超高分辨图像

仪器信息网超高分辨图像专题为您整合超高分辨图像相关的最新文章,在超高分辨图像专题,您不仅可以免费浏览超高分辨图像的资讯, 同时您还可以浏览超高分辨图像的相关资料、解决方案,参与社区超高分辨图像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超高分辨图像相关的资讯

  • 化学所“超高分辨率荧光显微镜”获得方解石中超高分辨率蛋白图像
    近日,记者从中科院化学所获悉,该所胶体、界面与化学热力学重点实验室李峻柏课题组利用其开发的“超高分辨率荧光显微镜”,观测到生物矿化过程中参与结晶的蛋白质分布信息。论文在《德国应用化学》上刊发。  “超高分辨率荧光显微镜”可以超越远场光学显微镜的分辨率极限,直接检测到几十纳米的精细结构。而与能达到相同或更高分辨率的X光显微镜、各类电子显微镜及原子力显微镜相比,超高分辨荧光成像能在常温常压和基本不损伤生物样本活性的条件下,获得其纳米尺度的图像信息。  研究人员介绍,“超高分辨率荧光显微镜”又称为随机光学重建显微镜(STORM),可达到或好于50纳米分辨率。在前期研究中,李峻柏课题组在超高分辨图像采集和数据分析方面发展了实时单分子定位的程序包SNSMIL,该程序包可广泛应用于高背景成像的数据分析。  他们利用STORM观测到方解石中生物矿化过程中参与结晶的蛋白质分布信息,为研究蛋白质诱导生物矿化的机理提供了数据。
  • 获取复杂样品超高分辨图像及图形的分析统计数据
    现如今对材料进行微观形貌表征时,仅仅看到清晰的形貌是远远不够的,针对有重复结构的材料,如多孔,颗粒等结构的样品,还需对图片中的孔洞或颗粒进行统计与分析,比如统计总数,大小,尺寸等,获得量化结果,辅助研究。硫酸铝矿孔径分布测量当我们对多孔硫酸铝样品进行观察,孔径尺寸大约在10nm左右,由于孔径尺寸非常小,想要清晰的观察到孔的形貌,需要使用超高分辨场发射扫描电镜Regulus8200观察,利用其低加速电压下高分辨率的特点,轻松获取高倍清晰图片。由于图像里的孔与背景亮度对比度的不同,使用Image Pro图像分析软件对感兴趣区域框选,软件可通过信号的强弱分离孔洞并自动测量硫酸矾石的孔径分布(图2)及定量数据。图2中的图表是平均孔径的直方图。当我们分析数据时,可以选取一个孔(图2中的粉红色箭头)时,您可以看到它在直方图中的位置(红色圆圈)。或者在直方图中选择一个条柱(图 3 中的粉红色箭头)时,您可以看到所选条柱包含哪些孔(Brue 字符)。统计数据直方图如图4所示。高容量硬盘驱动器(HDD)中的,磁性颗粒粒度分析高容量硬盘驱动器(HDD)中的磁性颗粒会随着记录密度的提高而变小。然而,较小的磁性颗粒可能会产生较小的矫顽力,因此会妨碍稳定的记录。因此,评估晶粒尺寸和晶粒间距对于实现和保持稳定的HDD性能非常重要。图5(a)显示了配置高容量HDD的磁盘上磁性颗粒的BSE图像。通过使用YAG-BSE探测器拍摄70万倍的高分辨图像,并从中获取颗粒的形状。在对图像上的颗粒进行分析时,首先这些晶粒被识别为感兴趣区域(ROI),使用Image-Pro 10图像处理软件将晶界和背景进行分离,如图6(b)所示。尽管BSE图像因为通道效应导致每一个颗粒对比度和亮度不均匀,但依然可以稳定地对颗粒直径或面积定量分析,因为这些颗粒是通过信号强度提取的,另外还通过其形状和大小提取的。图7(c)是磁性晶粒直径的柱状图。超高分辨冷场扫描电子显微镜Regulus8200和图像分析软件Image-Pro 10的组合可实现HDD的高分辨率成像和定量图像分析,帮助HDD在增强记录密度的研究中。Regulus8200 "Regulus系列"扫描电子显微镜(SEM)被广泛应用于纳米技术,半导体电子行业,生命科学,材料科学等领域的材料结构观察。仅仅具有超高分辨率还远远不够。还要求能在低加速电压下对表面细微结构的观察和高灵敏度的元素分析。发挥高性能,高稳定性,轻松获取高倍清晰图片。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 新型“光子钩”可助显微镜获取超高分辨率图像
    p   俄罗斯托木斯克理工大学、圣彼得堡国立信息技术、机械与光学大学(ITMO )、英国班戈大学、以色列本· 古里安大学的联合研究团队获取了一种新型人造弯曲光束,学者们称之为“光子钩”。此前,科技界仅知道一种艾里弯曲光束。“光子钩”可以用于显微镜学以获取超高分辨率图像,科学家们表示它可以作为纳米粒子的操纵者并移动它们。研究结果发布在《Optics Letters》(IF 3.416 Q1)和《Scientific Reports》(IF 4.259 Q1)杂志上。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/b060d960-7e2c-4dde-a5c4-2ca6501025de.jpg" title=" 1.png" / /p p style=" text-align: center " 艾里弯曲光束 /p p   已知的艾里弯曲光束中,光是以抛物线形式传播的。科学家们认为,这种光束的获取和在显微镜中的使用均极其复杂。以前人们普遍认为,除了艾里光束,其它类型的弯曲光束是不存在的。现在科学家们成功获得了新的弯曲光束,并对光子射流基弯曲光束制取原理申请了专利。 /p p   在《Optics Letters》杂志上发表的相关文章里描写了“光子钩”的特性。为了在实验中获取光束,使用了带对接棱镜的立方体颗粒。当光束辐射在颗粒末端时,棱面及颗粒内部就会产生衍射。由于棱面内部和棱面附近相速度的差异,会形成下降波峰,它们聚集在电介质颗粒粒子的出口处。由于一个棱面是倾斜的,所以波与波之间互相干扰,在局部区域获取弯曲光束。弯曲光束可以在光压作用下实现纳米粒子的移动,越过障碍物。 /p p   新型弯曲光束在生物学、医学及其新材料制造中的细胞操纵领域拥有广泛的应用前景。ITMO纳米光机械学的课题组完成了上述弯曲光束制取过程的数学模拟。 /p

超高分辨图像相关的方案

超高分辨图像相关的论坛

  • 超高分辨显微镜及其在生物医学领域的应用

