稳态强磁场实验装置

仪器信息网稳态强磁场实验装置专题为您整合稳态强磁场实验装置相关的最新文章,在稳态强磁场实验装置专题,您不仅可以免费浏览稳态强磁场实验装置的资讯, 同时您还可以浏览稳态强磁场实验装置的相关资料、解决方案,参与社区稳态强磁场实验装置话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

稳态强磁场实验装置相关的资讯

  • “稳态强磁场实验装置”通过国家验收 我国成为国际五大稳态强磁场之一
    p   2017年9月27日,国家重大科技基础设施“稳态强磁场实验装置”通过国家验收。中科院院长、党组书记白春礼,安徽省委副书记、省长李国英,国家发改委高技术司副巡视员白京羽出席验收会并讲话。验收会由中科院副院长王恩哥主持。 /p p   验收会上,中科院合肥物质科学研究院院长、稳态强磁场实验装置工程总经理匡光力作了项目建设总结报告。验收委员会听取了工程建设总结报告、工艺鉴定意见和工艺、建安、财务、设备、档案专业组验收意见,审核了相关文件资料,进行了实地考察。经过认真审议和充分讨论,认为项目建设单位根据批复要求高质量地完成了稳态强磁场实验装置建设任务,建成了磁体技术和综合性能国际领先的稳态强磁场实验装置。一致同意该项目通过国家验收,并投入正式运行。 /p p   白春礼代表中科院对稳态强磁场实验装置顺利通过国家验收表示祝贺。白春礼指出,建设合肥综合性国家科学中心,是贯彻落实以习近平同志为核心的党中央关于建设具有全球影响力科技创新中心和综合性国家科学中心重大决策的重要举措。建设一批世界一流的重大科技基础设施集群是综合性国家科学中心建设的重要内容。稳态强磁场实验装置的建成使用将进一步凸显合肥在国家重大基础设施建设布局中的突出地位,也必将在合肥综合性国家科学中心的建设中发挥重要作用。 /p p   白春礼表示,安徽省委省政府和合肥市委市政府高度重视稳态强磁场实验装置建设,在用地、经费等方面给予了稳态强磁场实验装置建设有力的支持,为装置顺利建成投入运行提供了坚实的物质保障。中科院将根据合肥综合性国家科学中心总体布局,整合相关优势资源力量,为实验装置建设发展提供良好的基础保障。白春礼希望,要加强装置的运维管理,推动重大科技成果产出 要不断加强设施开放力度,充分发挥装置的公益性作用 要以装置为依托,不断培养和积聚高水平人才队伍 要积极创新体制机制,为综合性国家科学中心建设积累经验。 /p p   李国英为验收会致辞。他说,稳态强磁场实验装置是具有国际先进水平的大型科学实验装置,也是合肥综合性国家科学中心建设的标志性科研科技基础设施,对于支撑交叉前沿领域源头创新,抢占未来发展制高点具有重大意义。他对科研人员的挑战极限、刻苦攻关的精神表示高度赞扬。他表示,安徽及合肥市是稳态强磁场实验装置的驻在地,对于装置的建设和运行都肩负重大责任。安徽一定量身定制支持政策,继续提供坚强保障,营造良好科研环境,让科学家们安心研究、愉快创新。 /p p   安徽省委常委、常务副省长邓向阳,省委常委、合肥市委书记宋国权,以及国家发改委、中科院、安徽省等相关部门领导和专家八十余人参加了验收会。 /p p   稳态强磁场实验装置研制团队经过多年自主创新,打破国际技术壁垒,成功克服关键材料国际限制、关键技术国内空白等重大难题,建成继美国之后世界第二台40T级混合磁体,建成三台场强创世界纪录的水冷磁体,首创SMA组合显微系统,建立了国际领先水平的科学实验系统,实现了我国稳态强磁场极端条件的重大突破。 /p p   同时,稳态强磁场实验装置提出并实践了国家大科学装置“边建设边开放”管理新模式,在辐射带动发展、集聚高水平创新创业人才等方面也取得了显著成绩。截至2016年底,强磁场装置已累计运行271141机时、完成用户实验课题数1499个。 /p p   稳态强磁场装置的建设过程得到了发改委和科技部的大力支持。它的建成,标志着我国已成为国际五大稳态强磁场之一,极大地带动了我国物理、材料、化学、生命科学等诸多学科在强磁场等综合极端条件下的前沿探索。 /p p /p
  • 稳态强磁场实验装置:探索科学宝藏的“国之重器
