装配团队依托于工业和信息化部重点实验室、西北工业大学航空宇航科学与技术学科(A+学科、双一流学科),获批陕西省科技创新团队、国防科技创新团队,长期从事航空航天领域装配建模与优化、先进装配与连接工艺、复材结构设计制造、智能测试技术与工艺等方向研究。团队拥有正高级职称人员6人(其中国家级人才3人)、副高级职称人员6人,硕博士研究生80余人。近年来,团队承担国家级科研项目30余项,授权国家发明专利50余项,在Composite Science and Technology、IEEE Transactions on Robotics、Additive Manufacturing、Composites Part B、航空学报、复合材料学报、机械工程学报等期刊发表学术论文百余篇,参与制定行业标准/型号研制规范10余项,研究成果在运20、C919、ARJ21等我国航空航天重大型号得到持续工程应用,先后获国家科学技术进步二等奖1项、省部级一等奖2项、其他省部级奖励5项。
  • 可视化音速风洞气流变化,FLIR T1K高清热像仪监控飞机试验过程!
    如果让你想象未来的飞机长什么样?你的脑海中会浮现出什么样的画面?肯定会有科幻电影中造型古怪的各种飞行器也许不久的将来这样的飞行器就会出现在天空中飞机的研发过程是一项严谨的工作今天小菲就来带大家瞧瞧FLIR热像仪是如何助力飞机研发过程!✦ 飞机研发中温控的重要性✦ 一家总部位于英国的空气动力学研究机构——飞机研究协会(ARA),致力于为世界主要商用飞机和国防制造商提供创新项目。它最近开始测试一种长期理论,随着各国迈向净零排放,该理论可能会使长途航班更有效率。ARA在测试过程中使用FLIR红外热像仪证明了其理论的正确性,这项研究将对提高未来飞机设计的飞行效率产生直接影响。✦ 使用热像仪可视化气流✦ ARA希望测试其混合层流控制理论,该理论提出,在飞机机翼前部创建多孔部分将控制气流的过渡点,以减少湍流的影响并提高燃料消耗。ARA运营着一个大型跨音速风洞,本质上是一个高速风洞,速度高达1.4马赫(1000英里/小时),用于测试飞机模型。由于空气在如此高的速度下会产生湍流,气流的过渡点变化不到1℃,因此需要非常精确的热测量。此前,它使用的是热膜测量仪,然而这些测量仪只能测量到温度下降,却看不见温度状况,而且它们是通过粘合会干扰机翼表面。幸好,FLIR高清红外热像仪使ARA能够在不影响空气动力学的情况下清晰观察气流的变化,它确保了在测试和识别过渡点时具有更高的准确性。为了实现这项技术并进行测试,ARA需要一个集成合作伙伴。它选择了Teledyne FLIR的英国集成商合作伙伴Thermal Vision Research,后者将FLIR T1K热像仪借给ARA进行研究。ARA已经在风洞中使用了两台FLIR A655C红外热像仪来测试温度变化,当有机会使用更先进的热像仪来开发测试,以查看结果有何不同时,这似乎是更完美的选择。ARA光学测量系统部的Neil Stokes说:“我们与Thermal Vision Research的Matthew Clavey的关系可以追溯到很久以前。我们一直在研究整个站点的热成像技术。我看过几家公司的演示,但很多都是基于经验和对特定分销商或供应商的信任。Matthew真的很乐于助人,所以他把热像仪借给我们尝试了一周。每当我们有问题时,他都会给出正确的技术答案”。✦ T1K热像仪:提升准确性✦ 在完成测试之前,ARA进行了试验,以确保将FLIR T1K热像仪安装在隧道中,可以远程控制。ARA团队需要在大约30米外控制热像仪,以便他们可以在计算机上实时检索图像,从而能够看到气流的变化。当隧道运行时,它会引起振动,可能导致热像仪失焦,因此能够实时查看图像意味着他们可以纠正任何类似的问题。使用FLIR T1K热像仪可在测试过程中提高精度,并提升识别过渡点的准确性。FLIR T1K高清红外热像仪FLIR T1K配有1024x768像素的非制冷红外探测器,其灵敏度是非制冷传感器行业标准的2倍,所生成的图像质量非常出众。搭配尖端技术——UltraMax高清图像增强技术和FLIR MSX® 多波段动态成像专利技术(专利号:201380073584.9),能生成最高达310万像素的明亮清晰的热图像。其配备的FLIR OSX红外镜头系统还具有连续自动对焦功能,即使从较远距离处也能获得良好的测量值,因此任何时候都能让您的检测更轻松、随心、便捷。FLIR T1K高清红外热像仪使ARA能够证明混合层流控制理论在安全和受控的环境中是正确的。它现在能够将安装在风洞中的T1K作为一个概念提供给客户,以改进机翼设计获得更好的空气动力学性能。FLIR T1K拥有专家为用户量身定制的创新功能与用户界面如此出色的高清红外热像仪在各行业的检修和研发过程中都能帮您精准看透其中的温度变化

