超声神经调控

仪器信息网超声神经调控专题为您整合超声神经调控相关的最新文章,在超声神经调控专题,您不仅可以免费浏览超声神经调控的资讯, 同时您还可以浏览超声神经调控的相关资料、解决方案,参与社区超声神经调控话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超声神经调控相关的资讯

  • 深圳先进院跨尺度超声神经调控仪器研制取得新进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   日前,中国科学院深圳先进技术研究院在跨尺度超声神经调控仪器研制方面取得新进展。相关研究成果以 em A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation /em 为题,发表在神经工程专业期刊 em IEEE Transactions on Neural Systems and Rehabilitation Engineering /em (DOI:10.1109/TNSRE.2017.2765001)上。2017年11月9日《自然》杂志在“未来用于大脑的超声技术”综述文章中引用报道了这一由郑海荣团队研制的超声神经调控仪器,并称之为神经科学和脑疾病研究带来了新武器( em Nature /em , vol. 551, pp. 257-9)。 /p p   发展无创精准的新型神经调控技术一直是神经科学和脑疾病领域的迫切需求。超声波作为一种机械波,其力学效应控制神经元电活动新机制的发现,使无创地开展神经刺激成为可能。最新发现超声瞬态刺激在分子、细胞、动物和人脑水平的神经调控科学证据,证实了超声可以控制神经元的活动。超声还可以通过不同的强度、频率、脉冲重复频率、脉冲宽度、持续时间等参数,使刺激部位的中枢神经产生兴奋或抑制效应,从而使神经功能产生双向调节的可逆性变化。这些超声神经调控技术研究成果证实,超声对神经环路的调控机制和脑疾病的发病机理等基础科学问题的研究具有重要潜力,超声作为一种新型无创的神经刺激与调控技术,在脑科学研究和脑疾病干预方面展示出光明前景。 /p p   深圳先进院超声技术团队针对跨尺度超声神经刺激所需要的各种需求,设计开发了神经刺激的专用超声辐射力发射探头及电子设备。超声物理参数包括超声辐射力大小、作用方式、频率、脉冲重复频率、强度和脉冲持续时间等都可以自由调整。同时,该仪器也设置了输出输入同步功能,可以和其他神经电生理设备同步工作以完成神经刺激和信号采集的同步获取。该新型超声神经刺激仪已经初步实现了小动物脑神经调控以及非人灵长类大动物的神经环路调控。 /p p   此外,项目组同步开发了跨尺度、动态多焦点的超声神经调控装置,涵盖了细胞、小动物、灵长类大动物研究的多个仪器,并已经成功开发了2048通道的磁共振兼容超声神经调控系统,为多点动态深脑刺激研究提供了仪器基础。目前,微/小动物神经调控设备已经成功应用到了包括浙江大学、清华大学、上海交通大学、香港理工大学、美国南加州大学、中科院昆明动物研究所、上海生命科学研究院神经科学研究所和心理研究所等十多个国内外神经生物学与脑科学实验室,在超声神经调控及声感基因(声遗传)等关键技术研究中发挥关键作用。 /p p   上述研究工作得到国家自然科学基金委国家重大科研仪器研制项目支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171121603234843295.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4c4edba5-5fc1-400b-8f97-aa23e96d8d87.jpg" style=" border-left-width: 0px border-right-width: 0px border-bottom-width: 0px border-top-width: 0px" uploadpic=" W020171121603234843295.png" / /p p style=" text-align:center " (a-b)微尺度超声神经刺激芯片;(c)便携式单通道小动物超声神经刺激仪 /p p style=" text-align:center " img alt=" " oldsrc=" W020171121599227569946.png" src=" http://img1.17img.cn/17img/images/201711/uepic/92bc7715-b146-4f49-8cc1-7fcb6aa38bf6.jpg" / /p p style=" text-align: center " 千通道级别多点动态超声神经调控换能器及系统 /p
