倍频成像

仪器信息网倍频成像专题为您整合倍频成像相关的最新文章,在倍频成像专题,您不仅可以免费浏览倍频成像的资讯, 同时您还可以浏览倍频成像的相关资料、解决方案,参与社区倍频成像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

倍频成像相关的资讯

  • 朱永元课题组在无规铁电畴结构倍频成像研究方面取得进展
    p   最近,南京大学物理学院朱永元教授课题组和现代工程与应用科学学院秦亦强教授、张超副教授团队通力合作在非线性光学成像领域取得了进展,提出了一种利用二次谐波直接观测无规铁电畴结构的新型方法,并在理论和实验上得到了验证。该研究工作已被Physical Review Letters接收发表。https://journals.aps.org/prl/accepted /0d078Y9fQbc1326161359af1b887f1ccd67a15544 /p p   铁电材料由于其压电、热电和光电方面的特殊性质而在许多研究领域中有着广泛的应用。微观结构决定宏观功能,因此对铁电畴结构的表征技术逐渐成为一个热点课题。经过几十年的发展,包括电子显微镜、线性光学成像和非线性光学成像等方法,已经广泛地运用于观测畴结构。然而这些方法在实际研究和应用中仍存在一定局限性,比如说线性光学方法由于正负畴的折射率相同,需要先对样品腐蚀来改变畴壁周围的相关特性,这就对会样品造成损伤 再比如基于Talbot和Cherenkov效应的一些非线性光学方法,只适用于周期结构或者是需要配合焦点扫描的手段才能成像,无法直接对一般的无规畴结构进行观测。 /p p   利用铁电畴畴壁在非线性成像过程中的特殊衍射性质,研究人员提出了一种简单的非线性成像方法,能够直接并实时地观测二维无规铁电畴结构。该工作主要分为理论和实验两部分。理论上主要从衍射方程出发,对铁电畴畴壁的二次谐波衍射特性进行了理论分析,给出了一对正负畴的倍频传输场强分布的解析解,发现畴壁处的倍频像始终呈暗场。通过进一步的理论分析,发现畴壁的倍频像线宽在一定区域内与传播距离的平方根成正比,与正常的远场衍射过程(一次方)相比畴壁像的展宽得到了极大的抑制,为直接成像提供了可能性。在此基础上,将单一畴结构推广到复杂的无规则畴结构,进一步通过数值仿真模拟二次谐波成像证实了传输过程中畴界的近似无衍射性质。该工作的实验部分主要以钽酸锂为例,用900nm的飞秒激光打到样品上,在CCD中可以直接收集到450nm的倍频畴结构像,其中畴界显示为暗场。结果表明,可以在百微米范围内连续观测到畴结构的清晰倍频像,其中衍射效应确实得到了很好的抑制。 /p p style=" text-align: center" img style=" width: 450px height: 395px " src=" http://img1.17img.cn/17img/images/201803/insimg/4b6fb467-d658-4138-87df-9c7fb65a66bb.jpg" title=" 1.jpg" height=" 395" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   这种基于二次谐波的观测方法不需要大型的显微镜设备,也不需要焦点扫描,可以用来无损地实时观测不规则畴结构,其成像质量还有望通过计算机后期数据处理进一步提升,为实现铁电畴的高分辨率成像提供了可能,具有很高的潜在应用价值。 /p p   论文第一作者是现代工程与应用科学学院2014级直博生陆蓉儿,张超副教授和秦亦强教授为本文的共同通讯作者。朱永元教授给予本文精细的指导。南京大学是论文唯一署名单位。现代工程与应用科学学院张勇教授、物理学院洪煦昊工程师对实验提供了大力支持。感谢刘冬梅博士、魏敦钊博士生及刘昂博士生的帮助。该研究由国家重点研发计划 (2017YFA0303700)、国家自然科学基金、江苏省科学基金项目资助完成,同时感谢人工微结构科学与技术协同创新中心、江苏省高等教育机构优势学科等平台与项目的大力支持。 /p
  • 微电子所成功研制太赫兹倍频器核心元件
