氮化钽

仪器信息网氮化钽专题为您提供2024年最新氮化钽价格报价、厂家品牌的相关信息, 包括氮化钽参数、型号等,不管是国产,还是进口品牌的氮化钽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮化钽相关的耗材配件、试剂标物,还有氮化钽相关的最新资讯、资料,以及氮化钽相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氮化钽相关的资料

氮化钽相关的论坛

  • 氮化碳的红外光谱

    氮化碳的红外光谱

    [color=#444444]求问!我做氮化碳的红外分析和氮化碳和碳化物的复合物的分析中,在2200到2400之间出来一个峰,但我做过背景扣除了,会不会还是二氧化碳的峰?还是其他官能团的峰?求大神瞅瞅嗷嗷[/color][color=#444444][img=,331,900]https://ng1.17img.cn/bbsfiles/images/2019/08/201908221518103377_9564_1849104_3.jpg!w331x900.jpg[/img][/color]

  • 【求助】氮化硅支持膜与碳支持膜的不同应用

    大家新年好。求教各位大虾,平时在用各类电镜或者其他相关仪器的时候,你们是怎么选择支持膜的呢?据了解TEM一般都是选用铜网碳支持膜的,但是铜网碳支持膜的性质原因,温度超过100℃就不能用的。哪些情况下会选用氮化硅支持膜呢?氮化硅支持膜与碳支持膜的异同点和优缺点各是怎样的?欢迎各位大虾来教导。非常感谢。

  • 【讨论】低碳低合金钢中碳氮化物成分分析

    【讨论】低碳低合金钢中碳氮化物成分分析

    [img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907092150_159322_1716979_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907092151_159323_1716979_3.jpg[/img]这是低碳低合金钢(碳0.25,Cr0.5,Mo0.7,V0.03,Nb0.03)调质处理后的碳氮化物夹杂成分分析,在C峰位前面明显有个峰,寻峰可能是B,也可能是Nb的M系峰位,主要是Nb Mo,还含有少量的V Ti各位老师有什么好办法能确定是不是B吗?B是铁合金中代入的微量元素,化学光谱分析为0.0008左右。还有个问题,就是Nb本来是微合金化元素,但是至少一部分形成了夹杂物,连铸坯中就有碳氮化铌,怎样能让铌起到应有的作用?谢谢各位老师!