飞机测试相关的方案

飞机测试相关的论坛

  • 国家商用飞机产业计量测试中心在沪成立

    5月6日,继C919客机首飞成功后,“国家商用飞机产业计量测试中心”揭牌仪式在中国商飞有限责任公司(以下简称中国商飞公司)举行,质检总局副局长吴清海、上海市副市长许昆林为中心揭牌。 今年3月28日,质检总局批准依托中国商飞公司筹建“国家商用飞机产业计量测试中心”。该中心将定位以我国商用飞机研制和验证环节的计量测试工作为重点,贯穿商用飞机产业全溯源链、全寿命周期、全产业链,为产业发展提供计量测试技术和计量科技创新服务,为我国商用飞机产业健康发展及安全运行提供有效的计量保障。 吴清海在揭牌仪式上指出,大型客机是一个国家工业和科技综合实力的集中体现,是“超百万零部件级”的超大规模集成创新工程。在商用大飞机实现腾飞的过程中,计量融入了大飞机的全寿命周期,发挥着重要的引领和支撑作用。

  • 【分享】PID和飞机翼舱进入

    PID和飞机翼舱进入 -------------------------------------------------------------------------------- 简介 鉴于暴露在燃料油中潜在的长期中毒影响, 美国的TLV值(阈限值)可能会降低到50ppm以便达到对此影响的保护,这样就需要一种可以测定ppm级的密闭空间检测器。光离子化检测器(PID)就可以提供这种小巧可靠的用于各类油料工作环境的保护。潜在的客户:飞机维护公司 燃油制造厂 飞机制造厂 军用飞机 民用机场 为什么要测量ppm级的燃料油? 燃料油中含有痕量的苯。即使在相对较低浓度的燃料油环境中长期工作也会导致癌症的发生。目前在密闭空间进入使用较多的易燃易爆检测器(LEL,Lower Explosive Limit)的测量灵敏度较低因此它无法测得可以致癌的燃油浓度。假设燃料油中含有大约1%体积的苯,那么100ppm的燃油中就有1ppm的苯。苯是美国职业协会(OSHA)规定的z类物质,其PEL/TWA只是1ppm(Permissible Exposure Limit 允许暴露限度列于TWA 29 CFR 1910.1000 1/1/77 1/19/89发布)。因此,处于燃油环境工作的工人的燃油实际监测浓度大约为50ppm(相当于0.5ppm的苯),其警报浓度应当100ppm(相当于1ppm的苯)。LEL检测器够用吗? LEL测量的是爆炸性而不是毒性。用易燃易爆检测器测量燃料油有三个问题:首先,即使在最好的测量条件下,LEL也不可能测量ppm级的任何物质。就是LEL专门测量的甲烷也是如此。随之而来的问题就是LEL测量的式气体和蒸汽燃烧的温度,而甲烷是放热反应,而燃料油却是制冷反应(相对于甲烷),这样,燃料油在检测器上产生的响应就有点差而不可信。最后,燃油在低于100oF以下是不会蒸发的,而这大大降低了可以用LEL检测到的燃油的浓度。PID 对于飞机工作的帮助 PID具有测量极低浓度燃料油浓度,比如50-100ppm的能力,到目前为止,还没有那种仪器可以测量如此低浓度的燃料油。(如需其它资料,请咨询就近的华瑞办事处)更快地进入翼舱: 在ppm级的测量可以保证工人在一旦燃油浓度低于50ppm的情况即可进入翼舱,而步是一定要等待一个确定的时间(比如24小时)通过机械通风的方法排出蒸汽。 通风也不能保证所有的有毒蒸汽都被清楚干净,即使在温度升高,翼舱中液态燃油挥发使气体浓度增加时,ppm级的测量可以保证工人的安全。减少呼吸面具的使用: 很多的翼舱进入程序都要求使用有机呼吸面具来保证工人的安全。但是,这类面具太繁琐,会大大降低工人的工作效率,所以通常工人都不喜欢带这类面具而失去保护。PID可以随时确认工作环境的安全,可以允许工人不带面具工作。降低测试管的使用: 用PID可以测量飞机附近的各类有机有毒化合物。这样,它就可以减少或者取消其它测试技术的使用,比如比色测试管或其它的工业卫生测试技术。 确认燃油的泄漏:一般情况下,我们要请环境公司来对燃油泄漏的危害进行评估。但现在,一台用于保护工人的PID同样可以用于调查水和土壤的污染情况。其它化学品的保护 飞机的附近还存在其它的一些化学品,比如油漆、脱脂剂和其它溶剂。PID作为全有机化合物蒸汽检测仪,它可以测得所存在的全有机物蒸汽含量。它无法区分所测得的有机物的种类,但是根据下表,如果将PID的警报限度设置在50ppm,那么,它就可以对飞机附近的各类有机化合物进行保护。*资料来源于加拿大温哥华研究所对Esso,Exxon和Chevron产品的测试报告 这里的"相对异丁烯浓度的允许暴露极限"栏列出了考虑到PID对不同化学物质的灵敏度后的设置点。可以看出,燃料(Jet A/B,8/4)具有最低的设置点。以此设置就可以保证工人的绝对安全。并因此降低在建造和维修飞机油舱过程中对其它检测手段的需求(比如检测管)。电离电位:如果某种化学物质的电离电位值低于PID的灯能量,那么就可以用PID对其进行检测(可参见RAE有关资料)。 校正系数:校正系数表明PID对于某化合物测量的相对灵敏度。这个值越低,表明灵敏度越高。 暴露极限:载自NIOSH资料。 相对异丁烯浓度的允许暴露极限:考虑到校正系数后的统一系数。 RAE公司的PID在飞机工业中的应用 ToxiRAE口袋式PID: 可以放在衬衣口袋中的小型PID仪器,可以方便地进入翼舱。它特别适合于那些已经配备密闭空间检测仪但又渴望使用VOC检测的部门。MultiRAE和多气体检测:PID检测器以及氧气、LEL和另外两个有毒气体(比如CO,H2S)检测器,加上一个强力内置泵,可以适合所有的飞机维护。重量轻 454克(带电池) 坚固设计 工程塑料外壳,防电磁辐射,UL认证 显示明晰 带背景灯 快速响应 150毫升/分钟的采样速度 远距离采样 可采取30米远的样品 泵保护 在堵塞和进水情况下,泵停止保护 多种供电 充电电池、碱性电池和市电互换 编程警报 用户可自行设置各类警报 分辨率高 不同检测器的灵敏度 0.1-1ppm 连续操作 10小时连续操作 适应负压操作 仪器经负压检验,可适应检漏等工作