    近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。   太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一 此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。   由四室主任金智研究员领导的太赫兹器件与电路研究组针对太赫兹电路的关键技术开展研究,对器件外延材料生长的进行了设计与优化,突破了低电阻欧姆接触合金、肖特基微孔刻蚀和空气桥腐蚀技术等关键制作工艺,有效地降低了器件的串联电阻和寄生电容,实现了可在太赫兹频段应用的肖特基二极管,并开发了多种肖特基二极管的集成方式(见图1),太赫兹肖特基二极管(见图2)器件的最高截止频率达到3.37THz,可广泛应用于太赫兹波的检测、倍频和混频。   为了解决太赫兹频段下外围电路损耗高的问题,研究人员开发出器件与电路衬底背面减薄技术,并采用低介电常数石英材料实现了太赫兹电路,研制出厚度小于50um,可应用于太赫兹频段核心电路(见图3),极大地减小了在太赫兹频段的损耗,提高了电路模块的效率。   课题组与中电集团第41研究所联合开展了太赫兹倍频器的验证工作,采用自主研制的太赫兹肖特基二极管器件实现了倍频器在太赫兹频段的工作,在170~220 GHz的倍频效率为3.6%,220~325 GHz的倍频效率达到1.0%(见图4),可实现宽频带倍频,其输出功率和倍频效率与国外VDI同类产品相当,该倍频器可用于构建宽频带太赫兹源,在太赫兹成像、太赫兹通信和卫星遥感方面有着广阔的应用前景。对于太赫兹系统的核心器件(主要是肖特基二极管)的国产化具有重要意义,为国内的太赫兹技术的发展提供良好的器件和工艺支撑。
  • 微立体光刻3D打印125GHz倍频器的波导腔体
    太赫兹波是指频率在0.1THz~10THz内的电磁波,它的波长介于30~3000μm,在频谱中的位置处于微波和可见光之间,长波段部分与毫米波重合,短波段部分与红外线重合,在电磁波频谱中占据非常特殊的位置,具有很多特殊的性质:宽带性、互补性、瞬态性、相干性、低能性、投射性。相对于毫米波而言,太赫兹波的频率更高、波长更短,因此具有更高的分辨率、更强的方向性和更大的信息容量,同时器件可以更小;相对于光波而言,太赫兹波具有更强的穿透性,适合于云雾、硝烟等极端恶劣环境。太赫兹频率源是太赫兹技术发展的关键,其性能指标影响着整个太赫兹系统的性能,所以太赫兹频率源的获得至关重要。通过倍频的方式获得的信号源具有高频稳定性好、设备的主振动频率低、工作频段宽的优点,是目前获取太赫兹频率源广泛采取的方案。基于GaAs肖特基二极管的太赫兹倍频器因其高效率、低能量消耗和室温下可适用性,已广泛用于外差接收器中局部振荡器(LO)的可靠信号源。太赫兹倍频器具有广泛的实际应用,包括大气遥感、医学成像甚至高速通信。目前,用于封装太赫兹倍频器的波导腔体通常采用计算机数控(CNC)加工制造,该工艺成熟,可实现高精确度、高精密度和良好表面光洁度,能满足电子元件与波导腔体间严格的尺寸公差要求。近年来,3D打印凭借其小批量快速加工的能力,逐渐被用于加工被动微波器件。但是,兼具大的打印幅面以及高公差控制的打印设备较少,因此鲜少有3D打印制备超过100GHz频段的器件报道。3D打印的倍频器更是未见报道。图1. 125GHz倍频器的剖面图:(a)波导腔体的布局 (b)MMIC的特写图2. 微纳3D打印的波导腔体(左)和放置MMIC的波导通道(右)近日,英国伯明翰大学的Talal Skaik和Yi Wang等首次采用面投影微立体光刻(PμSL)3D打印工艺制备太赫兹倍频器的波导腔体。研究团队使用摩方精密科技有限公司(BMF)的nanoArch S140系统3D打印了波导腔体,打印材料为耐高温树脂(HTL),如图2所示,外形尺寸为30.4 mm×25.5 mm×19.1 mm,打印层厚为20μm以及光学精度为10μm。打印后在异丙醇中清洗,并进行30分钟的紫外线固化,最后在60°C下进行30分钟的热固化。制备的波导腔体通过光学系统检测并未发现缺陷,与MMIC(单片微波集成电路)配合的波导通道测量值为609μm,优于设计的630μm;同时超高光学精度打印保证了严格的尺寸公差,确保波导腔体的两部分能精确配合,避免MMIC电路的损坏。图3. 电镀后波导腔体的表面光洁度图4. 装配后的太赫兹倍频器为促进信号的传递以及减小外界干扰,在波导腔体表面镀上4μm厚的铜和0.1μm厚的金,平均表面光洁度约为1.4μm,如图3和图4所示,电磁仿真结果表明该粗糙度对变频损耗的影响可以忽略不计。图5. 3D打印与传统CNC加工的太赫兹倍频器的性能参数对比实验测试发现,3D打印制备的太赫兹倍频器与传统CNC制备的倍频器性能非常接近,相关性能参数如图5所示。3D打印的太赫兹倍频器在输出频率为126GHz下达到33mW的最大输出功率,在80mW~110mW的输入功率下转换效率约为32%,与传统CNC加工的倍频器具有相近的最大输出功率和转换功率。此研究成果以题为“125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography”发表在会议期刊《IEEE Transactions on Terahertz Science and Technology 》上。