    [align=center][font='times new roman'][size=16px][b]超高分辨[/b][/size][/font][font='times new roman'][size=16px][b]显微镜及其在生物医学领域的应用[/b][/size][/font][/align][align=center][font='times new roman'][size=14px]刘皎[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][size=14px],[/size][/font][font='times new roman'][sup][size=14px] [/size][/sup][/font][font='times new roman'][size=14px]吴晶[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][/align][align=center]1. [font='times new roman']北京大学医药卫生分析中心,北京,[/font][font='times new roman']100191[/font][/align][font='times new roman'][b]摘要[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman']超高分辨显微镜([/font][font='times new roman']Super-Resolution Microscopy[/font][font='times new roman'])作为一类强大的科学工具,可以突破传统光学显微镜的分辨极限,实现对微小结构的高分辨率成像,已经在生物医学领域引起了广泛的关注和应用。本文将探讨超高分辨显微镜的不同类型和原理,介绍[/font][font='times new roman']其[/font][font='times new roman']在生物医学领域的应用[/font][font='times new roman']及展望其未来发展[/font][font='times new roman']。[/font][font='times new roman'][b]Abstract[/b][/font][font='times new roman']Super Resolution Microscopy[/font][font='times new roman'], as a powerful scientific tool, can break through the resolution limit of traditional optical microscopes and achieve high-resolution imaging of small structures. It has attracted widespread attention and application in the biomedical field. This article will explore the different types and principles of Super Resolution Microscopy, introduce their applications in the biomedical field, and look forward to their future development[/font][font='times new roman'].[/font][font='times new roman'][b]关键词[/b][/font][font='times new roman']超高分辨[/font][font='times new roman']显微镜,[/font][font='times new roman']成像技术[/font][font='times new roman'],应用[/font][font='times new roman'][b]1 [/b][/font][font='times new roman'][b]引言[/b][/font][font='times new roman']显微镜的产生和发展对于生命科学研究的进步有至关重要的作用[/font][font='times new roman'],它将微观世界呈现在大家面前,包括微生物的存在、组织细胞结构及生理病理活动等。显微镜技术的不断革新将成像分辨率不断提高,但相当长一段时间内光学成像无法突破一个极限值,即[/font][font='times new roman']xy[/font][font='times new roman']轴横向分辨率约[/font][font='times new roman']200nm[/font][font='times new roman'],[/font][font='times new roman']z[/font][font='times new roman']轴纵向分辨率约[/font][font='times new roman']500nm[/font][font='times new roman'],因此小于这个尺寸的生命活动和结构[/font][font='times new roman'],如病毒、亚细胞结构等,[/font][font='times new roman']是无法清楚地观察到的[/font][font='times new roman']。[/font][font='times new roman']聚焦点的光强会根据点扩散函数([/font][font='times new roman']point spread functio[/font][font='times new roman']n[/font][font='times new roman'],[/font][font='times new roman']PSF[/font][font='times new roman'])而展开[/font][font='times new roman'],[/font][font='times new roman']对于圆形孔径,[/font][font='times new roman']PSF[/font][font='times new roman']呈现为艾里斑([/font][font='times new roman']Airy disk[/font][font='times new roman'])的模式[/font][font='times new roman']。[/font][font='times new roman']激光扫描共聚焦显微镜([/font][font='times new roman']Confocal Laser Scanning Microscopy, CLSM[/font][font='times new roman'])的分辨率取决于[/font][font='times new roman']PSF[/font][font='times new roman']的大小,如果焦点很小,则每个像素[/font][font='times new roman']点[/font][font='times new roman']获取到的信息也很小,从而得到清晰锐利的图像;反之,则结果图像变得模糊。因此,[/font][font='times new roman']CLSM[/font][font='times new roman']成像的[/font][font='times new roman']主要挑战在于实现越来越小的[/font][font='times new roman']PSF[/font][font='times new roman']以获得更好的分辨率。