氮化钽相关的方案

氮化钽相关的资讯

  • 加点氮化钴,二氧化碳“变废为宝”
    p & nbsp & nbsp 中国科技大学曾杰教授课题组,对钴基催化剂在二氧化碳加氢反应中的活性物相研究取得重要进展。他们将氮原子引入到钴催化剂中,构筑出氮化钴催化剂,通过原位机理研究发现,钴氮氢是该催化过程中真正的活性物相,是它大幅提高了催化效率。该研究成果近日在线发表在《自然—能源》杂志上。 br/ /p p   开发可再生能源、提高能源利用效率是当今世界的重大课题。二氧化碳加氢反应是低碳化学中的重要反应,一方面可以合成化工原料,缓解二氧化碳排放压力,实现碳能源的循环利用 另一方面可以合成甲醇,实现氢资源的储存和利用。 /p p   由于二氧化碳的化学惰性,二氧化碳加氢反应需要在高温高压条件下实现,转化工艺中存在能耗过大的问题。在过去几十年里,人们开发出一系列不同策略以提高非贵金属催化剂对二氧化碳加氢反应的活性。但迄今为止,对非贵金属催化剂在二氧化碳加氢反应中的活性物相研究仍处于起步阶段。 /p p   曾杰课题组将氮原子引入到钴催化剂中,形成氮化钴催化剂。在二氧化碳加氢催化中,氮化钴催化剂在32个大气压和150摄氏度的条件下,转换频率为同等条件下钴催化剂的64倍。进一步研究表明,在氢气氛围下,氮化钴催化剂上的氮原子会吸附结合氢原子形成钴氮氢这样一种特殊的物相。钴氮氢中的氨基氢原子直接加到二氧化碳分子上,形成甲酸根物种作为中间产物,从而大幅提升二氧化碳加氢反应的活性。 /p p   该研究为优化非贵金属催化剂对二氧化碳加氢反应的活性提供了一种简单有效的方式,为今后寻找更廉价、高效的二氧化碳加氢催化剂提供了新思路,对解决能源和环境问题具有积极意义。 /p p br/ /p
  • 科学岛团队在单原子负载氮化碳高效降解抗生素研究方面取得新进展
    近期,中科院合肥研究院固体所环境材料与污染控制研究部孔令涛研究员团队提出了一种在氮化碳纳米片上锚定单原子的预组装策略,制备出系列单原子负载氮化碳类芬顿催化剂并用于水中四环素污染物的降解,将催化活性提升了1-2个数量级。相关研究成果发表在Separation and Purification Technology 上。   类芬顿是一种以自由基为主要活性物种的反应,H2O2和PMS(过硫酸盐)是两种常用的类芬顿氧化剂,由于两者产生的自由基的半衰期短,利用效率低,因此可通过缩短自由基向污染物分子的迁移距离提高催化效率。目前,单原子材料已被证明对氧化剂具有较好的活化作用。氮化碳是一种二维富氮材料,其具有纳米片结构、可调节的比表面和较高的稳定性,是一种很好的单原子催化剂支撑材料;同时,其丰富的氮元素可以为金属离子的嵌入提供理想位点,形成独特的配位结构和电子构型。因此,将金属原子固定在氮化碳纳米片上,可将自由基限制在污染物附近,从而有效提高类芬顿催化效率。   鉴于此,研究人员提出了一种具有广谱通用的热解配位聚合预组装策略,将单原子(如Cu、Fe、Co、Mn等)锚定在氮化碳纳米片上,并证明了它们在类芬顿催化中的通用性。作为概念性验证,研究选择单原子铜催化剂(SA-Cu-CN)作为四环素(TC)降解和机理阐述的模型材料。SA-Cu-CN的类芬顿催化活性相比于研究中使用的其他材料提高了1-2个数量级。EPR分析和淬灭实验表明该催化体系中?OH和SO4?-的生成对降解TC起着至关重要的作用。结合超高液相色谱-质谱分析与DFT理论计算,对TC的降解路径及产物毒性进行了分析鉴定,SA-Cu-CN类芬顿催化剂显示出对有机污染物的深度处理能力。此外,通过相同的制备方法合成了SA-Fe-CN、SA-Co-CN和SA-Mn-CN等系列单原子催化剂,均表现出较好的类芬顿催化活性。该研究对发展类芬顿催化剂及其在水处理领域的应用具有十分重要意义。   上述工作得到了国家重点研究开发计划、国家自然科学基金、安徽省自然科学基金及合肥研究院院长基金等项目的资助。图1. CN和SA-Cu-CN的形貌和结构表征。图2. SA-Cu-CN的类芬顿催化性能探究。图3. 四环素降解的路径分析以及其产物的鉴定和毒性评估。
  • 快速可靠的新一代全二维面探残余应力分析仪助力氮化硅陶瓷领域获新进展