    p   2008年5月,由中科院合肥物质院强磁场科学中心承担的稳态强磁场实验装置项目启动 2011年7月,试验磁体通电测试成功 2016年11月,混合磁体大口径外超导磁体研制成功 2017年2月,专家组对混合磁体工艺测试完成验收 2017年9月27日,“稳态强磁场实验装置”通过国家验收,验收专家组给予了很高评价,认为项目全面完成了建设目标,各项关键参数达到或超过设计指标,“技术和性能达到国际领先水平”。 /p p   九年时间里,强磁场的科研人员完成了一个又一个跨越,使我国成为国际五大稳态强磁场研究机构之一,中国的强磁场科学技术事业迈上了一个新台阶。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/869ce1bd-adaa-4e62-b5da-a9ff1c35ab0b.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " ①2016年底混合磁体首次调试成功。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c43cc087-9520-4092-b997-350c4e51976e.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " ②安装在水冷磁体上的扫描隧道显微镜。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/db639ee9-02c5-409b-8e70-117373bf43d4.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " ③混合磁体。 /p p    strong “极端条件就是把不可能变成可能” /strong /p p   高秉钧是中科院强磁场科学中心首席科学家,也是“稳态强磁场实验装置”项目总工程师。他对记者说:“物质在强磁场情况下会改变它本身的电子态,从而产生新的现象。强磁场是一个极端条件,我们在设计和研制稳态强磁场实验装置过程中,常会遇到许多难以克服的困难,甚至是无路可走。我们必须坚持不懈,实现超越,把不可能变成可能。” /p p   强磁场是调控物质量子态的重要参量,在发现新现象、揭示新规律、探索新材料、催生新技术等方面具有不可替代的作用。自1913年以来,已有多项与磁场相关成果获诺贝尔奖,因此,强磁场极端条件已成为科技界公认的探索科学宝藏的“国之重器”。我国因缺乏相应的强磁场条件,屡次错失在物质科学等诸多领域开展前沿探索的机遇。 /p p   据了解,“稳态强磁场实验装置”是一个针对多学科实验研究需要的强磁场极端实验条件设施,包括十台强磁场磁体装置和六大类实验测量系统。 /p p   混合磁体由内部水冷磁体和外部超导磁体组合而成,是追求更高稳态极端场强的首选,但此前国际上已有多个失败案例,而我国在高场超导磁体技术方面的基础较为薄弱,项目所有科研人员都面临着巨大挑战。 /p p   对水冷磁体而言,必须解决材料和结构的优化选择、巨大电磁力和发热问题,与之配套的数千万瓦级的稳态直流电源系统、低温冷却系统、去离子水冷却系统等均是一个个不容置疑的难关。 /p p   谨慎起见,超导磁体组决定先研制一款磁场强度低、口径小,但选材、加工工艺完全相同的试验磁体,试验磁体在2011年7月通电测试成功。混合磁体研制真正开始之后,所有科研人员都秉持着一种谨慎严肃的工作状态,为了达到验收要求而不断努力着。 /p p    strong 国际领先水平的科学实验系统 /strong /p p   水冷磁体WM1原设计是超世界纪录的38.5T,但在磁体组装后的预测试中,科研人员却发现磁场强度比预期的要低得多,且已是板上钉钉,超纪录无望了。水冷磁体总设计高秉钧带领工作人员排查原因,最终发现绝大部分bitter片厚度不是原设计的0.27毫米,而是0.29~0.30毫米。 /p p   高秉钧说:“面对几千片bitter片,我们就用天平称重量、算体积,来实测每片的实际厚度。将实测厚度的bitter片优化配置,重新组合,使组装的磁体达到原设计的目标。”这样,WM1最终实现了38.5T的磁场强度,打破水冷磁体场强世界纪录。 /p p   2016年底混合磁体首次调试,磁场强度达到40特斯拉,符合工程验收指标。就在科研人员欢欣鼓舞之时,磁体系统却发生了故障。春节将至,项目组的人却集中在场地,不断调试设备排除故障。 /p p   大年三十上午八点,装置准时通电测试,所有人在文化走廊吃了一顿简单而又难忘的“年夜饭”。但是那天因为降温没到位,再一次失败了。项目组的科研人员在春节假期继续加班,大年初四,混合磁体终于通电励磁,再次成功。 /p p   经过多年自主创新,强磁场研制团队打破国际技术壁垒,成功克服关键材料国际限制、关键技术国内空白等重大难题,建成继美国之后世界第二台40T级混合磁体,建立了国际领先水平的科学实验系统,实现了我国稳态强磁场极端条件的重大突破。 /p p   “稳态强磁场实验装置”国家验收意见中写道:“项目提出了一种水冷磁体设计创新方案,发展了一套全程可量化检测的高精度装配工艺。建成的水冷磁体中有三台磁体的性能指标创世界纪录,其中两台保持至今 突破了800毫米室温孔径、磁场强度达10特斯拉的铌三锡超导磁体研制的技术难关,建成了40特斯拉稳态混合磁体装置,磁场强度世界第二 建成了国际首创水冷磁体扫描隧道显微镜系统、扫描隧道—磁力—原子力组合显微镜系统,以及强磁场下低温、超高压实验系统,使得我国稳态强磁场相关实验条件达到国际领先水平。” /p p    strong “边建设边开放”的管理新模式 /strong /p p   强磁场下的应用研究对于高技术产业具有很强的催生和带动作用,“强磁场效应”其实就在我们身边。 /p p   高秉钧介绍道:“大家都比较熟悉的医院的核磁共振成像、磁悬浮列车等就运用了强磁场技术。此外,强磁场在化学合成、特殊材料、生物技术、医药健康等多种新技术研发方面都有可能发挥关键作用,孕育新的发明。” /p p   据了解,强磁场有助于促进多学科交叉研究,尤其是生命科学、物理学、材料与化学、新技术之间的交叉研究。2014年,合肥物质院技术生物所吴跃进研究组和强磁场科学中心钟凯研究组合作,研究了造影剂对水稻生长的潜在影响,并用磁共振成像技术获得了造影剂在根系中的动态信息。这也是世界上首次利用造影剂研究磁共振成像技术在水稻根系无损检测中的应用,为植物根系研究提供了一种新的研究方法。 /p p   在中科院“十二五”验收中,“强磁场科学与技术”重大突破入选院“双百”优秀。2017年3月,中共中央政治局委员、国务院副总理刘延东视察装置,对团队取得的成绩给予了充分肯定。 /p p   同时,项目提出并实践了国家大科学装置“边建设边开放”管理新模式。从2010年试运行以来装置已经为包括北大、复旦、中科大、浙大、南大、中科院物理所、中科院固体物理所、上海生科院、福建物构所等在内的百余家用户单位提供了实验条件,有力支撑了强磁场下前沿研究,产出了一大批具有国际影响力的科研成果。 /p p   随着稳态强磁场装置工程建设的推进,一支能打硬仗的强磁场技术攻关队伍在锻炼中成长。稳态强磁场实验装置将成为科学研究、科技发展的创新源头,将为合肥综合性国家科学中心的建设贡献更多的科技力量。 /p
  • 《焦点访谈》:国家重大科技基础设施稳态强磁场实验装置顺利验收,综合极端条件实验装置启动建设
    近期,重大科技基础设施“稳态强磁场实验装置”在合肥通过验收,使我国成为继美国、法国、荷兰、日本之后五个拥有稳态强磁场的。而在北京怀柔,另一个大科学装置——“综合端条件实验装置”也启动建设。听起来,“稳态强磁场”“综合端条件”都很陌生,它们都属于重大科技基础设施。为什么要建这样的设施,对于科学研究来说,这两个大装置有着什么样的重要意义呢? 稳态强磁场实验装置 磁现象是物质的基本现象之一。科学研究早已证实,当物质处在磁场中,其内部结构可能发生改变,磁场因而一直是研究物理等诸多学科的一种非常有用的工具。物质结构和状态在强磁场环境下都可能发生变化,呈现出多样的物理、化学现象和效应。磁场强度越高,物质的变化就越为明显,也就越有利于新的科学发现,就像显微镜放大10000倍比放大10倍能告诉研究人员更多一样。但是,磁场强度的提高,每一步都走得很艰难。强磁场中心的“稳态强磁场实验装置”达到了40万高斯的磁场强度,这是二十几年来,上几个有实力的都在尝试的目标。中国科学院强磁场科学中心(图中设备为磁性测量设备mpms,图片来源于网络)混合磁体装置(已产生稳态磁场强度达40t、二高场强,图片来源于网络) 强磁场是现代科学实验重要的端条件之一。在强磁场这种端条件下,物质的特性可以被调控,这就给科学家提供了研究新现象、发现新技术的机遇。因此场也被称为诺贝尔奖的摇篮,包括1985年和1998年诺贝尔物理奖的整数和分数量子霍尔效应、2003年获得诺贝尔奖的核磁共振成像技术。从生命科学到医疗技术,从化学合成到功能材料̷̷在各个科学领域,强磁场都是科学家们渴求的研究环境。 ”稳态强磁场实验装置”运行期间,为清华、北大、复旦、中科大等106家用户单位的1500余项课题提供了实验条件,产出了一大批具有国际影响力的科研成果。综合端条件实验装置 任何物质都是在一定的物理条件下形成的,通过使物理实验条件达到端状态,可以形成许多在常规物理条件下不能得到的新物质和新物态。综合端条件实验装置是指综合集低温、超高压、强磁场和超快光场等端条件为一体的用户装置。就在“稳态强磁场实验装置”通过验收的二天,我国在北京市怀柔科学城启动建设“综合端条件实验装置”,比“稳态强磁场实验装置”更进一步。 综合端条件实验装置启动(图片来源于网络) 项目席科学家、中科院物理研究所研究员吕力(quantum design 公司产品用户)说:“比如低温可以抑制物质中电子、原子的无规运动;强磁场作为可以调控的热力学参量,能够改变物质的内部能量;超高压可以有效缩短物质的原子间距,增加相邻电子轨道的重叠,从而改变物质的晶体结构,以及原子间的相互作用,形成全新的物质状态;超快激光则具有无与伦比的超快时间特性,快速变化的光场是人们能够操作并且控制的快物理量。” 综合端条件实验装置建成之后,将是国际上集低温、超高压、强磁场和超快光场等端条件为一体的用户装置,在非常规超导、拓扑物态、量子材料与器件等领域,提供实验手段的支撑,进而为相关材料的人工设计与制备,以及诸多科学难题的破解提供前所未有的机遇。 稳态强磁场实验装置、综合端条件实验装置等的重大科技基础设施,是科学家们进行科学研究的重要平台,也是提升科研水平的利器。它们的建成,既是我国科研人员创新进取的成果,也将以巨大的磁力,吸引更多人才从事相关领域的研究,推动我国基础领域的科学研究进一步走向前沿。文章原文部分摘自:cctv焦点访谈、人民网 相关产品链接: mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms 综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统 dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计 versalab 系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense 振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器 (ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm

稳态强磁场实验装置相关的方案

稳态强磁场实验装置相关的论坛

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 我国刷新脉冲磁场最高强度纪录 闯入90特斯拉大关

    科技日报讯 近日,依托华中科技大学建设的国家脉冲强磁场科学中心(筹)自行研制的脉冲磁体,成功实现了90.6特斯拉的峰值磁场,再次刷新我国脉冲磁场最高强度纪录,使我国成为继美、德后,第三个闯入90特斯拉大关的国家。 中国工程院院士、华中科技大学教授潘垣介绍,磁现象是物质的基本现象之一。当物质处在磁场中,其内部结构可能发生改变,产生新成果。强磁场与极低温、超高压一样,被列为现代科学实验最重要的极端条件之一。它可分为稳态强磁场和脉冲强磁场两大类,其对应的发生装置又分为稳态强磁场装置和脉冲强磁场装置。有资料显示,自1913年以来,世界上有19项与强磁场有关的成果获得诺贝尔奖;仅近30年来,就有8项与此有关的成果获得诺贝尔奖,如量子霍尔效应、分数量子霍尔效应、磁共振成像等。 据国家脉冲强磁场科学中心(筹)主任李亮介绍,产生90.6特斯拉磁场强度的磁体、电源、控制系统等全套装置均为中心自主开发研制。脉冲磁体是产生高强磁场最重要的部件,电流和磁场相互作用在瞬间所产生的强大电动力和急剧温升,是限制磁场强度提高的两大主要因素。与美国、德国90特斯拉级脉冲磁体都采用昂贵的高强高导材料相比,我国磁体制造成本还不到他们同类磁体的1/10。 据称,为实现90特斯拉以上的磁场强度,美国洛斯—阿拉莫斯强磁场实验室用了20年,德国德累斯顿强磁场实验室用了10年,而我国仅用5年就实现了这一水平。(记者刘志伟 通讯员程远) 《科技日报》(2013-08-14 一版)

稳态强磁场实验装置相关的资料

稳态强磁场实验装置相关的仪器