  • 当超声“碰到”神经元,脑科学有了新工具——记国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器”
    项目组科研人员与同行专家交流合影。 研究团队供图中国科学院深圳先进技术研究院(以下简称深圳先进院)实验室里,一台高精尖仪器一排排控制灯交替闪烁。一万多个探头发出超声波形成的操控声场,如同“上帝之手”穿过实验动物的颅骨,直抵大脑深处,精准“触碰”一些神经元,产生仅仅几微米的细微形变,被磁共振仪敏锐捕捉到。“亮了!亮了!”深圳先进院研究员郑海荣看到,磁共振图像上黑漆漆的实验动物大脑中间出现白色的小亮点,犹如在脑科学的未知宇宙中点亮一颗新的星球。2019年初,郑海荣团队迎来里程碑式的一天,这也是他们在国家自然科学基金国家重大科研仪器研制项目支持下开发“基于超声辐射力的深部脑刺激与神经调控仪器”的第4年。如今项目顺利结题,这台原创的高端科研仪器已进入产业化阶段。“科研需要一股不服输的韧劲!”回首研发历程,郑海荣向《中国科学报》表示,“6年来,一步步攻克科学难题、一个个突破工程难关,离不开整个团队攀登科学高峰的坚定信念和持久韧劲。”解脑科学“刚需”之急近年来,帕金森病、阿尔茨海默氏症、抑郁症、癫痫等脑疾病得到越来越多的关注,患者数量剧增,脑疾病带来的经济负担和社会负担越发严重,已成为我国人口老龄化面临的重要社会问题之一。然而,从科学上看,脑疾病发病机制仍不清晰,其诊治仍然是重大医学难题。“国际上脑科学研究者已经认识到,帕金森病、抑郁症等疾病多与深部脑区核团病变有关,对核团及其所在环路的神经调控是疾病治疗和科学研究的基本途径之一。”郑海荣表示。多年来,科学家将电、磁、光等技术与神经科学相结合,产生了脑深部电刺激、磁刺激、光遗传学等神经刺激与调控技术。但是,由于各自物理属性的不同,如何实现无创、精准对大脑深部进行有效调控仍面临严峻挑战。因此,脑科学面临的“刚需”是开发出一种适用于灵长类动物和人类、可无创到达大脑深部的刺激与调控工具。2013年前后,从事物理医学成像研究的郑海荣开始思考,有没有可能利用超声波来操控神经元活动。这个想法并不是天方夜谭。据了解,超声是一种机械波,医学上利用超声波在人体组织中的波散射来成像,就是大家熟悉的B超。早在几十年前,科学家曾观察到,超声波能够通过“声辐射力”让声场中的微小颗粒产生移动。不过,从来没有人尝试过专门设计一台这样的仪器,用超声波辐射力实现对大脑中神经元的“隔空探物”。基于此前对超声辐射力的研究,郑海荣团队下决心对“基于超声辐射力的深部脑刺激与神经调控仪器”进行自主研发,经多轮严格论证,2015年获得国家自然科学基金国家重大科研仪器研制项目支持。啃原创仪器“硬骨头”“虽然我们之前做过体量小一些的成像仪器,但这个项目从科学验证到工程实践面临的挑战非常大,刚开始心里也不太有底。”郑海荣坦承。一开始,他们就做好了啃“硬骨头”的打算。这台仪器共有4个关键部件,包括超声面阵辐射力产生与发射部件、超声电子指向与时间反演控制部件、磁共振导航超声刺激定位部件和多模态刺激反应监测部件。其中,超声面阵辐射力产生与发射部件中包含16384个阵元的面阵列超声辐射力发生器。“我们做的是原创仪器,不仅仪器国际上没有,连其器件和部件在国际市场上也买不到现成的,只能利用基础材料、元器件和芯片,在深圳自主设计、自主加工、自主调试和验证。”郑海荣介绍。更大的困难还在科学和工程上。他们遇到的第一道难题便是如何让超声波安全“穿过”颅骨。在体外实验阶段,研究人员已经实现了用面阵列超声换能器发射的声辐射力“点亮”神经元。为模拟动物体内环境,仪器部件被置于水中,如果跨过颅骨能“击出”水花则代表超声辐射力发挥作用。