德国物理学家恩斯特[/font][font='times new roman'][/font][font='times new roman']阿贝([/font][font='times new roman']Ernst Abbe[/font][font='times new roman'],[/font][font='times new roman']1840-1905[/font][font='times new roman']年)在[/font][font='times new roman']19[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代首次[/font][font='times new roman']提出阿贝衍射极限,即[/font][font='times new roman']由于衍射效应,[/font][font='times new roman']PSF[/font][font='times new roman']大[/font][font='times new roman']小与[/font][font='times new roman']λ/NA[/font][font='times new roman']成正比([/font][font='times new roman']d=0.61λ/NA[/font][font='times new roman']),其中[/font][font='times new roman']λ[/font][font='times new roman']是光的波长,[/font][font='times new roman']NA[/font][font='times new roman']是物镜最重要的参数[/font][font='times new roman']——[/font][font='times new roman']数值孔径[/font][font='times new roman']。由于可见光波长范围在[/font][font='times new roman']400-760nm[/font][font='times new roman']之间,[/font][font='times new roman']NA[/font][font='times new roman']值最大在[/font][font='times new roman']1.7[/font][font='times new roman']左右,所以分辨率极限在[/font][font='times new roman']200nm[/font][font='times new roman']左右。随着物理学和测量技术的进步,突破衍射极限的显微镜不断涌现,目前公认的超高分辨显微镜主要有三类,包括[/font][font='times new roman']结构照明显微镜([/font][font='times new roman']Structured Illumination Microscopy[/font][font='times new roman'],[/font][font='times new roman']SIM[/font][font='times new roman'])[/font][font='times new roman'],受激发射减耗显微镜([/font][font='times new roman']Stimulated Emission Depletion Microscopy[/font][font='times new roman'],[/font][font='times new roman']STED[/font][font='times new roman']),和[/font][font='times new roman']单分子定位显微镜。单分子定位显微镜包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])[/font][font='times new roman']。[/font][font='times new roman']2014[/font][font='times new roman']年三位科学家[/font][font='times new roman']史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])[/font][font='times new roman']、埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和威廉[/font][font='times new roman'][/font][font='times new roman']莫纳([/font][font='times new roman']William E. Moerner[/font][font='times new roman'])因他们在超[/font][font='times new roman']高[/font][font='times new roman']分辨显微镜技术领域的贡献而获得了诺贝尔化学奖。[/font][font='times new roman'][b]2 [/b][/font][font='times new roman'][b]不同类型的超高分辨显微镜[/b][/font][font='times new roman'][b]2.1[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman'][b]结构照明显微镜([/b][/font][font='times new roman'][b]Structured Illumination Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]SIM[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']SIM[/font][font='times new roman']本质是利用两束激发光在样品上进行干涉,产生明暗交替的莫尔条纹,高空间频率的莫尔条纹会放大激发条纹与样品空间频率不一致的结构,从而将样品中的高频信息整合入收集到的图像中。[/font][font='times new roman']通过投射特殊的光照明模式如格点或条纹光栅,以一定的模式照射样品,引入空间频率信息,采集多个图像并经过复杂的数据处理之后,重建高分辨率图像。由于每个图像都采用不同的结构照明模式,包含了不同的信息,合并后的图像能够展示出比传统显微镜更多的细节[/font][font='times new roman']。