    随着科技和工业技术的快速发展,人们对材料的硬度、强度、耐磨损、热膨胀系数及绝缘性能等提出了更高的要求。而高技术陶瓷作为继钢铁、塑料之后公认的第三类主要材料,一直以来在突破现有合金和高分子材料的应用极限方向被人们寄以厚望。其中,氮化硅陶瓷因具有优异的低密度、高硬度、高强度、耐高温、耐腐蚀、耐磨损、耐氧化等诸多优点,成为了最具发展潜力与市场应用的新型工程材料之一,在高温、高速、强腐蚀介质的工作环境中具有特殊的应用价值,已被广泛应用在精密机械、电气电子、军事装备和航空航天等领域。但另一方面,工程陶瓷具有硬、脆的特性,使得其机械加工性能较差,因此磨削已成为陶瓷零件的主要加工方式。 工程陶瓷在磨削过程中,工件的表面受剪切滑移、剧烈摩擦、高温、高压等作用,很容易产生严重的塑性变形,从而在工件表面产生残余应力。残余应力将会直接影响工程陶瓷零件的断裂应力、弯曲强度、疲劳强度和耐腐蚀性能。工程陶瓷零件的断裂应力和韧性相比于金属对表面的应力更为敏感。关于残余压应力或拉应力对材料的断裂韧性的影响,特别是裂纹的产生和扩展尚需进一步的研究。零件表面/次表面的裂纹极大地影响着其性能及服役寿命。因此,探索工程陶瓷的残余应力与裂纹扩展的关系就显得尤为重要。 Huli Niu等人为了获得高磨削表面质量的工程陶瓷,以氮化硅陶瓷为研究对象,进行了一系列磨削实验。研究表明:(1)提高砂轮转速、减小磨削深度、降低进给速率有利于减小氮化硅陶瓷的纵向裂纹扩展深度。氮化硅陶瓷工件在磨削后,次表面的裂纹主要是纵向裂纹,该裂纹从多个方向逐渐向陶瓷内部延伸,最终导致次表面损伤。(2)氮化硅陶瓷表面的残余压应力随着砂轮转速的增加、磨削深度和进给速度的减小而增大。平行于磨削方向的残余压应力大于垂直于磨削方向的残余压应力。(3)砂轮转速和磨削深度的增加、进给速率增大时,磨削温度有升高的趋势。在磨削温度从300℃上升到1100℃过程中,表面残余压应力先增大后减小;裂纹扩展深度先减小后增加。在温度约为600℃时,表面残余压应力最大,裂纹扩展深度最小。适当的磨削温度可以提高氮化硅陶瓷的表面残余压应力并抑制裂纹扩展。(4)氮化硅陶瓷表面残余压应力随裂纹扩展深度和表面脆性剥落程度的增加而减小。裂纹扩展位置的残余应力为残余拉应力。它随着裂纹扩展深度的增加而增加。此外,残余应力沿进入表面的距离在压缩和拉伸之间交替分布,在一定深度处这种情况消失。(5)通过调整磨削参数、控制合适的磨削温度,可以提高氮化硅陶瓷磨削表面质量。 以上研究结果为获得高质量氮化硅陶瓷的表面加工提供了强有力的数据支撑。关于Huli Niu等人的该项研究工作,更多的内容可参考文献[1]。 Figure 1. Grinding experiment and measuring equipment: (a) Experimental principle and processing (b) SEM (c) Residual stress analyzer.Figure 6. Surface residual stress under different grinding parameters: (a) Wheel speed (b) Grinding depth (c) Feed rate.上述图片内容均引自文献[1]. 作者在该项研究工作中所使用的残余应力检测设备为日本Pulstec公司推出的小而轻的便携式X射线残余应力分析仪-μ-X360s。该设备采用了圆形全二维面探测器技术,并基于cosα残余应力分析方法可基于多达500个衍射峰进行残余应力拟合,具有探测器技术先进、测试精度高、体积迷你、重量轻、便携性高等特点,不仅可以在实验室使用,还可以方便携带至非实验室条件下的各种车间现场或户外进行原位的残余应力测量。我们期待该设备能助力更多的国内外用户做出优秀的科研工作! 小而轻的便携式X射线残余应力分析仪-μ-X360s设备图 参考文献:[1] Yan H, Deng F, Qin Z, Zhu J, Chang H, Niu H, Effects of Grinding Parameters on the Processing Temperature, Crack Propagation and Residual Stressin Silicon Nitride Ceramics. Micromachines. 2023 14(3):666. https://doi.org/10.3390/mi14030666