  • 闪烁体是一类吸收高能粒子或射线后能够发光(探测器灵敏波段)的材料,可分为有机和无机两大类,按其形态又可分为固体、液体和气体三种。 当闪烁体受到高能粒子或射线照射后能够发生能级跃迁,且产生的紫外可见光强度可被光电探测器探测到。当X射线与闪烁体作用时,一个X射线光子,可以产生多个光子,与紫外可见光不同,因为X射线的能量足以使物体电离,使电子脱离能级的束缚。能量越高的X射线光子,通过产生俄歇电子,康普顿散射等产生更多的电离电子(二次电子),二次电子热能化退至激发能级,通过荧光或磷光的方式发光。因此闪烁体对辐射具有能量分辨率。在医学上,闪烁体是核医学影像设备的核心部件,通过它可以快速诊断出人体各器官的病变大小和位置。闪烁体在行李安检、集装箱检查、大型工业设备无损探伤、石油测井、放射性探测、环境监测等领域也都发挥着不可替代的作用。闪烁体还是制造各类对撞机中电磁量能器的重要材料,它可捕捉核反应后产生的各种粒子的信息,是人类探索微观世界及宇宙演变的重要工具。稳态瞬态荧光-闪烁体综合性能表征系统可综合测试稳态瞬态光致发光以及X射线辐射发光。X射线辐射样品仓安装可控屏蔽快门,在辐射光源最大功率下关闭快门时,样品位置辐射剂量小于10uSv/h,辐射防护满足国标GBZ115-2023《低能射线装置放射防护标准》的要求。 该系统可根据用户需要搭建以下功能● 稳态荧光/瞬态荧光● 稳态X射线荧光/瞬态X射线荧光● X射线荧光成像● 显微荧光/显微荧光寿命成像● 温度相关光谱 X射线荧光成像瞬态X射线荧光寿命测试技术参数X射线荧光成像TYP 39分辨率卡的X射线图像。测试1mm厚的YAG(Ce)时,分辨率可以达到20pl/mm以上。
    留言咨询
  • SmartFluo系列稳态荧光光谱仪SmartFluo-QY是卓立汉光公司第一台基于单光子计数技术的一体式稳态荧光光谱仪。SmartFluo-QY经过了卓立汉光近20年的光学系统优化设计,并采用了“单光子计数器”作为数据采集装置,具备了对极微弱荧光信号的探测能力,通过纯水拉曼测试信噪比可达到3000:1以上。SmartFluo-QY可以实现宽光谱探测范围,能够满足包括物理、化学、生物学、医学、半导体材料学、环境学等各种科研及工业应用的荧光测量要求。 SmartFluo系列稳态荧光光谱仪应用领域举例:l 生物化学:细胞毒性,离子浓度定量分析,细胞增殖,DNA定量,化学定量分析等l 环境监测:各种微量药物残留检测,水质评测,食品安全监管,污染物分析等l 药物开发及药理学:常规药物分析,蛋白质新药开发,生物体系中的药物作用机理,喹诺酮类药物,du品检测,高通量筛选等l 食品科学与农业:食品保质期评估,细菌生长测量,杀虫剂分析,食品质量控制等 挑战灵敏度极限——“单光子计数技术”“单光子计数技术”是利用在弱光下光电倍增管输出信号自然离散化的特点,采用精密的脉冲幅度甄别技术和数字计数技术,把淹没在背景噪声中的弱光信号提取出来。当弱光照射到光电子阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子,这个光电子经倍增系统的倍增,最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。而“单光子计数技术”可测得低至单个不重叠的光子能量脉冲,通过精密的鉴别手段进行工作,从而实现探测“单光子”级别微弱信号的目的。系统灵敏度SmartFluo-QY中采用的单光子计数技术,提供了峰值计数速率超过100Mcps,标准条件下水拉曼信噪比达到3000:1以上的测试结果,相比较于常规的荧光光谱仪,灵敏度提高了10-100倍,更有利于微弱发光样品的检测,可以检出低至1×10-15mol/L浓度的荧光素。其所具备的高灵敏度为各种普通荧光及微弱荧光信号检测提供了可靠保障。光谱范围激发光源采用150W氙灯,提供紫外-近红外波段的高效激发能量;荧光检测采用高灵敏度的“单光子计数技术”,检测范围为185-670nm或185-900nm。 杂散光对于实验样品尤其是微量样品测试,杂散光抑制是影响信噪比的至关重要的因素。SmartFluo-QY的光路及结构设计,极大的降低了杂散光对信号的干扰,可达到10-5杂散光抑制比。 光谱校正未经校正的光谱图由于存在光源光谱及光路系统的光学传递函数等各项因素的干扰,会造成难以预测的谱线失真,进而影响最终的光谱结论。SmartFluo-QY使用内置标准探测器模块以及出场测试的校正数据,为整个系统提供光谱校正支持。