[/font][font='times new roman']相比于其他超高分辨成像技术,[/font][font='times new roman']SIM[/font][font='times new roman']最大的优势就是宽场[/font][font='times new roman']成像,速度快,基本可以达到实时观察。[/font][font='times new roman']SIM[/font][font='times new roman']技术的前身可以追溯到[/font][font='times new roman']20[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代初。当时,光学学家特奥多尔[/font][font='times new roman'][/font][font='times new roman']赫普恩([/font][font='times new roman']Theodor [/font][font='times new roman']H?upl[/font][font='times new roman'])首次提出了使用周期性光栅照明来提高显微镜分辨率的想法。这奠定了[/font][font='times new roman']SIM[/font][font='times new roman']技术的基础,尽管当时还没有实际的[/font][font='times new roman']SIM[/font][font='times new roman']显微镜。[/font][font='times new roman']21[/font][font='times new roman']世纪初期,史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])和埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])等科学家分别独立开发了[/font][font='times new roman']SIM[/font][font='times new roman']的现代版本。[/font][font='times new roman']SIM[/font][font='times new roman']技术开始广泛传播,吸引了生物学家和显微镜专家的关注。它被认为是一种相对低成本的[/font][font='times new roman']超高分辨[/font][font='times new roman']率成像方法,因为它不需要昂贵的激光设备或复杂的样品准备。[/font][font='times new roman'][b]2.2 [/b][/font][font='times new roman'][b]受激发射减耗[/b][/font][font='times new roman'][b]显微镜([/b][/font][font='times new roman'][b]Stimulated Emission Depletion Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]STED[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']STED[/font][font='times new roman']技术的概念最早由斯德哥尔摩大学的斯蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])提出。他的想法是通过将激发光束与一个特殊的抑制光束结合,从而实现对荧光标记物的光抑制,[/font][font='times new roman']通过受激辐射淬灭光斑外围的荧光分子,[/font][font='times new roman']使其在空间上变得更加紧凑,[/font][font='times new roman']减少[/font][font='times new roman']PSF[/font][font='times new roman']从而提高分辨率。[/font][font='times new roman']我们也叫“甜甜圈”技术。[/font][font='times new roman']STED[/font][font='times new roman']显微镜背后基本思想就是利用非线性光学设计一个低于阿贝衍射极限的更小[/font][font='times new roman']PSF[/font][font='times new roman']。[/font][font='times new roman']分辨率与[/font][font='times new roman']STED[/font][font='times new roman']光强有关,提高[/font][font='times new roman']STED[/font][font='times new roman']光的强度可以使荧光光斑焦[/font][font='times new roman']点中心直径趋于[/font][font='times new roman']0[/font][font='times new roman'],但是实际应用中,光损伤较大,[/font][font='times new roman']STED[/font][font='times new roman']光强不可能无限增加,顾[/font][font='times new roman']其分辨率[/font][font='times new roman']最高[/font][font='times new roman']可达到[/font][font='times new roman']3[/font][font='times new roman']0[/font][font='times new roman']nm[/font][font='times new roman']左右[/font][font='times new roman']。[/font][font='times new roman']目前的[/font][font='times new roman']STED[/font][font='times new roman']只能应用于较薄的组织器官或细胞,光毒性较强,成像厚度有限不太适合活体或活细胞长时间成像。[/font][font='times new roman']STED[/font][font='times new roman']光路较为复杂,对系统稳定性要求较高。[/font][font='times new roman'][b]2.3 [/b][/font][font='times new roman'][b]单分子定位显微镜[/b][/font][font='times new roman']单分子定位显微镜[/font][font='times new roman']中荧光标记的单个分子被分别激发和检测。