  • 热固性树脂在飞机中的应用

    一什么是热固性树脂 热固性树脂与普通树脂不同,普通树脂又称为热塑性树脂是具有受热软化、冷却硬化的性能,因为它的特性所以只能做一般的生活用品,而热固性树脂却不同,它不同于热塑性树脂它一旦加热硬化就再也无法溶化,这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 二热固性树脂的延伸 早在美苏军备竞赛之时,对航天材料的革新就早有需求,钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域特别是在航天领域应用的最为重要,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金打造出“全钛飞机”成为那个时代的必备任务,但一个时代的衰落造就另为一个巅峰,在现代高速发展的道路上钛合金显得有点格格不入,钛合金材料成本难以用于民用工业领域,飞机材料金属用量大,种类多,有句话叫需求造就市场,玻璃钢便横空出世了,复合材料的概念是当指一种材料不能满足使用要求时,便加入两种或者两种以上的材料复合在一起,钛合金就是如此,玻璃钢是由用玻璃纤维作筋骨,用合成树脂作肌肉的复合材料,他具有轻质高强、耐腐蚀、热性能良好、工艺简单、可以一次成型、经济效果突出但它又有一个致命的弱点虽然能抗短期的热量但在长期高温下耐温性差这就是他不能完全替代钛合金做为飞机材料的原因,现在许多飞机都采用一部分的热固性复合树脂复合材料做为部件,例如世纪上最大的飞机A380它的 减速板垂直、水平稳定器( 用作油箱) 、方向舵升降舵、副翼、襟翼、扰流板、起落架舱门、整流罩垂尾翼盒。3热固性树脂的难点和机会 传统热固性树脂基体的增韧方法主要是在树脂中加入高性能的热塑性树脂,这种增韧技术通常称之为本体增韧技术,在本体增韧技术基础形成了中等韧性热固性树脂#树脂本体增韧技术引入大量热塑性成分后,牺牲了原有热固性树脂良好的黏性,使其工艺性明显劣化,预浸料铺敷性下降此外,树脂化学成分的改变以及固化后相结构的改变,使得增韧树脂新结构的控制非常复杂,热固性复合树脂复合材料,层间剪切强度是靠树脂来承担的,所以很低。可以通过选择工艺、使用偶联剂等方法来提高层间粘结力而粘性是无法用肉眼测试的美国BROOKFIELD博勒飞CAP2000粘度计就能很好的解决这个问题符合ASTM4287,BS3900,ISO2884测量标准,可在高剪切下检测样品,范围10S-1至13,300 S-1 两种内置温度控制选择 L系列:5-75℃ H系列:50-235℃无论是在高温测试还是常温测试都可以轻松应付。