倍频成像相关的方案

倍频成像相关的论坛

  • 【求助】请问倍频的概念?

    请教各位大虾,倍频是个什么概念啊,为什么会出现倍频?还有做共振散射(RLS,有的说是RRS,又有何区别?)要注意什么,该什么做?小弟处涉荧光,不太董,还请不吝赐教。

  • he-ne激光倍频

    我由于实验的需要想把,he-ne激光器发出的633nm的激光倍频成316.5nm,我手头有一个把1064nm倍频为532nm的倍频晶体,不知到对氦氖激光也适用,请指点一下

  • 【求助】倍频峰产生原理

    求助,关于倍频峰,有的说由基态跃迁至第二、三振动能级所产生的吸收峰,称为倍频峰;有的说是光栅二级衍射造成的,请问哪种说法是对的?多谢呀

倍频成像相关的资料

倍频成像相关的仪器

  • 三倍频变压器技术参数输入电压三相380V 50Hz 正弦波输入电流7.6A输出电压0-500V 150Hz 波形失真≤5%输出电流5.7A输出容量5kVA空载运行时间≤5分钟负载运行时间40~60S海拔高度≤1000m环境温度-10~+40℃相对湿度≤95%产品特征:1、可对电机及小型变压器的绕组进行感应试验;也可作为短时运行的150Hz电源用。2、采用三芯五柱结构,将铁芯工作磁通密度选择在饱和磁密以上。本产品根据中国标准《GB311-61》和原水电部1985年1月发布的《电气设备预防性试验规程》,为满足电力系统对高压互感器倍频感应耐压试验设备的要求而设计的,以考核互感器的主、从绝缘强度,同时也可对电机及小型变压器的绕组进行感应试验;也可作为短时运行的150Hz电源用。采用三芯五柱结构,将铁芯工作磁通密度选择在饱和磁密以上,使开口接成三角形的次级绕组中的基波电势(正序向量)的向量和为0,而开口两端应出同相的150Hz三次谐波(零序)。产品别称:三倍频发生器、感应电压三倍频发生器、三倍频电源发生器、试验三倍频变压器装置、三倍频感应耐压发生器、三倍频试验变压器、三倍频试验仪、三倍频感应耐压仪、电压互感器倍频交流耐压试验仪、三倍频变压器
    留言咨询
  • Avesta+AFsG+倍频器 400-860-5168转3067
    倍频器 ASG, ATSG,AFsG和AMG二倍频模块(三倍频、四倍频)的功能是通过倍频转换输入波长。输入波长可以从720nm -1600nm,工作原理是利用倍频技术产生稳定的激光源,在飞秒量级的应用中具有较好光束质量和优秀的脉冲扩展。 产品特色:高转换效率小离散角小光束发散角 不发热 产品一览表:产品型号输入波长范围二倍频输出三倍频输出四倍频输出转换效率ASG720-1600 nm360-800 nmnonoSH: 20-50%ATsG 750-1600 nm375-800 nm250-533 nmnoSH: 20-50% TH: 3-15%AFsG820-1600 nm410-800 nmno205-400 nmSH: 20-50% FH: 3-10%AMG780-1600 nm390-800 nm260-533 nm195-400 nmSH: 30-60% TH: 5-10% FH: 1-10% 产品详细参数详情:ASG. 二倍频器二倍频用于上转换(倍频)飞秒激光源的固有频率。ASG-O(for oscillators)ASG-A(for amplifiers)可实现的输入波长范围*720-1600 nm输入波长调谐范围**50-100 nm输出波长***360-800 nm输入脉宽20 fs输入偏振linear, horizontal输出偏振linear, vertical输入平均功率0.1-3 W10 W输入脉冲能量2 uJ2 uJ - 10 mJ输入光斑直径1/е^22 mm10 mm转换效率****20-50%30-50%脉冲展宽100 fs尺寸280x140x190 mm* - may be covered by several exchangeable optics sets, please indicate the desired wavelength range upon your request ** - typical with one optics set, depends on exact central wavelength and pulse duration *** - defined by input wavelength **** - defined by input pulse energy and input pulse duration. ATsG.