单分子的中心可以以极高的精度确定从而实现高分辨率,包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])。[/font][font='times new roman']PALM[/font][font='times new roman']的历史可以追溯到[/font][font='times new roman']2006[/font][font='times new roman']年,由埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和哈拉尔德[/font][font='times new roman'][/font][font='times new roman']赫斯([/font][font='times new roman']Harald Hess[/font][font='times new roman'])提出了单分子定位这一概念。在[/font][font='times new roman']PALM[/font][font='times new roman']中,样品中的分子被标记上特定的荧光染料。这些染料可以通过光激活从一个基态转变到一个激发态,此过程可通过使用激活光(通常是紫外光)来实现。同期[/font][font='times new roman']STORM[/font][font='times new roman']的成像技术也发展起来,代表科学家是华人庄小威。[/font][font='times new roman']STORM[/font][font='times new roman']的工作原理与[/font][font='times new roman']PALM[/font][font='times new roman']类似,是通过特殊的分子标记和随机活性化,实现单分子定位进而实现超高分辨率成像。具有光激活能力的标记物通常在某种光照条件下会发光,但也会在某一时刻被随机地熄灭。这种随机光熄灭是[/font][font='times new roman']PALM[/font][font='times new roman']技术的关键,因为它允许在不同时间点捕获标记物的位置。通过记录标记物的位置,可以得到它们的坐标。这一过程需要在短时间内多次拍摄样品,以获得足够多的数据点。最后,通过将多个标记物的坐标叠加在一起,可以生成高分辨率的图像。这种以成像时间换取空间分辨率的形式,使得[/font][font='times new roman']PALM[/font][font='times new roman']或[/font][font='times new roman']STORM[/font][font='times new roman']的分辨率通常能够达到数十纳米。[/font][font='times new roman'][b]3 [/b][/font][font='times new roman'][b]应用领域和未来发展[/b][/font][font='times new roman']超高分辨显微镜可以探索微观世界的无限可能性,已经彻底改变了科学研究的方式。在细胞生物学领域,它被用于研究[/font][font='times new roman']亚细胞结构,如微丝、微管、肌动蛋白等,[/font][font='times new roman']细胞器[/font][font='times new roman']如线粒体、溶酶体等,[/font][font='times new roman']分子分布和细胞膜动态、观察蛋白质的相互作用;在神经科学领域,它可用于观察神经元的亚细胞结构和突触的细节,有助于解剖和理解神经系统的结构和功能,以及神经系统相关疾病的机制;在癌症研究领域,被用于研究癌细胞的特征、蛋白质分布以及肿瘤微环境,这对于癌症的早期诊断和治疗规划非常重要;在材料科学领域,它被用于研究纳米材料的结构和性质、帮助科学家精确控制和制备纳米结构;在药物研发领域,它可用于研究药物靶标蛋白的定位和与其他分子的相互作用,这对于药物设计和筛选非常重要[/font][font='times new roman'];在微生物领域,对于研究细菌[/font][font='times new roman']结构变化至关重要,规避了电子显微镜无法进行活体成像等弊端,可以更加推进微生物学发展。[/font][font='times new roman']当然,[/font][font='times new roman']超[/font][font='times new roman']高[/font][font='times new roman']分辨成像技术[/font][font='times new roman']也有一定的挑战。超高分辨成像技术[/font][font='times new roman']通常需要高度复杂的设备和精密的校准,这使得其设备成本相对较高,[/font][font='times new roman']再加上样本制备的困难,[/font][font='times new roman']限制了其广泛应用。[/font][font='times new roman']样品准备在超高分辨成像中具有重要作用,新的标记技术和荧光探针的发展将提高成像的灵敏度和特异性[/font][font='times new roman'],[/font][font='times new roman']开发更友好、无损伤的样品准备方法,以减少对样品的干扰[/font][font='times new roman'],[/font][font='times new roman']甚至[/font][font='times new roman']包括无标记成像技术以减少样品标记的需求。开源软件和自动化工作流程将使超高分辨成像技术更易于使用和共享,促进科学研究的进展。[/font][font='times new roman']超高分辨技术通常对于三维成像和大样本的深度成像有限制,需要克服分辨率和深度之间的权衡。[/font][font='times new roman']同时超高分辨[/font][font='times new roman']成像的时间分辨率还可以继续提升[/font][font='times new roman']。[/font][font='times new roman']虽然[/font][font='times new roman']目前[/font][font='times new roman']SIM[/font][font='times new roman']和[/font][font='times new roman']minflux[/font][font='times new roman']更适合[/font][font='times new roman']观察[/font][font='times new roman']活细胞[/font][font='times new roman']动态过程,但时间分辨率的提高仍然是一个挑战,特别是对于极短时间尺度的现象[/font][font='times new roman'],[/font][font='times new roman']这将使科学家能够更深入地探索微观世界,并获得更多信息。