电子转移

仪器信息网电子转移专题为您整合电子转移相关的最新文章,在电子转移专题,您不仅可以免费浏览电子转移的资讯, 同时您还可以浏览电子转移的相关资料、解决方案,参与社区电子转移话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

电子转移相关的资讯

  • 大连化物所实现电催化过程电子转移成像
    近日,大连化物所催化国家重点实验室分子催化与原位表征研究组(503组)李灿院士、范峰滔研究员等在液相原位电化学成像的研究方面取得新进展,实现了电催化过程中电荷转移过程的纳米尺度直观成像,直接观察到金属电极在微纳尺度存在空间差异的界面内电势差,突破了人们在传统电化学方面对电子转移过程的认识。  电化学反应的内在驱动力是电化学势,而电化学势的决定因素是界面内电位差,即电子转移情况。如何探测界面电势的局域分布,揭示其与电子转移动力学之间的内在关系对于纳米催化剂的反应机理的认识至关重要。一直以来,研究人员就设想通过纳米探针观测反应过程的电子转移情况,但该尺度下的电流极其微弱,常常受到外界噪音干扰。另外,液相中化学物种的扩散过程常常使电化学成像难以稳定。更重要的是,在电催化过程中,催化反应与电子转移过程卷积在一起,使得该电子转移过程难以直接探测。  本工作中,李灿团队建立了具有纳米级空间分辨率的原子力显微镜和扫描电化学成像联用的表征方法。该方法利用纳米探针的移动扫描测量了能够转移电子的外球电对分子和催化产物分子的局域分布,实现了对电子转移过程和电催化反应过程的原位反应成像。在金属纳米颗粒上的电子转移成像发现,该过程呈现位点依赖的空间异质性,突破了人们对金属电极上电子转移过程的微观认识。同时,通过解耦传质效应对界面电子转移的干扰,数学建模的有限元方法提取速率常数和内电势差测量等一系列精细的实验,揭示了空间差异的界面内电势差与电子转移速率常数对数间的线性关系。该方法在电化学领域对电子转移过程和催化反应实现原位观测,对原位成像技术的发展以及电催化过程机理探测方面提供新思路。  国际同行认为,该工作是原位扫描电化学探针技术的一个新里程碑,这也使人们可以从物理化学底层原理出发,发现纳米催化剂的结构—性能关系。  李灿团队长期致力于太阳能光催化、光电催化、电催化以及催化光谱表征的前沿科学研究,取得了系列成果,特别是利用自主研发的空间分辨的表面光电压显微镜对光催化剂表面光生电荷给出了可视化图像,在国际上最早将其应用到微纳尺度光催化材料电荷分离的成像研究(Angew. Chem. Int. Ed., 2015;Nature Energy, 2018;Angew. Chem. Int. Ed., 2020等)中。  相关研究成果以“Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism”为题,发表在《纳米快报》(Nano Letters)上。该工作的第一作者是大连化物所503组博士研究生聂伟。该工作得到国家自然科学基金委,“人工光合成”基础科学中心项目、中科院和大连化物所等相关项目的资助。  文章链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03529
  • 生物物理所基于光致电子转移扩展荧光蛋白的传感性质
    9月11日,美国化学会杂志JACS 在线发表了中国科学院生物物理研究所王江云研究组的最新研究成果&mdash &mdash 《基因编码非天然氨基酸作为光致电子转移探针扩展荧光蛋白的传感性质》。该研究利用基因密码子扩展技术,实现了在活细胞中编码一系列卤代酪氨酸(3-氯代酪氨酸(ClY)、3,5-二氯代酪氨酸(Cl2Y)、3,5-二氟代酪氨酸(F2Y)、2,3,5-三氟代酪氨酸(F3Y)、2,3,5,6-四氟代酪氨酸(F4Y)),在荧光蛋白中实现了大分子中的光致电子转移现象,基于光致电子转移原理发展了对pH及Mn(III)敏感的荧光传感器。   基因编码和荧光蛋白传感器是生物学研究中的重要技术手段。在过去的几十年中,人们已经开发出多种荧光蛋白传感器,用于监测金属离子,pH值,第二信使和翻译后修饰,这对于解析它们在体内信号转导网络中的作用是至关重要的。这些荧光蛋白传感器通常依赖于荧光共振能量转移或者绿色荧光蛋白GFP荧光团酚基的质子化/去质子化来发挥作用。尽管它们现在已被广泛应用,但是在分析物结合前后,这些荧光蛋白传感器的荧光强度变化通常都在两倍以内。相比之下,光致电子转移(photo-induced electron transfer,简称PET)机制开始越来越广泛地被引用到荧光传感器设计中来,最重要的原因在于分析物结合前后,荧光蛋白传感器可以展现出显著的荧光强度变化(通常可以增强10至100倍)。PET同时也是光合作用中的主要反应,PET过程广泛存在于生物系统中,如细胞色素c氧化酶、核苷酸还原酶、DNA光解酶等,其对磁感应等生物过程也具有非常重要的意义。   该研究将一系列卤族元素取代的酪氨酸通过基因密码子扩展的手段定点插入到荧光蛋白(iLov2)中,发现在非天然氨基酸与荧光蛋白发光中心FMN之间的发生了快速的光致电子转移,并测量到电子转移发生在0.2 纳秒。通过荧光检测科研人员得到了一系列对pH具有不同响应能力的荧光蛋白突变体,利用该传感器他们检测了细胞质的酸化过程,该传感器将适用于研究活细胞中的pH值变化过程。同时科研人员首次得到了可以基因编码的对Mn(III)敏感的荧光蛋白,这将有利于检测与生物和环境相关的Mn(III)的浓度,为筛选高效的锰过氧化物酶提供了平台,为实现高效的木质素降解及生物质转化提供了研究工具。该研究为蛋白动态构象变化研究提供了新的研究手段,为利用合成生物学手段生产可再生能源提供了新的研究思路,为蛋白设计提供了新的工具。   该研究得到科技部国家重点基础研究&ldquo 973&rdquo 计划、国家自然科学基金委员会的资助。    图示:基因编码非天然氨基酸作为光致电子转移探针扩展荧光蛋白的传感性质