飞机测试相关的资料

飞机测试相关的仪器

  • 飞机软管硬管组件燃烧测试仪 飞机软管硬管组件燃烧测试仪用途:用于飞机软硬管组件、电动引擎装置及电气连接件的防火试验等。飞机软管硬管组件燃烧测试仪符合标准:FIRE TEST HANDBOOK:Chapter 12、HB 7044等测试方法。飞机软管硬管组件燃烧测试仪技术特征:1.燃烧器锥形筒采用耐腐蚀、耐高温的合金制作。2. NexGen航空燃油燃烧器包含扰流器、燃油喷嘴、点火器、燃油轨、固定片、通风管及壳体、消声器、声阻等部件。3.配备燃油压力表,燃油电磁阀、燃油温度检测装置、空气调压阀、空气温度检测装置。4.配备体积不低于2 x 0.14m3的燃气及空气温度控制装置冰浴槽,可对燃油温度进行控制。5.通过改变燃油喷嘴及空气压力输入,可满足不同的测试标准要求。6.燃烧器覆盖用保温毯,对燃油管路及机身进行覆盖。7.油压调节器应能将燃油流量调至0.126 L/min。8.可调节空气挡片,使空气流量约为1.89 m3/min。9. NexGen航空燃油燃烧器可提供的火焰温度不低于:2000±50℉。10. NexGen航空燃油燃烧器可提供的火焰热流量不低于: 10.6w/cm2。11.使用NexGen燃烧器支持系统的模块单元12.重型钢框架,可水平及垂直安装试验样品。13. 校准时应采用七根直径为1.6 mm的陶瓷包封、金属护套、接地式K型(镍铬-镍铝)热电偶,其导线应为外径0.254 mm,截面积0.0507 mm2,电阻361 Ω/km(美国线规30 AWG)。应将热电偶固定在一个角钢支架上,形成一个热电偶梳,以便校准时放置在试样架上。14. 热辐射通量传感器,并配备冷却装置,并安装在固定支架上。
    留言咨询
  • 飞机货仓衬板耐烧穿测试仪 FAA oil burner(modified gun)cargo linerDetermines Fire Penetration Resistance of Cargo Liner Materials 飞机货仓衬板耐烧穿测试仪仪器介绍:美国联邦航空管理局FAA认可的NexGen航空燃油燃烧器,可适用于众多航空材料燃油燃烧测试。由于FAA之前所认可的Park DPL 3400、Lennox Model OB-32, 以及Carlin Model 200 CRD 均已经停产,FAA发展了下一代航空燃油燃烧器NexGen燃烧器。NexGen燃烧器采用了上一代燃烧器的操作原理,同时可以精确的测量输入气体及燃油的试验参数,同时仪器可便于FAA未来的升级。 通过配置不同的试验装置,可满足众多航空燃油燃烧测试标准,如座椅燃烧测试、隔热隔音材料耐烧穿试验、货舱衬板耐烧穿试验、软硬管组件、电动引擎装置及电气连接件的防火试验等。可满足的标准为FAR 25.853、FAR25.855、FAR25.855、FARs 25.863、FARs 25.867等,同时可满足国内MH/T 6086、HB 7263、MH/T 6041、GB/T 25352、HB 7044等测试方法。 飞机货仓衬板耐烧穿测试仪符合标准:FAR Part 25 Appendix F Part III、AITM 2.0010、BSS 7323、MH/T 6086-2012 飞机货仓衬板耐烧穿测试仪技术特征:1. 燃烧器锥形筒采用耐腐蚀、耐高温的合金制作。2. NexGen航空燃油燃烧器包含扰流器、燃油喷嘴、点火器、燃油轨、固定片、通风管及壳体、消声器、声阻等部件。3. 配备燃油压力表,燃油电磁阀、燃油温度检测装置、空气调压阀、空气温度检测装置。4. 配备体积不低于2 x 0.14m3的燃气及空气温度控制装置冰浴槽,可对燃油温度进行控制。5. 通过改变燃油喷嘴及空气压力输入,可满足不同的测试标准要求。6. 燃烧器覆盖用保温毯,对燃油管路及机身进行覆盖。7. 