[/font][font='times new roman']随着技术的不断进步,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像有望在[/font][font='times new roman']包括临床医学[/font][font='times new roman']等[/font][font='times new roman']更多领域得到广泛应用[/font][font='times new roman'],未[/font][font='times new roman']来如果能实现超高分辨的动物甚至人的[/font][font='times new roman']活体成像,减少样品固定和处理的需求,允许观察生物过程的实时发生[/font][font='times new roman']将会更有现实意义[/font][font='times new roman']。[/font][font='times new roman']并且在科学研究的需求下,[/font][font='times new roman']多模态[/font][font='times new roman']或多尺度[/font][font='times new roman']成像将[/font][font='times new roman']与[/font][font='times new roman']不同[/font][font='times new roman']的[/font][font='times new roman']超高分辨[/font][font='times new roman']技术相结合,[/font][font='times new roman']例如,结合光学成像和质谱成像[/font][font='times new roman'],[/font][font='times new roman']从分子水平到组织水平[/font][font='times new roman']提供[/font][font='times new roman']生命活动[/font][font='times new roman']更全面的信息。[/font][font='times new roman']也可以[/font][font='times new roman']发展高通量的样品处理和成像技术,以便更快速地获得大规模的数据。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像生成的数据量巨大,处理和分析这些大数据需要强大的计算资源和高效的算法。数据存储和传输也是挑战。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据可能受到噪声和伪迹的影响,这需要高级的图像处理技术来减少其影响,以获得准确的图像。数据分析通常需要复杂的算法和数学模型,需要专业知识和技能。对于某些应用,如神经科学中的活体成像,需要实时数据分析,这增加了挑战。深度学习和人工智能技术[/font][font='times new roman']有望[/font][font='times new roman']在数据分析中发挥越来越重要的作用,[/font][font='times new roman']实现[/font][font='times new roman']自动处理和解释图像数据。发展实时数据分析技术,使科学家能够在数据采集过程中获得及时反馈。开发更易用的高级图像处理工具,使非专业用户也能够进行数据分析。结合不同成像技术和数据源的信息,以提供更全面的信息。开发自动化和高通量的数据分析工作流程,以应对大规模数据的挑战。促进数据共享和开放科学,以促进合作和加速科学研究的进展。未来,随着计算能力的提高和新技术的引入,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据分析将变得更加强大和高效。这将有助于更深入地理解微观世界,并在生物学、医学、材料科学等领域推动创新和发展。[/font][font='times new roman']总的来说,尽管[/font][font='times new roman']超高分辨[/font][font='times new roman']成像面临一些挑战,但其前景充满希望。未来的发展将使这一领域更加强大,有望在科学研究和实际应用中提供更多的机会和洞察力。[/font][font='times new roman'][b]4 [/b][/font][font='times new roman'][b]结论和展望[/b][/font][font='times new roman']超高分辨显微镜的成像原理基于破解传统显微镜的分辨极限,通过结构照明、图像重建[/font][font='times new roman']和单分子成像等策略,实现对微小结构的高分辨率成像。这一技术的应用领域包括生物学、材料科学、纳米技术和医学等,有望推动科学研究的进一步发展。超高分辨显微镜已经在生物医学领域取得了显著的突破,使研究人员更深入地理解细胞和分子结构。然而,仍然存在挑战,包括样品准备和数据分析的复杂性。未来,我们可以期待更多技术的发展,以进一步提高分辨率和扩大应用领域。[/font][font='times new roman']随着技术的不断发展,我们可以期待更多超分辨显微镜技术的突破,如更高分辨率、更高灵敏度和更快成像速度。超分辨显微镜的应用也将继续扩展到新的领域,如药物研发、个性化医学和环境科学。它将为我们提供更多工具来解决生物学的重要问题,如疾病机制、药物研发和生态系统健康。总之,超分辨显微镜技术的未来展望是光明的,它将继续推动科学研究向前迈进,揭示微观世界的微小奥秘,为改善生活质量和解决全球挑战做出贡献。这个领域的不断创新将激发更多科学家的热情,共同追求更深入的科学知识和更广泛的应用。[/font][font='times new roman'][b]参考文献[/b][/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S [/font][font='times new roman']W[/font][font='times new roman'].