“外边(超声)打得挺激烈,(颅骨)里边却没丝毫动静、一点水花都没有,超声波几乎完全被颅骨散射和吸收了。”在前期屡败屡战的实验中,大家互相鼓励坚持下去。郑海荣说:“就像在挖一条隧道,没挖通之前总是黑暗笼罩,谁也不知道已经挖了多少,但只要确定大概的方向,坚持下去,终究会看到光明。”为打通这条“隧道”,他们回到科学理论中,引入非均匀多层介质中的“时间反演”理论,对每一个声信号通道的时空传播特征进行模拟、计算、调控与调试,实现各通道间纳秒级高精度控制,最终成功让上万个超声通道协同工作,“齐心协力”安全地穿过颅骨,精准聚焦在预定靶点,而且不引起脑组织损伤。一个通俗的解释是,就像北京2022年冬奥会开幕式《雪花》节目中,从节目结束时每位小演员的站位开始,通过“倒放”的方式确认每位小演员的出发时间、地点和行走路径。第二道难题是如何用核磁共振成像灵敏地检测到超声辐射力给神经元带来的4~5微米的精细变化。这事关刺激的精准,但超声本身“看不到”颅内自己的轨迹。为此,在项目支持下,他们坚持不懈开展攻关,发挥磁/声兼容的优势,创造性地研制了“快速磁共振射频激发与梯度编码成像技术、磁共振声辐射力成像技术”,用于监测超声辐射力刺激引起的微形变,有效地提高磁共振成像的时空分辨率和灵敏度,实现磁共振对于声波轨迹和靶点的敏感捕捉和可视化。2019年初,项目进行到第4年,研究团队终于解决这个问题,在“隧道”中迎来一束光明。合作才能融通高端科研仪器的研制不仅需要开创前沿科学理论,也要挑战诸多工程技术极限,只有团队相互协作、密切配合,才能实现共同的目标。该项目汇集了来自多家科研机构、不同学科背景的多个团队,70多位研究人员在统一的目标下开展分工合作。据郑海荣介绍,由他带领的深圳先进院团队主要承担超声辐射力高密度面阵辐射力发生器、万通道电子控制系统及实时磁共振刺激定位成像部件等仪器主体部分研制。强梯度声场设计工作主要由中国科学院声学研究所团队承担,刺激效果对标与标定工作由清华大学团队承担,神经生物学基础机制工作由浙江大学等团队承担,刺激的应用效果工作由首都医科大学、苏州大学团队承担。几年实践下来,多学科交叉团队形成了一套行之有效的工作机制和组织模式。“我们整个大仪器团队划分为12个小组,每周召开一次小组会,每月召开一次大组会,会议纪要有厚厚的几大本。”郑海荣介绍。研究成员表示,这样的机制形成了不同学科背景研究人员之间相互交流和学习、围绕同一目标共同攻关的良好氛围,为高效解决问题奠定了基础。如今,这台由中国科学家独创的高端仪器已经成为脑科学研究领域的“抢手货”。团队核心成员之一、深圳先进院研究员牛丽丽告诉《中国科学报》,目前已经有超过40家国内外科研机构使用了超声刺激仪器,主要应用在有癫痫、帕金森病、抑郁症、成瘾等疾病的小动物和非人灵长类大动物实验中,其有效性和安全性得到了验证。面向未来,让更多科学家用上这种仪器、助力人类脑疾病诊疗,是团队成员共同的期待。
  • “基于超声辐射力的深部脑刺激与神经调控仪器研制”项目交流会召开
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c5d7fbe2-cabb-46af-9480-850fcfaf5d28.jpg" title=" tpxw2017-10-30-01.jpg" / /p p   国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器研制”年度交流会议于2017年10月24日在深圳召开。来自国内相关专业的7位同行专家、3位项目监理专家、中国科学院条件保障与财务局领导以及基金委医学科学部有关人员参加本次年度交流会议。 /p p   专家组分别听取项目负责人郑海荣研究员以及子课题负责人的项目进展报告,并进行现场实地考察和认真讨论。专家组认为,该项目已完成阶段性目标,部分仪器已初步用于生物医学实验研究并获得较好成果,研究项目目前进展良好,同时针对项目实施中存在的问题给出意见和建议。国家重大科研仪器研制项目旨在鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,期望该研究能为医学科学研究提供新颖的手段和工具。 /p