二倍频、三倍频器(用于飞秒激光)ATsG-O(for oscillators)ATsG-A(for amplifiers)可实现的输入波长范围*750-1600 nm输入波长调谐范围**50-100 nm输出波长***375-800 nm (SH)250-533 nm (TH)输入脉宽20 fs输入偏振linear, horizontal输入平均功率0.3-3 W10 W输入脉冲能量2 uJ2 uJ - 10 mJ输入光斑直径1/е^22 mm10 mm转换效率****20-50% (SH)3-8% (TH)30-50% (SH)8-15% (TH)脉冲展宽100 fs (SH)200 fs (TH)100 fs (SH)180 fs (TH)输出偏振SH - linear, vertical ТГ - linear, horizontal尺寸480x222x192 mm* - may be covered by several exchangeable optics sets, please indicate the desired wavelength range upon your request ** - typical with one optics set, depends on exact central wavelength and pulse duration *** - defined by input wavelength **** - defined by input pulse energy and input pulse duration. AFsG. 二倍频、四倍频器(用于超快激光)AFsG-A-1045 二倍频和四倍频用于Yb-Doped 固态和光纤放大系统AFsG-O(for oscillators)AFsG-A(for amplifiers)可实现的输入波长范围*820-1600 nm输入波长调谐范围**50-100 nm输出波长***410-800 nm (SH)205-400 nm (FH)输入脉宽50 fs输入偏振linear, horizontal输入平均功率0.3-3 W10 W输入脉冲能量2 uJ2 uJ - 10 mJ输入光斑直径1/е^22 mm8 mm转换效率****20-50% (SH)3-8% (FH)30-50% (SH)5-10% (FH)脉冲展宽100 fs (SH), 1000 fs (FH)输出偏振SH - linear, vertical FH - linear, horizontal尺寸480x222x192 mm* - may be covered by several exchangeable optics sets, please indicate the desired wavelength range upon your request ** - typical with one optics set,depends on exact central wavelength and pulse duration *** - defined by input wavelength **** - defined by input pulse energy and input pulse duration. AMG.二倍频、三倍频、四倍频模块AMG-A-1030多倍频器用于1um放大器 AMG-A(for amplifiers)可实现的输入波长范围*780-1600 nm输入波长调谐范围**50-100 nm输出波长***390-800 nm (SH)260-533 nm (TH)195-400 nm (SH)输入脉宽50 fs输入偏振linear, horizontal输入平均功率10 W输入脉冲能量0.2-10 mJ输入光斑直径1/е^28 mm转换效率****30-50% (SH), 5-10% (TH), 1-10% (FH)脉冲展宽100 fs (SH), 250 fs (TH), 1000 fs (FH)输出偏振linear: SH - vertical TH - horizontal FH - vertical尺寸480x222x192 mm* - may be covered by several exchangeable optics sets, please indicate the desired wavelength range upon your request ** - typical with one optics set, depends on exact central wavelength and pulse duration *** - defined by input wavelength **** - defined by input pulse energy and input pulse duration.
    留言咨询