油压调节器应能将燃油流量调至0.126 L/min。8. 可调节空气挡片,使空气流量约为1.89 m3/min。9. NexGen航空燃油燃烧器可提供的火焰温度不低于:2000±50℉。10. NexGen航空燃油燃烧器可提供的火焰热流量不低于: 10.6w/cm2。11. 使用NexGen燃烧器支持系统的模块单元12. 重型钢框架,可水平及垂直安装试验样品。13. 校准时应采用七根直径为1.6 mm的陶瓷包封、金属护套、接地式K型(镍铬-镍铝)热电偶,其导线应为外径0.254 mm,截面积0.0507 mm2,电阻361 Ω/km(美国线规30 AWG)。应将热电偶固定在一个角钢支架上,形成一个热电偶梳,以便校准时放置在试样架上。14. 热辐射通量传感器,并配备冷却装置,并安装在固定支架上。
    留言咨询
  • HB7263飞机座椅垫燃烧试验装置FAA oil burner(modified gun) seat cushion/power plant fire penetrationDetermines Fire Degredation Resistance of Seat Cushions and Fire Penetration Resistance of Power Plant Components.Note: Due to the configuration limits that are imposed by the test standards, a separate oil burner would be necessary to perform the Oil Burner cargo liner test. See FAA oil Burner (Modified Gun) cargo liner test.? FAR Part 25 Appendix F Part II、AITM 2.009、BSS 7303、FAA Handbook Chapter 12 AC 135HB7263飞机座椅垫燃烧试验装置用途:用于飞机座椅垫燃烧测试。HB7263飞机座椅垫燃烧试验装置符合标准:FAR Part 25 Appendix F Part II、AITM 2.009、BSS 7303、FAA Handbook Chapter 12 AC 135HB7263飞机座椅垫燃烧试验装置技术特征:1、燃烧器锥形筒采用耐腐蚀、耐高温的合金制作。2、NexGen航空燃油燃烧器包含扰流器、燃油喷嘴、点火器、燃油轨、固定片、通风管及壳体、消声器、声阻等部件。3、配备燃油压力表,燃油电磁阀、燃油温度检测装置、空气调压阀、空气温度检测装置。4、配备体积不低于2 x 0.14m3的燃气及空气温度控制装置冰浴槽,可对燃油温度进行控制。5、通过改变燃油喷嘴及空气压力输入,可满足不同的测试标准要求。6、燃烧器覆盖用保温毯,对燃油管路及机身进行覆盖。7、油压调节器应能将燃油流量调至0.126 L/min。8、可调节空气挡片,使空气流量约为1.89 m3/min。9、NexGen航空燃油燃烧器可提供的火焰温度不低于:2000±50℉。10、NexGen航空燃油燃烧器可提供的火焰热流量不低于: 10.6w/cm2。11、NexGen燃烧器支持系统的模块单元。12、粉末涂层钢框架,包含一体化的数字尺。13、可通过校准的称重单元。14、可移动座椅垫试验装置,可移动滴落收集盘。15、校准时应采用七根直径为1.6 mm的陶瓷包封、金属护套、接地式K型(镍铬-镍铝)热电偶,其导线应为外径0.254 mm,截面积0.0507 mm2,电阻361 Ω/km(美国线规30 AWG)。应将热电偶固定在一个角钢支架上,形成一个热电偶梳,以便校准时放置在试样架上。16、热辐射通量传感器,并配备冷却装置,并安装在固定支架上。
    留言咨询