超声神经调控相关的方案

超声神经调控相关的论坛

  • 【转帖】神经网络电活动增强快速调控抑制性突触稳态可塑性的分子机制

    神经网络电活动增强快速调控抑制性突触稳态可塑性的分子机制 于翔研究组发表了题为“Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling”的文章,文中阐述了神经网络电活动增强快速调控抑制性突触稳态可塑性的分子机制,这一研究成果公布在The Journal of Neuroscience杂志封面上。发育中的神经网络需要兼顾生长与稳定这两种相辅相成的需求。稳态可塑性可通过调节兴奋性或抑制性突触传递从而维持神经网络的稳定。已报道的关于稳态可塑性机制方面的研究主要集中在其对兴奋性突触传递的调节,很少关注其对抑制性突触的调控。研究人员发现,在体外培养的海马神经元中,持续增强神经元电活动4小时能够诱导抑制性突触传递的稳态上调,且这一过程明显早于兴奋性突触的变化。抑制性突触传递的稳态调节依赖于突触后神经元自身电活动的改变,是一种自我调节方式。这种调控通过突触后神经元分泌的脑源性神经营养因子(BDNF)逆突触作用于突触前的抑制性神经末梢,从而增强其自身的抑制性突触输入。重要的是,对幼年大鼠腹腔注射红藻氨酸,从而在体增强神经电活动,能够在海马CA1区域的锥体神经元中诱导出这种抑制性突触传递的稳态调控。这些结果提示,抑制性突触传递的自治性稳态调控是神经元应对网络电活动增强的一个快速代偿性保护反应。

  • 为什么国家房价越调控,房价越长的厉害呢

    [color=#333333]为抑制房价出现过快上涨苗头,近期各地陆续加大房地产调控力度,不断出台新政策、新措施。同时,住房租赁市场建设稳步推进。一系列举措表明地方政府坚持调控的信心和决心不会动摇,“房子是用来住的,不是用来炒的”这一定位不会改变!为什么国家越调控,房价越长的厉害呢?[/color]

  • 【科技前沿】全球最小剪刀问世:长3纳米可调控基因

    据国外媒体3月27日报道,提起机器,许多人可能马上会联想起那些钢铁铸造的大家伙,伴随着庞大的体积与轰鸣的马达声。但是,在微观世界里,还有一种科学家正潜心研制的超微小机器--分子机器。它们的尺度只有纳米(十亿分之一米)大小,但是却有望为人类带来许多福祉。日本科学家创造出了世界上最小的剪刀——分子剪刀,剪刀通过光就能启合。研究人员表示,这种新颖的剪刀可能有助于调控基因、蛋白质和人体内的其他分子。剪刀仅3纳米或十亿分之一米长,比紫色光的波长还要小100倍。这种分子装置是由东京大学的研究人员设计而成的,就像真正的剪刀一样,它也是由枢轴、手柄和刀片组成。研究人员将他们的发明公布于25日在芝加哥举办的美国化学学会年会上。 刀片由碳、氢构成的苯基环制成,枢轴是一种叫做手征性二茂铁的分子,它的结构基本上像一个三明治,是一个圆形铁原子处在两个碳原子板之间。碳原子板能围绕铁原子自由旋转。手柄是亚苯基团的有机化学结构。它与一种对光有反应的分子——偶氮苯连在一起。当可见光照在此剪刀上后,偶氮苯就会张开,从而让把柄打开,刀片合上。但是,当紫外线光照射剪刀时,会产生相反的效果。 研究人员声称,他们的剪刀可以像钳子一样牢牢地抓住分子,操控分子,也就是说能来回扭曲分子。研究人员阿伊达说:"这是首个分子机器能通过光来操作其他分子,这种工作的原理对于未来分子机器人的发展有着重要的作用。" 研究人员目前还在开发能够遥控操作的一把更大的分子剪刀。东京大学的一位研究人员Kazushi Kinbara说:"此剪刀能用于身体内部,可以通过近红外线操作,能进入人体更深的部分。" [color=red]【由于该附件或图片违规,已被版主删除】[/color]