[/font][font='times new roman']Far-field[/font][font='times new roman'] [/font][font='times new roman']optical[/font][font='times new roman'] [/font][font='times new roman']nanoscopy[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']Science[/font][font='times new roman'],[/font][font='times new roman']2007[/font][font='times new roman'],[/font][font='times new roman']316(5828)[/font][font='times new roman']:[/font][font='times new roman']1153-1158[/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S W[/font][font='times new roman'],[/font][font='times new roman']Wichmann J[/font][font='times new roman'].[/font][font='times new roman']Breaking[/font][font='times new roman'] [/font][font='times new roman']the diffraction[/font][font='times new roman'] [/font][font='times new roman']resolution[/font][font='times new roman'] [/font][font='times new roman']limit[/font][font='times new roman'] [/font][font='times new roman']by stimulated[/font][font='times new roman']-[/font][font='times new roman']emission[/font][font='times new roman']-[/font][font='times new roman']depletion fluorescence[/font][font='times new roman'] [/font][font='times new roman']microscopy[J][/font][font='times new roman'].[/font][font='times new roman']Optics[/font][font='times new roman'] [/font][font='times new roman']Letters[/font][font='times new roman'],[/font][font='times new roman']1994[/font][font='times new roman'],[/font][font='times new roman']19(11)[/font][font='times new roman']:[/font][font='times new roman']780-782[/font][font='times new roman']Dani A[/font][font='times new roman'],[/font][font='times new roman']Huang B[/font][font='times new roman'],[/font][font='times new roman']Bergan J[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']a1[/font][font='times new roman'].[/font][font='times new roman'] Super-resolution[/font][font='times new roman'] [/font][font='times new roman']imaging of chemical synapses[/font][font='times new roman'] [/font][font='times new roman']in the brain[J][/font][font='times new roman'].[/font][font='times new roman']Neuron[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']68(5)[/font][font='times new roman']:[/font][font='times new roman']843[/font][font='times new roman']—[/font][font='times new roman']856[/font][font='times new roman']PATTERSON[/font][font='times new roman'] [/font][font='times new roman']G[/font][font='times new roman'],[/font][font='times new roman']DAVIDSON[/font][font='times new roman'] [/font][font='times new roman']M[/font][font='times new roman'],[/font][font='times new roman']MANLEY[/font][font='times new roman'] [/font][font='times new roman']S[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']al[/font][font='times new roman']. [/font][font='times new roman']Superresolution[/font][font='times new roman'] imaging using single-molecule localization[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']A[/font][font='times new roman']nnual Review of Chemistry[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']1:345-367[/font]

  • 【求助】求助高分辨图像分析

    【求助】求助高分辨图像分析