  • HORIBA用户动态 | 表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移
    撰文:李俊博研究背景一般情况下利用拉曼光谱技术可以非常方便的鉴定物质成分,获得结构信息。但是,一些化学物质直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,提高拉曼信号信噪比,从而检测出待检物质。表面增强共振拉曼(SERS)活性基底的快速发展促进了人们对SERS机理的探究,这使SERS的应用范围拓宽至更广的领域。大量的研究表明SERS的增强机理主要有两种:表面等离子体共振及电荷转移机理。对于过渡金属基底来说,其增强能力取决于自身的性质及材料的表面形态,电磁场与化学增强的共同作用使之产生增强的拉曼信号。然而,目前只有几种有机小分子在过渡金属上能够被选择性的增强,这限制了过渡金属的实际应用。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授等人制备了四种SERS活性基底(两种过渡金属和两种贵金属),并通过细胞色素c (Cyt c)在基底上SERS光谱的变化,讨论了Cyt c与这些活性基底间的电子转移路径与机理。本研究中, SERS光谱的采集采用了HORIBA LabRam系列拉曼光谱仪,所有的拉曼数据则通过LabSpec软件进行分析。下面让我们走进该项研究:﹀﹀﹀1为什么选择Cyt c 细胞色素c是一种水溶性的血红素蛋白质并常作为呼吸链中的电子载体。大部分Cyt c的SERS光谱的获得是通过电化学结合拉曼光谱的方法,从而研究氧化还原蛋白质在基础及应用科学领域的结构与反应动力学。基于Cyt c的电子转移的能力,Cyt c常用作新型的探针来探究SERS活性基底与吸附生物分子之间的电子转移。图1. 细胞色素c与SERS活性材料之间的电子转移示意图。2具体的研究过程作者通过紫外光谱表征发现过渡金属镍和钴纳米粒子可将氧化态的Cyt c还原,并且通过SERS光谱发现二者与还原剂连二硫酸钠的作用相同,二者作为良好的还原剂与Cyt c之间发生了电子转移,且通过谱峰的对比证实了在过渡金属的作用下,蛋白质仍保持着良好的二级结构。另一方面,对惰性金属Au和Ag纳米粒子也进行了相同的实验,通过紫外图的表征说明二者对氧化态和还原态的Cyt c均未产生价态上的影响,而SERS光谱则表明Ag纳米粒子能使还原态Cyt c氧化,并且谱峰相对强度的变化意味着Cyt c结构的改变。基于以上现象,作者对Cyt c与金属纳米粒子之间的电子转移机理进行了探究并给出合理解释。氧化态Cyt c与Ni NWs之间的转移方向是从Ni的费米能级至Cyt c的导带,此处由于Cyt c的电导性表现出半导体的行为,因此根据肖特基势垒和欧姆接触可知,金属镍的功函与Cyt c的电子亲和能值十分接近,促移则基于SERS的电子转移机理,实验所用的激发光能量恰能够激发Cyt c HOMO能级上的电子转移至Ag的费米能级。3研究的创新点本研究将氧化还原蛋白质的电子转移与SERS中的电荷转移机理相结合,为电荷转移理论提出了新的见解。并且,Cyt c与过渡金属之间直接的电子转移行为的发现将会拓宽过渡金属在氧化还原蛋白质光谱研究领域的应用。 此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《Chemistry - A European Journal》上: Junbo Li, Weina Cheng, Xiaolei Wang, Haijing Zhang, Jin Jing, Wei Ji, Xiao Xia Han, Bing Zhao, “Electron Transfer of Cytochrome c on Surface-Enhanced Raman Scattering-Active Substrates: Material Dependence and Biocompatibility”. Chem. Eur. J. 2017, DOI: 10.1002/chem.201702307HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。

电子转移相关的方案

电子转移相关的论坛

  • 腐蚀电流转化为腐蚀速率的公式里的转移电子数是怎样求的

    各位高人:对于法拉第公式:CR=K×icorr/ρ×EW/z其中z为转移电子数,有的文献中没有提到是怎样获得的z,就直接在表格中把CR求出来了,那它的z是如何求得的,比如说Fe,它的z取2,多谢若文高人的提示那么我作的材料是Ti3SiC2,那么怎样得知它的转移电子数Z呢,这样的化合物让我很头痛,希望高人能够指点一下Ti3SiC2+5O2→3TiO2+SiO2+2CO那么Z取20对吗?还是取10呢?