飞机测试相关的耗材

  • 英国TMC品牌热敏试纸温度测试纸
    英国TMC品牌热敏试纸温度测试纸 深圳市方源仪器有限公司代理出售的英国TMC热敏试纸温度测试纸,英国"温度美(TMC)"牌Thermax系列 热敏试纸采用温度测量的新概念,在小型贴纸上有一列方格或圆点,代表不同的温度值,当温度上升至该温度点时,方格会转变成黑色,即使温度降低后也不会回复到原来的颜色,这样便可以知道物体曾经历过的最高温度。(周) 英国TMC品牌热敏试纸温度测试纸类产品种类类型是根据客户要测试的领域、温度范围多大而决定的。下面举例为热敏试纸八格系列: A 37 40 43 46 49 54 60 65°C 99 104 109 115 120 129 140 149°FB 71 77 82 88 93 99 104 110°C 160 171 180 190 199 210 219 230°FC 116 121 127 132 138 143 149 154°C 241 250 261 270 280 289 300 309°FD 160 166 171 177 182188 193 199°C 320 331 340 351 360 370 379 390°F E 204 210 216 224 232 241 249 254 260°C 399 410 421 435 450 466 480 489 500°F规格:尺寸:51x18mm 每包10条 产品特点:无需长时间在旁监视物品是否有超温现象;实时在线测量记录好每时每刻物品的温度;高精度“TMC”品牌热敏试纸合格品质质量;多种款式可供选择,检测领域更广、测试范围更多; 测试领域:家电工业 :电器外壳的彩铜材料需要配合涂料和合适温度烘烤,才能获得最佳效果.在喷涂工序前,利用 热敏试纸测试及判断是否达到所需温度。 电力公司(发电及配电) :将热敏试纸贴于发电机,电动机,变压器上,如发觉超温即表示系统中的某部分曾经出现问题,可立即寻求排解以预防发生重大事故。 铁路公司 :将 热敏试纸贴于车轮,轴箱,路轨上,定时检查是否超温,可确保车辆正常运转及行车安全 电子工业 :有些电阻组件,印刷线路板等如于运输中偶遇高温,便足以损坏其正常功能,因此转运时将 热敏试纸贴于组件上,收货方看到未曾超温便可放心使发货方也可以将此作为品质合格的证据。 程序工业 :将热敏试纸附于需作加热程序的物件上一同加热,便可得知是否达到或是已超越所需的温度,如纺织上可熔里衬的结合,鞋类等制品的胶缝,漆品的烘烤等。 医药卫生 : 热敏试纸可保证器具,样品等的杀菌及消毒已达到所需温度. 其他如直升机发动机,高压开关,飞机黑盒,冷却水散热器,温度敏感化学品存储架以及赛车各部位的温度检测。 中国代理商:深圳市方源仪器有限公司
  • 动态应力应变测试
    JHDY动态应力应变测试系统应用范围1.适用于测点相对集中,被测物理量快速变化的试验中。2.主要用于动态应力分析及动载荷研究中测量结构及材料任意点的动态应力应变测量。3.接入不同的传感器,可完成应力应变、振动(加速度、速度、位移)、冲击、温度、压力、流量、力、扭矩等各种物理量的测量。4.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、旋转构件等结构动载荷测试,疲劳测试。5.可用于实验性测量,也可用于长期监控测量。JHDY动态应力应变测试系统特点1.模块化设计,自选通道数,可扩展仪器集桥路和采集通讯为一体,无需各类适配器和平衡箱,结构紧凑简洁,采用模块化结构,可根据客户要求搭载通道数为8的倍数的采集模块,单机最多64通道,软件可同时控制多台仪器并联使用,可达数百通道,并保持同步。2.全数字电路,抗混滤波,精度高,稳定性好仪器采用全数字电路,每通道独立AD、独立MCU,采用了先进的DDS数字频率合成技术,保证了多通道采样速率的同步性、准确性和稳定性。所有通道同步采样,采样频率软件设置,不随通道数递减,最高可达10KHz。采用独特的硬件隔离技术,系统具有极强的现场抗干扰能力。系统精度高,可以达到0.2%±1με。3.低电压,低功耗,低噪声电路设计仪器采用高精度进口元器件,采用低电压,低功耗,低噪声电路设计,确保了仪器长时间测量稳定性,显示精度可达0.1。同时在加装锂电后,可长期待机测量。4.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测量,操作简单方便。