超声神经调控相关的资料

超声神经调控相关的仪器

  • 离子辐照磁性精细调控系统Helium-S法国Spin-Ion公司成立于2017年,源自法国研究中心/巴黎-萨克雷大学的知名课题组,在磁性材料的离子束工艺方面有20年的经验,拥有4项和40多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S,采用创新的离子束技术,可以通过超紧凑和快速的氦离子束设备控制原子间的位移,使其能够在原子尺度上加工材料,并通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业用户以及合作伙伴使用该技术。2020年Spin-Ion公司在国内安装了套Helium – S系统,其有的技术正吸引来自相关科研圈和工业领域越来越多的关注。应用领域:- 磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM),自旋轨道矩磁性随机存储(SOT-MRAM),磁畴壁磁性随机存储(DW-MRAM)等;- 自旋电子学:斯格明子,磁性隧道结,磁传感器等;- 磁学相关:磁性氧化物,多铁性材料;- 其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等。产品特点:- 可通过超紧凑和快速的氦离子束设备控制原子间的位移,通过氦离子辐照可调控磁性薄膜或晶圆的磁学性质。- 可提供能量范围:1-30 keV的He+离子束- 采用创新的电子回旋共振(ECR)离子源- 可对25 mm的试样进行快速的均匀辐照(几分钟)- 超紧凑的设计,节省实验空间- 可与现有的超高真空设备互联基本参数:离子束种类• 氦离子 (He+)• 可能产生的离子 : 氢离子 (H+)能量范围 • 1-30 keV• 分辨率50 eV典型离子通量在10 μA时,1015 离子数 /平方厘米/分钟电流范围1-50 μA (按能量不同)离子束滤波器维恩滤波器离子束扫描• X-Y双轴位移• 扫描区域: 25 mm x 25 mm均匀性• 强度:+/- 1%• 角度:+/- 3°离子束纯度1/10000真空度大10-7 mbar尺寸• 超紧凑设计• 长度1.5 m软件• 可实现离子束参数的全面控制• PLC控制辐照腔可对25mm晶圆进行辐照高温转角选件可控制不同的辐照角度,可加热温度至500°C快速进样室选件(Load lock)和辐照腔集成,可过渡25 mm晶圆大小样品测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化部分用户单位:Beihang University (China)University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Nanyang Technological University and A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany)部分发表文章:• Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nanoletters, 21, 7, 2989–2996, (2021)• Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)• Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)• Magnetic field frustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)• Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)• Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)• Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)• Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)• Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)• Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)• Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)• Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)• Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)• Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)• Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)• Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)• Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)• Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)