  • 主要用途及适用范围HY128系列声级计是一款数字化多功能声级计,设计用于测量各类噪声的频率计权和时间计权声压级、等效连续声级、暴露声级、统计声级等多种声学评价量,它具有积分平均、积分并行、统计分析、24h测量、1/1倍频程、1/3倍频程和室内噪声7种工作模式供用户选择,仪器还提供选择低频计权,用于二次辐射噪声测量。HY128系列声级计符合国家标准GB/T 3785.1-2010和国际标准IEC 61672-1:2013 《声级计》 、GB/T15952-2010和IEC61252:2002《个人声暴露计规范》 、GB/T 3241-2010和(IEC 61260:2014,《倍频程和分数倍频程滤波器》的要求。结构传播噪声(室内噪声)符合《GB 22337-2008 社会生活环境噪声排放标准》和GB 12348-2008 《工业企业厂界环境噪声排放标准》的要求,二次辐射噪声符合《JGJ/T 170-2009 城市轨道交通引起的建筑物振动与二次辐射噪声限值及其测量方法标准》的要求,24h噪声监测符合GB 3096-2008《声环境质量标准》和HJ 640-2012《环境噪声监测技术规范 城市声环境常规监测》的要求,环境监测点编码符合HJ 661-2013《环境噪声监测点位编码规则》的要求。HY128系列声级计是一款功能强大、性能卓越的手持式仪器,适用于各类噪声长时间的、可靠并精确的测量,它内带8G的SD卡,标配5号电池供电,同时用户可根据需求,选配公司提供的充电宝电源供电。仪器还具有录音、定时关机、GPS定位等功能,它适用于机电产品噪声、环境噪声、交通噪声、工业卫生、作业场所噪声等现场测量。为满足不同用户要求,HY128系列具有各种不同型号及配置,见下表。型号及配置号性能等级积分平均统计分析24h测量积分并行室内噪声1/1倍频程1/3倍频程HY128(基本型)1级√√√HY128配置11级√√√√√HY128配置21级√√√√√√HY128 配置31级√√√√√√√HY128A1级√√HY128(基本型)2级√ √√HY128B配置12级√√√√√√HY128C2级√√ 主要技术参数&Yuml 传 声 器:HY205型预极化电容式2级工程测量传声器 或HY207型预极化电容式1级工程测量传声器,自由场型频率响应,标称直径12.7 mm,标称声压灵敏度为50 mV/Pa(标称声压灵敏度级为-26 dB,参考值为1 V)。&Yuml 频率范围:10Hz-20kHz(1级),20Hz-20kHz(2级)。&Yuml 频率计权:A计权、C计权、Z计权,&Yuml 时间计权:F(快)、S(慢)、I(脉冲)。&Yuml 低频计权:16Hz~200Hz(用于二次辐射噪声测量)&Yuml 测量范围:30dB(A)-130dB(A), 40dB(C)-130dB(C) ,45dB(Z)-130dB(Z) &Yuml 性能等级:1级声级计的性能达到GB/T3785和 IEC61672 1级的要求,2级声级计的性能达到GB/T3785和 IEC61672 2级的要求。&Yuml 预置时间:手动设置,测量持续时间为 3 s~99 h 59 min 59 s。&Yuml 显示器:128×128点阵式液晶显示器(LCD),分辨力0.1dB,显示 Lp、Leq、LAE、L5、L10、L50、L90、L95、Lmax、Lmin、LCpeak等参数,还可显示1/3倍频程和1/1倍频程频谱图。同时具有过载、欠量限、电池电压低落等标志。&Yuml 滤波器:内置1/3倍频程和1/1倍频程。&Yuml 11个1/1倍频程滤波器中心频率:16 Hz、 31.5 Hz、63 Hz、125 Hz、250 Hz、500 Hz、1 kHz、2 kHz、4 kHz、8 kHz和16 kHz。&Yuml 32个1/3倍频程滤波器中心频率:16 Hz 、20 Hz、25 Hz、31.5 Hz、40 Hz、50 Hz、63 Hz、80Hz、100Hz、125Hz、160 Hz、200Hz、250Hz、315Hz、400Hz、500Hz、630Hz、800Hz、1 kHz、1.25 kHz、1.6 kHz、2kHz、2.5 kHz、3.15 kHz、4 kHz、5 kHz、6.3 kHz、8 kHz、10 kHz、12.5 kHz、16kHz和20kHz。&Yuml 模拟输出:输出插孔为3.5 mm双声道耳机插孔,最小负载阻抗10 kΩ。——直流电压输出:15 mV/dB,在整个测量范围内为450 mV~1950 mV,(即对应于测量范围的上限130 dB时为1950 mV,下限30 dB时为450mV)。——交流电压输出:输出电压与被测声压成线性关系,对应于测量范围上限,输出电压的方均根值为2.0V。&Yuml 数据输出连接器:数据输出USB B型插座,可连接PC程序,进行数据分析。&Yuml 打印输出连接器:输出接头为DB9型公头(针式),RS232 串行通讯口,输出 ASCII 码,外接 RD-V32-SN型便携式微型热敏打印机。&Yuml SD卡:8G。&Yuml 电源:2节5号电池或公司为本产品提供的专用充电宝。&Yuml 外形尺寸:长×宽×厚 210mm×68mm×31 mm。&Yuml 重量:210g。&Yuml 工作温度范围:1级声级计:-10℃~50℃,2级声级计:0℃~40℃。
    留言咨询