电子转移相关的资料

电子转移相关的仪器

  • 1290 Infinity II 方法转移系统1290 Infinity II 方法转移系统采用智能系统模拟技术 (ISET),该技术专门为 HPLC 和 UHPLC 方法转移而设计。1290 Infinity II 方法转移系统能够为在其他供应商的旧 HPLC 或 UHPLC 上开发的方法提供相似的保留时间和峰分离度。用一套 1290 Infinity II 方法转移系统替代多台液相色谱仪,可以在获得相同结果的同时简化用户培训和服务。特性 智能系统模拟技术 (ISET) 利用 Agilent 1290 Infinity II 液相色谱系统的宽性能范围以及优异的准确度和性能,只需单击一下鼠标即可模拟其他液相色谱系统 利用一套 1290 Infinity II 方法转移系统替代多套 (U)HPLC 系统,可协调用户培训、服务计划/部件的相关工作,规避相关风险,同时还能节省台面空间 在您的实验室中引入最新的 UHPLC 技术,同时仍可提供与过去相同的 HPLC 结果 使用 ISET 预测接收实验室将观察到的色谱图(无论其使用哪家供应商的液相色谱仪),体验无缝方法转移 加快仪器之间的方法转移。只需模拟开发原始方法时所用的液相色谱系统,即可实现相同的保留时间和峰分离度
    留言咨询
  • Microsart @media 免触摸过滤膜转移系统应用:预充填不同类型的琼脂培养基,无菌包装,即取即用。优势:- 创新的过滤膜转移概念不再使用镊子,Microsart @media活动盖能使过滤膜实现无菌转移,降低了二次污染的风险。- 操作简便Microsart @media和Microsart @filter的完美组合,可以实现将过滤膜轻松、可靠地转移到琼脂培养基上。- 安全可靠免触摸的膜转移,免除了对过滤膜的直接操作和处理,从而将二次污染风险降至最低。- 省时省力创新的膜转移概念,从样品到结果仅需要简单的几步。节省时间和劳动力成本,同时又提供可靠的结果。技术参数尺寸直径68.8 mm高度14.9 mm琼脂面积13.2 cm2材质聚丙烯琼脂培养基R2A, TSA, Sabouraud不含抑制剂胶灭菌Gamma 射线灭菌(13.9 kGy - 25.0 kGy)欲了解更多内容,请在商铺中给我们留言或登陆赛多利斯官网
    留言咨询
  • Thermo Scientific 系列液氮转移容器专为储存和分配少量液氮设计。Thermo包括4个型号,容量从5升到32升。涵盖了储存和少量分配液氮使用的各种规格。还有处理和分液配件以及小推车。描述特点:专为将液氮移至其他低温冻存容器而设计轻质铝制容器,确保低静态蒸发率可选抽取器,12 mL汲取器和滑轮式小推车紧凑型Thermo 5和Thermo 10容器拥有方便的提桶式把手设计,适用于只需少量液氮的应用场合Thermo 10、20和30可安装自增压分液器不需要倾斜罐体就可以轻松接取液氮。2而不必倾倒注意:确定的静态蒸发速率根据新容器未开口且无产品负载时的性能测定。实际的工作性能可能会随着应用的不同而有差别。保修期因国家而异,如需了解详情,请联系我们
    留言咨询

电子转移相关的耗材

  • 样品转移袋
    带&ldquo 生物危害&rdquo 标志样品转移袋,有内外2个小口袋,内口袋放置标本,外口袋放置文件。乙烯材质,按压线封口 160x245mm 500个/箱;最理想用于输送试管、瓶子、容器或一些有潜在传染源的样品到实验室中。
  • 防辐射样品转移柜
    用来存放盒转移带有放射性的物质,由于外观透明,很容易观察到转移柜内部样品的情况,对转移过程中出现的问题能及时处理
  • 传统转移石墨烯
    参数:专利ACS材料提供最简单的方法用于转移到任何衬底上的单层石墨烯。所有的工作都已经完成。你可以尝试任何新的衬底用于传统转移石墨烯。Parameter:(Patented)ACS Material provides you the easiest way to transfer single-layer graphene onto any substrate. All of the hard work has already been done. You can experiment with any novel substrate by using Trivial Transfer Graphene.

电子转移相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制