    留言咨询
  • 温度调控箱 400-860-5168转1263
    仪器简介:经营范围 恒温恒湿箱 恒温恒湿机 湿热试验箱 高低温试验箱 恒温恒湿试验机 恒温恒湿试验箱 高低温交变湿热试验箱 冷热冲击试验机 高低温冲击箱 精密烘箱 ;高温箱;工业烤箱;电热鼓风干燥箱;恒温箱;盐雾试验箱 盐雾试验机 盐雾腐蚀试验箱 蒸汽老化试验机 老化试验机 UV紫外线加速老化试验机 跌落试验机 振动试验机 试验箱专用控制器等技术参数:C系列高低温箱,高低温恒温试验机,低温箱,超低温试验机,东莞高低温恒温箱,温度调控箱的详细资料: 高低温恒温试验箱 微电脑触控式高精度控制器信高稳定度之白金测温抵抗体,配合合乎温度测试标准之风速循环系统,达到均匀、准确、稳定的恒温控制 二、型号: (H,R,L,S,U)C-80(120,150,225,306,408,800,1000) 三﹑技术参数: 1﹑温度范围:H:0℃(R:-20℃,L:-40℃,U:-60℃,S: -70℃)~+100℃(+150℃) 2、波动度/均匀度:&le ± 0.5℃/&le 2℃ 3、升降温速率:0.7~1℃/min (3℃/min、5℃/min、10℃/min) 4、电源:220V· 50Hz/380V· 50Hz 5、工作室尺寸(W× H× D)mm: 400X500X400 500X600X400 500X600X500 500X750X600 600X850X600 600X850X800 1000X1000X800 1000X1000X1000 6、外型尺寸(W× H× D)mm: 1000X1430X850 1000X1530X850 1000X1530X950 1100X1780X1050, 1100X1780X1250 1500X1930X1450 四﹑机台配置: 1、冷热交换系统 保温材料:岩棉及硬质PU发泡保温 冷却器:多级膜片式蒸发器 空气循环:单循环、加长轴、不锈钢离心风叶 制冷方式:单元制冷方式/双元(复迭)制冷方式 压缩机:法国&ldquo 泰康&rdquo 全封闭制冷压缩机 供水系统:风扇强制循环对流 加湿度稳定度:± 0.2℃ ± 2%RH 2、控制系统 安保装置:漏电保护、超温保护、快速保险丝、压缩机过压保护 标准配置:不锈钢可调式隔板两组,真空玻璃透视窗,测试孔,操作室内灯,移动轮,控制批示灯 五、结构特点: 1内、外壳采用SUS304#不锈钢,采用进口SUS油发纹板式宝钢钢板喷涂。 2、控制系统:原装进口高精密数显仪表,进口执行元器件。 4、原装进口的制冷系统。 5、多种安全保护装置。 产品相关关键字:高低温箱,高低温恒温试验机,低温箱,超低温试验机,东莞高低温恒温箱,温度调控箱
    留言咨询
  • GMS150高精度气体调控系统可以将最多4种不同气体进行精确混合。每路输入气体的流量使用热式质量流量计精确测量,并由内置的质量流量控制器进行精准控制,输出的是完全混合的均质气体。气体输入输出使用Prestolok快速安全接头,保证使用过程中的便捷性与安全性。GMS150高精度气体调控系统可用于二氧化碳、氮气、一氧化碳、甲烷、氨气以及其他气体的浓度控制。GMS150高精度气体调控系统分为GMS150版和GMS150-MICRO版,其中GMS150版精度更高,GMS150-MICRO版可调控流速更大。应用领域 与植物培养箱、光养生物反应器等联用,进行精确气体控制培养 模拟不同CO2浓度环境,研究温室效应对植物/藻类的影响 研究CO2浓度与光合作用的关系模拟烟气等有害气体对植物/藻类的影响研究植物/藻类对有害气体的处理与利用技术参数:测量原理:热式质量流量测量法可调控气体:空气、氮气、二氧化碳、氧气、一氧化碳、甲烷、氨气等干燥纯净、无腐蚀性、无爆炸性气体,气源需用户自备调控通道:标配为2通道,通道1为Air-N2,通道2为CO2,最多可扩展为4通道工作温度:15-50℃输入/输出接头:Parker Prestolok接头(6mm)输入压力:3-5bar密封:氟化橡胶显示屏:8×21字符液晶显示屏尺寸:37cm×28×15cm供电:115-230V交流电可联用仪器:FMT150藻类培养与在线监测系统、MC1000 8通道藻类培养与在线监测系统、FytoScope系列智能LED光源生长箱、用户自行设计的培养箱或反应器(可提供气路连接方案)等 与中科院海洋所自行设计的培养装置联用的GMS150GMS150版调控参数: 最小流量范围:0.02 - 1 ml/min最大流量范围:20 - 1000 ml/min可定制流量范围:可在最大流量和最小流量之间定制。