SmartFluo-QY的激发光部分包含了保准参考探测器,在每次测量时均经过标准参考探测器校正,保证150W氙灯在各个波长激发能量的一致性;SmartFluo-QY的荧光检测部分在出厂时都经过标准光源校正光谱响应度,将发射谱的光学部件与探测器的光谱响应度借由标准光源作修正得到绝对的系统光谱响应度曲线,荧光普在各波长的强度因此具有可比性,提供更详实的图谱数据,做出更为正确的分析。 光谱分辨率与激发光强控制SmartFluo-QY的激发和荧光分光器各采用一套300mm焦长的高分辨率单色仪光路,激发光源可通过自动光阑灵活调整5%-100%的光通量,激发波长最小带宽可达到0.1nm,荧光检测可分辨0.1nm荧光峰,优良的机械性能确保了波长重复性高达0.1nm。强化的软件功能专门设计的配套软件,为用户提供对SmartFluo-QY硬件的完整控制、多种测量方案选择、数学算法处理等多项强大功能。SmartFluo-QY的配套软件以数据为中心设计,用户只需要关注实验操作流程,软件将协助完成大部分数据采集与分析工作。测量模式激发光谱扫描荧光发射光谱扫描同步光谱扫描电致发光光谱扫描偏振光谱扫描三维荧光扫描动力学扫描荧光量子产率测量数据处理及显示数学算法(+,-,×,÷)光谱校正(实时校正或后处理)归一化处理光谱平滑处理擦除射线色度坐标量子产率计算2D、3D显示定义扩展扫描方式控制特性激发及发射波长自由选择自定义光谱扫描范围激发及发射带宽自由选择积分时间自由设置偏振角度选择(需配相应附件)自动样品台控制(需配相应附件)实时光谱校正吸收光谱测量控制(需配相应附件)动力学测量控制磷光寿命测量控制运行方案存储及重复测量三维荧光测量控制同步光谱测量在同步光谱测量中,激发单色仪和发射单色仪以用户预设的偏移量做同步扫描,可以应用于区分和识别混合物质样品中的荧光组分。荧光量子产率测量荧光量子产率(Quantum Yields)是荧光物质的重要发光参数之一,定义为荧光物质吸光后所发射的光子数与所吸收的激发光的光子数之比值。与传统的对比测试法不同,SmartFluo-QY采用积分球对样品进行绝对量子产率的测量,测量结果更准确可靠。采用四步测量方法,可消除激发光二次吸收对测量结果的影响,进一步提高了测量结果的准确性附件l 比色皿样品架主机标配的的样品架及比色皿;可用于液体样品测量,带有一维水平调节(±6.5mm)和Z轴旋转调节(360°),可安装比色皿尺寸:45(高)×12.4×12.4mm。 l 固体、粉末样品架用于固体、粉末样品的测量,也可安装比色皿用于液体样品的测量,样品架特别设计,确保激发光不直接进入荧光接收单色仪,可以有效减少杂散光,提高信噪比;带有一维水平调节(±6.5mm)和Z轴旋转调节(360°),可安装比色皿尺寸:45(高)×12.4×12.4mm。l 水浴恒温样品架用于液体样品恒温测量(不包含水循环温控装置),通过外置控制器控制水流和水温,使样品支架内保持恒定温度;带有一维水平调节(±6.5mm)和Z轴旋转调节(360°),可安装比色皿尺寸:45(高)×12.4×12.4mm。l 积分球附件用于荧光量子产率测量,内置于主机样品室内,不额外占用空间;可用于液体、固体、粉末等各种样品测量。l 偏振测量附件用于测量荧光偏振角度(0-90°)和荧光各向异性,使用波长范围:230-2000nm。可有效用于医学与生化领域的抗原-抗应、生物细胞、蛋白质、酶等的测量。主要技术参数结构设计: 采用一体式结构设计,机电分离无干扰光源: 150W 连续氙灯光源(230-1800nm) 单色仪: 300mm 焦距,CT 结构,三光栅塔台设计, 低杂散光标配光栅(激发): 1200g/mm@300nm 标配光栅(发射): 1200g/mm@500nm 选配光栅: 可选配多光栅激发光谱覆盖范围: 200-600nm(标配) 发射光谱覆盖范围: 200-1000nm(标配) 滤光片轮: 标配六档自动滤光片轮光谱分辨率: 0.1nm(@1200g/mm,435.83nm) 光谱带宽: 0.1-30nm(取决于光栅刻线数和狭缝宽度) 波长准确度: ±0.2nm(@1200g/mm) 扫描速度: 100nm/s 积分时间: 10s-200s 光谱探测器: R1527P(蓝敏,200-670nm) R928P(红敏,200-870nm) R2658P(NIR,200-1010nm) 参考探测器: 紫敏硅探测器(200-1100nm) 偏振测量附件: 可选配,0-90°,230-2000nm 水拉曼信噪比: 3500:1(蓝敏) 2000:1(红敏) 仪器尺寸(主机): 840×620×330mm(L*H*W) 仪器重量:
    留言咨询
  • 目前上越来越多的物理学家将其注意力倾注于超强磁场条件下的各种物理现象的研究。众所周知,稳态强磁场需要强大的电源供应和苛刻的低温实验环境。其高额的运行费用也不是一般的实验室能够承担,所以仅有少数实验室才能花巨资和投入大量人力设计和建造,但高的磁场也只能限制在 40 T 左右。对于更高磁场下的物理研究,只能靠脉冲磁体完成。近年来材料科学的发展促使了脉冲磁体技术的进步,使得脉冲磁场下的测量技术成为一种高效的研究手段。其紧凑的结构设计和低廉的运行费用使得大多数的课题组都能够开展高脉冲场下材料物性的研究。比利时 Metis 公司是目前上为数不多的生产脉冲磁体的厂商之一。结合专门为脉冲磁体设计的杜瓦以及各种不同的测量选件,可以轻松胜任高脉冲场下的电学、磁学和光学等学科的研究,是研究高脉冲场下材料物性的综合性大平台。Metis 公司除了致力于设计和制造用于基础科研的大型脉冲强磁场物性测量系统外,还针对应用磁学领域开发了大功率冲磁系统、磁化夹具、硬磁材料测量系统、软磁材料测量系统等多种产品。 冲磁系统磁化夹具 硬磁材料性能测量系统软磁材料性能测量系统 低温脉冲强磁场实验平台脉冲强磁场专用临界电流测量系统 残留奥氏体测量仪
    留言咨询

稳态强磁场实验装置相关的耗材

  • C.A42工频电磁场分析仪
    C.A42工频电磁场分析仪 法国C.A公司的C.A 42 工频电磁场分析仪,可用于精确测量:电磁场、直流设备、50Hz/60Hz 输变电系统、电力设备、电子产品、地铁电车、感应炉等设备,为电磁场环境监测提供了最佳解决方案。 特点: 全面性的便携式工频电磁场分析仪0KHz-400KHz (磁场:0Hz-400kHz 电场:5Hz-400kHz)频率带宽满足不同测量需要1V/m-30KV/m 高精度大动态电场测量范围10nT-1000mT 高精度大动态磁场测量范围三维各向同性(无方向性)测量探头 真正实现综合值与X,Y,Z 分量值同时测量,同时显示16.67,50,60,83.3&hellip 2000Hz 带通窄带滤波测量功能在全频率范围内满足± 1dB 频响精度要求,确保测量的精确度峰值,RMS(均方根值),X,Y,Z 技术指标: 应用范围 地磁场,直流设备,50Hz/60Hz 输变电系统,配电室,发电设备, 地铁电车,家用电器,感应炉等作业和公共场所电磁环境 频率范围 电场: 5Hz-400KHz 磁场: 10Hz-30KHz 国际标准 ICNIRP OCCUP ICNIRP GNPUB EN50366 BGV B11Exp.1 Exp.2 Exp.2H/D 等六种不同国际标准 同时支持中国国家标准预设 带通滤波频率 16.67,50,60,83.3,150,180,250,300,400,1200,2000Hz 通讯 RS 232串口数据传输功能 数据存储 1M内存(151 50个测量值或80幅示波图或475幅频谱图) 模拟信号输出 三维信号(Vx,Vy,Vz)输出 / 校准:标准的1V满刻度电压值(所有量程) 频率范围:0-30KHz 电压输出:磁场探头电压输出功能 液晶显示 160*140像素LCD显示 操作温度 -10~50℃, 相对湿度 20~80%( 无凝露) 电池参数 5节1300 mA.h Ni-MH AA 电池 使用时间 &ge 6小时 电磁兼容标准 符合EN 61 326-1标准 外形尺寸 266*144*60mm 重量 950克 示波器功能(可选) 显示X,Y,Z 或其中最大值的电磁场强度随时间的变化曲线 示波图自动或 手动振幅刻度可以通过以下三种模式触发:自动,一次完成,外部触发 时间基数:根据探头,时间基数从2ms -400ms可调整 在&ldquo 缩放功能&rdquo 、 &ldquo 保留&rdquo 、&ldquo 斜率&rdquo 测量模式下,时间基数可扩展为0.1 ms; 同步功能:可调整的触发水平和极性;保留-运行功能:双稳态功能, &ldquo 保留&rdquo 实现了使用1或2个指针测定1个点的参数(nT, sor V/m, s) 倍数和约数或2个指针(mT/s,&mu T/s,etc.)位置之间斜率;缩放功能 :在&ldquo 运行&rdquo 模式下缩小时间基数扫描速度. 