倍频成像相关的耗材

  • 高功率高效倍频模块
    该高功率高效倍频模块在765nm和805nm范围内实现了超过5瓦的光功率,并具有70%以上的转换效率(其他波长也可用),可用于量子技术装置、遥感雷达和生物光子学应用。 高功率高效倍频模块高达5W的激光暑促在以前是难以达到的。这个紧凑的高功率高效倍频模块能够高能效的产生几个瓦的光功率,具有卓越的输出光束质量和高光学稳定性,为功率为几瓦的高性能激光发射的现场或车载应用奠定基础。高功率高效倍频模块无论输入功率是什么水平都能够高效实现这种转换,并具有优良的光学质量。几百兆赫兹的快速可调性和一个强大而积极的稳定方案,为该模块提供了良好的稳定性。虽然这种高功率高效倍频模块作为一个独立的设备提供,我们也可以为全集成机架提供完整的激光系统,包括一个高性能种子激光器和一个放大级倍频单元,以及专用的超低噪声电子器件,组成一个开箱即用的解决方案。 高功率高效倍频模块参数 中心波长:765-805nm 最大输出功率:5W 转换效率:70%功率稳定性:1%@2小时 可接受光谱范围:15nm 线宽:25KHz @ ECDL种子激光器 偏振:线偏振,消光比30dB光束质量:TEM00,M21.1
  • HS5721型分数倍频程滤波器
    HS5721型分数倍频程滤波器 产品介绍性能:滤波器符合GB/T3241和IEC61260标准。 用途:各种机器、车辆、船舶电器等工业噪声、吸隔声材料测量,适用于工业企业、教学、科研等领域。 特点: ●采用开关电容滤波器形式。 ●内置1/1、1/3、1/6倍频程滤波器,可以手动选择滤波器中心频率。 ●采用大屏幕16× 2点阵字符LCD显示,显示清晰直观。 ●具有与计算机连接控制功能。 频率范围:20Hz~20kHz 滤波器频率范围: 1/1 31.5Hz--16KHz 共10挡 1/3 20 Hz --20 KHz 共31挡 1/6 20 Hz --20 KHz 共62挡 参考衰减: 0及20dB 参考输入电平: 1VRMS 最大输入电平: 1.6VRMS
  • HS5731型1/3倍频程滤波器
    HS5731型1/3倍频程滤波器符合IEC225和国家标准(GB)的各项要求。与HS5670声级计连用,可进行中心频率从25&mdash 20,000Hz(30个通带)的频率分析。本仪器通过面板按钮手工操作可选择要测量的频率。与声级计配合使用时,转换声级计开关,能直接读出通带声级的值。此外,和电平记录仪连用,还能自动地进行噪声分析和记录。 二、HS5731型1/3倍频程滤波器特点 1、频率范围:25&mdash 20,000Hz(30个通带) 2、直接连接HS5670声级计提供的同步输入/输出信号,无需外接电缆 3、频率转换由按键控制电子开关进行。如在测量中使用&ldquo 线&rdquo 性特性,可按&ldquo ALL PASS&rdquo 键。 4、通常在声级计的&ldquo FLAT&rdquo 特性进行频率分析;而使用本滤波器时则用&ldquo A&rdquo 计权性进行。 5、与电平记录仪连接,可与记录仪同步地进行自动的频率分析。 6、由HS5670声级计内电源供电。 7、按下&ldquo GAIN&rdquo 按钮能把信号放大20dB,这样能读出更低的声压级值。 三、HS5731型1/3倍频程滤波器主要技术指标 适用标准:IECDUB225,ANSIS1,II CLASS11。 中心频率:25,31.5,40,50,63,80,100,125,160,200,250,315,400,500,800,1K,1.25K,1.6K,2K,2.5K,3.15K,4K,5K,6.3K,8K,10K,12.5K,16K,20K及&ldquo ALL PASS&rdquo 。 测量范围:大于50dB 中心频率选择:手动&ldquo 按钮&rdquo 或用一台能借助二进制码选择所需要的滤波器的电平记录仪来同步。 中心频率显示:31个发光二级管指示 电源:由声级计电源提供 尺寸与重量:5× 10× 8cm3,7kg

倍频成像相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制