5.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、软件多种补偿方式,稳定性好。尤其是软件补偿方式,可方便快捷的选择模块上所有通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。6.仪器连接简单,设置方便,操作快捷,海量存贮仪器与计算机usb接口连接,即插即用。仪器与各类传感器通过航插连接,方便可靠。可连接各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。可进行不间断长时间在线测量,数据存储量取决于计算机硬盘大小。7.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,具有通讯和电量指示,每个模块的状态高亮指示灯闪烁指示,一目了然。8.具有标准模拟量电平输出,可与其他控制采集单元互联9.具有远程同步触发控制端口,可各种仪器实现同步采样控制10.具有掉电自动保存测量数据功能JHDY动态应力应变测试系统软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,触发类型,完成信号的实时采集、处理、分析等功能,具有多种显示方式,可实时在线进行频谱分析和应力计算。2.多通道同时实时显示曲线,可直接显示所需物理量多通道实时显示时域曲线和频域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。无需复杂的变换计算。3.测量数据高度实时同步,自动保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、频谱分析、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.根据测量需求灵活设置参数,满足不同的测试需求可根据不同需要对各通道参数独立设置工程单位、测量类型、控制参数等。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。
  • 测温试纸
    测温试纸 温度测试条 温度试纸 热敏试纸 TMC感温试纸 英国"温度美(TMC)"牌Thermax系列 测温试纸采用温度测量的新概念,在小型贴纸上有一列方格或圆点,代表不同的温度值,当温度上升至该温度点时,方格会转变成黑色,即使温度降低后也不会回复到原来的颜色,这样便可以知道物体曾经历过的高温度,不需要长时间在旁边监视就可以知道物体是否有超温现象,利用该试纸作为品质合格的有力证据。 有多种款式可供选购。 产品符合BS ENISO9001标准,可以测量气温和体温,也可以用来检查机器运转时的温度变化。能够得出物体曾经历过的高温度,从而可以知道是否有超温现象。 产品特点: 有抗油性和抗水性 无危险性和毒性 准确度:100℃以下是± 1℃ 100℃以上是± 1%量程 产品规格符合BS EN ISO 9001标准 尺寸:51x18mm 每包10条 垂直自动粘贴式,同时有摄氏度和有华氏度数值显示,温度范围有四种 测温试纸 用途: 家电工业:电器外壳的彩铜材料需要配合涂料和合适温度烘烤,才能获得佳效果.在喷涂工序前,利用热敏试纸测试及判断是否达到所需温度。 电力公司(发电及配电):贴于发电机,电动机,变压器上,如发觉超温即表示系统中的某部分曾经出现问题,可立即寻求排解以预防发生重大事故。 铁路公司:贴于车轮,轴箱,路轨上,定时检查是否超温,可确保车辆正常运转及行车安全 电子工业:有些电阻组件,印刷线路板等如于运输中偶遇高温,便足以损坏其正常功能,因此转运时将热敏贴纸贴于组件上,收货方看到未曾超温便可放心使发货方也可以将此作为品质合格的证据。 程序工业:将热敏试纸附于需作加热程序的物件上一同加热,便可得知是否达到或是已超越所需的温度,如纺织上可熔里衬的结合,鞋类等制品的胶缝,漆品的烘烤等。 医药卫生:可保证器具,样品等的杀菌及消毒已达到所需温度. 其他如直升机发动机,高压开关,飞机黑盒,冷却水散热器,温度敏感化学品存储架以及赛车各部位的温度检测。 更多温度范围请来电咨询!

飞机测试相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制