频谱分析功能(可选) 电磁场强度RMS 值和X,Y,Z 分量值的频谱分析功能 自动或手动振幅刻度, 可调节的频率带宽和缩放功能来实现频谱分析功能 FFT 204 8点计算 102 4点显示频率范围:0Hz-29KHz和0Hz-91KHz分辨率:1,1.67,2,5,10, 16.7,2 0,50和100Hz保留-运行功能: 使用1个指针测定1个点的参数 (nT,HzorV/m,Hz,倍数和约数) 电/磁场探头 探头 内部探头 MF400 MF400H MF05 EF 400 方向性 无方向性 无方向性 无方向性 无方向性 无方向性 传感器 磁场 磁场 磁场 磁场 电场 线圈面积 100cm2 100cm2 频率范围 10Hz-30kHz 10Hz-400kHz 10Hz-400kHz 0Hz-500Hz 5Hz-400kHz 量程范围 200nT-40mT 10nT-20mT 100nT-200mT 1uT-1000mT 1V/m-30kV/m 精确度 ± 5% ± 3% ± 3% ± 3% ± 5% 测量刻度 4/40/400&mu T4/40mT 200nT/2/20/200 &mu T/2/20mT 2/20/200&mu T /2/20/200mT 200&mu T, 10mT及1T 300V/m, 3及30kV/m 订购号 标配 P01167302 P01167303 P01167304 P01167305
  • 美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场
    美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场,液晶显示器显示的单位可选择毫高斯,高斯,伏/米,千伏/米,并有图形显示功能,可方便直观的定位电磁场源位置及强辐射点。销售热线:15300030867,张经理,欢迎您的来电咨询!单探头实现全量程,仪器面板为覆膜式按键设计,非常适合现场使用,内部存储器可存储最多127个读数。美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场,配置: 标配:电磁场两用探头(单轴),显示部分,绝缘手柄,使用手册,便携箱选件:HI3616远方显示器,HI4413 RS232光纤MODEM,三脚架美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场,技术参数: 频率响应:30-2000Hz频率响应:±0.5dB(50-1000Hz)±2.0dB(30-2000Hz)电场测量范围:1 V/m –200 kV/m磁场测量范围:0.2mG-20 gauss检测: 单向响应: 真有效值存储: 内置,最多127个读数环境: 温度:10-40℃ 湿度:5%-95%不冷凝
  • HI3604 工频电磁场测量仪 美国HOLADAY
    HI3604 工频电磁场测量仪 美国HOLADAY,的简介,介绍,说明书,操作,一级代理,经销,总代:HI-3604是专门为检测50/60Hz电力线,有电设备和设施,视频显示终端等周围的电 磁场强度而设计。液晶显示器显示的单位可选择毫高斯,高斯,伏/米,千伏/米,并有图形显示功能,可方便直观的定位电磁场源位置及强辐射点。 单探头实现全量程,仪器面板为覆膜式按键设计,非常适合现场使用。内部存储器可存储最多127个读数。 HI3604 工频电磁场测量仪 美国HOLADAY,的简介,介绍,说明书,操作,一级代理,经销,总代,配置:标配:电磁场两用探头(单轴),显示部分,绝缘手柄,使用手册,便携箱选件:HI3616远方显示器,HI4413 RS232光纤MODEM,三脚架。 HI3604 工频电磁场测量仪 美国HOLADAY,的简介,介绍,说明书,操作,一级代理,经销,总代,技术参数:频率范围:30-2000Hz频率响应:±0.5dB(50-1000Hz)±2.0dB(30-2000Hz)电场测量范围:1V/m –200 kV/m磁场测量范围:0.2mG-20 gauss检测:单向响应:真有效值存储:内置,最多127个读数环境:温度:10-40℃ 湿度:5%-95%不冷凝

稳态强磁场实验装置相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制