标准配置通道1(Air-N2): 20-1000 ml/min;通道2(CO2): 0.4-20 ml/min;可调控CO2浓度0.04% - 100%(实际调控浓度与流量有关)精度:±0.5%,加全量程±0.1%(3-5ml/min为全量程±1%,<3ml/min为全量程±2%)稳定性:全量程±0.1%(参考1ml/min N2)稳定时间:1~2s 预热时间:30min预热达到最佳精度,2min预热偏差±2% 温度灵敏度:0.05%/℃ 压力灵敏度:0.1%/bar(参考N2)姿态灵敏度:1bar 压力下与水平面保持90°最大误差0.2%(参考N2) 重量:7kg GMS150-MICRO版调控参数:最小流量范围:0.2 - 10 ml/min最大流量范围:100 - 5000 ml/min可定制流量范围:可在最大流量和最小流量之间定制。标准配置通道1(Air-N2): 40-2000 ml/min;通道2(CO2): 0.8-40 ml/min;可调控CO2浓度0.04% - 100%(实际调控浓度与流量有关) 精度:±1.5%,加全量程±0.5%重复性:流量20 ml/min为全量程±0.5%,流量20 ml/min为实际流量±0.5%稳定时间:1s预热时间:30min预热达到最佳精度,2min预热偏差±2%温度灵敏度:零点0.01%/℃,满度0.02%/℃姿态灵敏度:1bar 压力下与水平面保持90°最大误差0.5 ml/min(参考N2)重量:5kg 应用案例:与FMT150藻类培养与在线监测系统联用研究蓝藻Cyanothece sp. ATCC 51142 的超日代谢节律(Cerveny, 2013, PNAS)产地:欧洲 参考文献:1. Sarayloo E, et al. 2018. Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresource Technology, 250: 764-7692. Mitchell M C, et al. 2017. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. Journal of Experimental Botany, 68(14): 3891-39023. Hulatt C J, et al. 2017. Polar snow algae as a valuable source of lipids? Bioresource Technology, 235: 338-3474. Jouhet J, et al. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS ONE 12(8): e01824235. Angermayr S A, et al. 2016. Culturing Synechocystis sp. Strain PCC 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. Appl. Environ. Microbiol., 82(14):4180-41896. Acu?a A M, et al. 2016. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. Photosynthesis Research, 130(1-3): 237-249
    留言咨询

超声神经调控相关的耗材

  • inlab超声 配件
    1 支持超声萃取/超声清洗2 可以设置超声时间/超声功率3 全自动放入/取出样品
  • 超紧凑显微操作器MO-903B
    超紧凑显微操作器MO-903B是NARISHIGE公司MO-903显微操作器的一部分,它的粗调控制控制可以让微电极的初始定位靠近目标点,而精细控制可以实现精细朝向目标点。超紧凑显微操作器MO-903B特点可以通过手动操纵或用附带的六角扳手控制精细控制旋钮,与MO-903A组合使用,可以进行粗调,微调显微操作。(参考MO-903)可以放置在网格外周任何给定的位置上(MO-903C)。 超紧凑显微操作器MO-903B规格 配件 通用扳手 移动范围 精细控制 Z轴10mm 全方位旋转旋钮 300μm 大小/重量 W11 × D4 × H20mm, 2g
  • 迈瑞超声探头
    迈瑞各种超声探头,V11-3超声探头,有需要请来电联系确认。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制