    做的Ni高分辨图像,对红色选定区域进行FFT变换,Apply Mask后得到的FFT花样标定后发现各点均为(220)晶面,再对花样进行Invese FFT 后得到的二维晶格象,测量3个方向的晶面间距均为0.2034nm 对应Ni(111)晶面间距 (对原高分辨图像测量亦得到相同的晶面间距),这样高分辨的晶面间距和衍射花样的标定结果就无法自洽。由于Ni具有 FCC和 HCP 2种结构,所以对照Ni XRD结果和 Ni FCC 和HCP标准图谱发现 只能和 FCC的图谱对应,和HCP的峰位相差较远。(其中测试出的Ni只有峰位为76度的(220)方向的峰,具有高取向性)。由于对多种原因进行分析 对 HRTEM图像不能自洽的问题都得不到合理解释,现求助各位老师,同学,期待大家可以给与解答。[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707041057_57117_1843436_3.jpg[/img]

超高分辨图像相关的资料

超高分辨图像相关的仪器

  • Apero 2-超高分辨场发射扫描电镜【产品描述】Thermo Scientific Apreo 2 SEM高性能场发射扫描电镜搭载独特的实时元素成像功能和先进的自动光学系统,实现灰色区域解析,让您不再忧心显微镜性能,更加专注于研究本身。 Thermo Scientific Apreo 2 SEM具有多功能性和高质量成像性能,即使是磁性样品或是传统意义上成像非常困难的样品也可以实现极佳成像性能。全新Apreo 2 SEM在原有性能基础之上,进一步优化了超高分辨成像能力,并且增设许多新功能提升其高级功能的易用性。Apreo 2 SEM在耐用的SEM平台上引入了SmartAlign(智能对中)技术,不再需要用户手动进行调整操作,而且,FLASH(闪调)自动执行精细调节工作,只需移动鼠标几次,就可以完成必要的透镜居中、消像散和聚焦校正。此外,Apreo 2 SEM是唯一在10 mm分析工作距离下具有1 nm分辨率的SEM,长工作距离不再意味着低分辨成像,有了Apreo 2 SEM,任何用户都可以自信地得到很好的成像效果。 【特点与应用】 全面解析全面的纳米和亚纳米分辨率性能,适用于纳米颗粒、粉末、催化剂、纳米器件、大块磁性样品等材料; 极佳的灵活性非常灵活的处理范围,样品类型广泛,包括绝缘体、敏感材料和磁性样品,收集最重要的数据; SmartAlign技术使用SmartAlign(智能对中)技术,实现光学系统自动调整,减少维护时间; 先进的自动化先进的自动化用于自动图像微调、撤销、用户向导、Maps成像拼接的FLASH(闪调)技术; 实时定量EDS元素信息触手可及,利用ColorSEM技术,提供实时元素面分布成像定量分析,结果获取更加快速、简便; 长工作距离唯一在长工作距离(10 mm)具有高分辨率的性能(1 nm)和优秀的图像质量的SEM产品参数发射源:高稳定型肖特基场发射电子枪分辨率: 型号Apero 2 CApero 2 S末级透镜静电复合高真空15kV0.9nm 0.5nm1kV1.0nm0.8nm500V 1.2nm0.8nm加速电压范围:200 V ~ 30 kV 着陆电压范围:200 eV ~ 30 keV探针电流范围:1 pA ~ 50 nA,连续可调(可选配400 nA)最大水平视场宽度:10 mm WD时为3 mm(相当于最低放大倍率29倍)X-Ray工作距离:10 mm,EDS检出角35°样品室:从左至右为 340 mm 宽的大存储空间,样品室可拓展接口数量12个,含能谱仪接口3 个(其中2个处于180° 对角位置)样品台:五轴优中心全自动马达驱动X=110 mm,Y=110 mm,Z=65 mm,T=-15o~90o,R=360o (连续旋转)多用途SEM样品安装载物台,可同时放置 18 个标准样品座(φ12 mm)最大样品尺寸,直径122 mm,可沿X、Y轴完全旋转时最大样品高度,到优中心点间隔为85 mm最大样品承重 5 kg探测器系统:样品室二次电子探测器ETD镜筒内背散射电子探测器T1镜筒内二次电子探测器T2镜筒内二次电子探测器T3(选配)样品室内IR-CCD红外相机(观察样品台高度)图像导航彩色光学相机Nav-Cam+&trade 样品室低真空二次电子探测器(选配)可伸缩透镜下背散射探测器(选配)控制系统: 操作系统:Windows 10图像显示:24寸LCD显示器,最高显示分辨率1920×1200支持用户自定义的GUI,可同时实时显示四幅图像软件支持Undo和Redo功能
    留言咨询
  • 产品简介蔡司晶格结构光超高分辨率显微镜Lattice SIM 5针对亚细胞结构成像进行优化,实现60nm分辨率高质量活细胞超高分辨率成像。在活细胞超高分辨率成像中不仅实现三维空间分辨率的全面提升,更能快速真实的捕获亚细胞结构的动态变化。产品特点&bull 60 nm的分辨率精确捕获快速动态过程&bull 灵活多样的物镜和成像方式,满足不同样品的需求&bull 高速图像采集模式,提高速度和实验效率应用领域&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos 7活细胞成像,Calreticulin-tdTomato 标记内质网(品红),EMTB-3xGFP标记微管(绿色),右图显示放大区域样品细节分辨率。
    留言咨询
  • 蔡司跨尺度超高分辨率显微镜Elyra 7以更丰富的成像模式满足您各种样品、各种尺度、各种分辨率的成像需求。无论是组织样品的快速光学切片成像,还是60nm活细胞超高分辨率成像,甚至是用于分子水平研究的TIRF和SMLM(单分子荧光定位,Single-Molecule Localization Microscopy)。您可以采用多种成像方式探索样品,并将多尺度的成像数据进行关联,获得从组织-细胞-亚细胞结构-蛋白的多尺度信息。产品特点&bull Lattice SIM成像解析低至 60 nm 的超微结构&bull 使用 SMLM 探索分子细节&bull 在同一设备上实现组织-细胞-亚细胞结构-蛋白图像的多尺度关联应用领域&bull 单分子荧光定位&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例小鼠小肠切片,在 A-ha 聚合物中标记血管(Alexa 488,橙色)和神经(Alexa 647,青色),以10x/0.3物镜拍摄样品全貌,以63x/1.4物镜拍摄局部细节。样品来自台湾国立清华大学生物科技研究所暨医学系 Shiue-Cheng (Tony) Tang 教授。固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos-7细胞双色2D STORM, 品红色标记微管(anti-tubulin-Alexa Fluor 647),黄色标记线粒体(anti-TOMM20-CF568).
    留言咨询

超高分辨图像相关的耗材

超高分辨图像相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制