氮化钽相关的仪器

  • 氮化学发光检测器Agilent 8255 氮化学发光检测器 (NCD) 是氮选择性检测器,对氮化合物呈等摩尔线性响应。检测原理是:采用不锈钢燃烧器使含氮化合物在高温下燃烧生成氮氧化物 (NO)。光电倍增管检测到由 NO 和臭氧发生连续化学发光反应而产生的光。因为反应的专属性,分析复杂样品基质也几乎没有干扰。● 用于气相色谱 (GC) 的氮特异性检测器● 皮克级检出限● 没有烃的淬灭● 对有机氮化物呈等摩尔线性响应● 对氨、肼、氰化氢和 NOX 有响应● 重新设计的燃烧头和检测器,NCD 也具有亚硝胺特定配置选项● 安捷伦还提供 8355 硫化学发光检测器 (SCD)
    留言咨询
  • 我司具有软件、自动化和机械等整套研发人员,可依据客户需求,完成定制化设备的研发生产。客户在我司定制的第三代半导体材料氮化镓、碳化硅可用的新型快速退火炉,已在上海为客户装机调试完毕,如有需求,欢迎广大客户来电咨询定制氮化镓氮化硅快速退火炉的报价、型号、参数等。设备规格:6英寸快速退火炉;适应于2英寸-6英寸晶圆或者支持150mmx150mm样品;退火温度范围300℃-1400℃;升温速率≦150℃/sec(裸片);温度均匀性≦±1%;常压腔体(可选配真空腔体);冷却方式包括水冷和氮气吹扫;MFC控制,1-4路制程气体。应用领域:快速热处理(RTP),快速退火(RTA),快速热氧化(RTO),快速热氮化(RTN);离子注入/接触退火;金属合金;热氧化处理;化合物合金(砷化镓、氮化物等);多晶硅退火;太阳能电池片退火;高温退火;高温扩散。
    留言咨询
  • 氮化硅薄膜窗口 400-860-5168转1679
    联系我们:X射线透射显微成像/能谱(同步辐射)用氮化硅薄膜窗口 产品概述: X-射线薄膜窗能够实现软X-射线(如真空紫外线)的最大透射率。主要用于同步辐射X射线透射显微成像时承载样品。 X-射线越软(能量越低),穿透能力越差,所需氮化硅薄膜窗越薄。特别在“离轴”状态工作(即薄膜与光束成一定角度)时,也需要较薄的薄膜窗口,便于X射线更好地穿透。 氮化硅薄膜窗口是利用现代MEMS技术制备而成,由于此种氮化硅窗口选用低应力氮化硅(0-250MP)薄膜,因此比计量式和ST氮化硅薄膜更坚固耐用。提供的氮化硅薄膜窗口非常适合应用于透射成像和透射能谱等广泛的科学研究领域,例如,X-射线(上海光源透射成像/能谱线站)、TEM、SEM、IR、UV等。 现在提供X-射线显微成像/能谱(同步辐射)用氮化硅薄膜窗系列产品,规格如下: 外框尺寸 (4种标准规格): 5 mm x 5 mm (窗口尺寸:1.0 mm或和 1.5 mm 方形) 7.5 mm x 7.5 mm (窗口尺寸:2.0 mm或 2.5 mm) 10 mm x 10 mm (窗口尺寸:3.0 mm或 5 mm 方形) 边框厚度: 200µ m、381µ m、525µ m。 Si3N4薄膜厚度:50、100、150和200nm 我们也可以为用户定制产品(30-500nm),但要100片起订。 本产品为一次性产品,不建议用户重复使用,本产品不能进行超声清洗,适合化学清洗、辉光放电和等离子体清洗。 技术指标: 透光度: 对于X射线用窗口,500nm厚的氮化硅薄膜有很好的X光穿透效果,对于软X射线(例如碳边吸收谱),100-200nm厚的氮化硅薄膜窗口是用户首选。 真空适用性: 真空适用性数据如下:  薄膜厚度 窗口面积 压力差 ≥50 nm ≤1.0 x 1.0 mm 1 atm ≥100 nm ≤1.5 x 1.5 mm 1 atm ≥200 nm ≤2.5 x 2.5 mm 1 atm 表面平整度: 氮化硅薄膜窗口产品的表面平整性很稳定(粗糙度小于1nm),对于X射线应用没有任何影响。 温度特性: 氮化硅薄膜窗口产品是耐高温产品,能够承受1000度高温,非常适合在其表面利用CVD方法生长各种纳米材料。 化学特性: 氮化硅薄膜窗口是惰性衬底。 应用简介和优点: 1、同步辐射X射线(紫外或极紫外)透射成像或透射能谱应用中是不可或缺的样品承载体。 2、耐高温、惰性衬底,适应各种聚合物、纳米材料、半导体材料、光学晶体材料和功能薄膜材料的制备环境,利于制备理想的用于X射线表征用的自组装单层薄膜或薄膜(薄膜直接沉积在窗口上)。 3、生物和湿细胞样本的理想承载体。特别是在等离子体处理后,窗口具有很好的亲水性。 4、耐高温、惰性衬底,也可以用于化学反应和退火效应的原位表征。 5、适合做为胶体、气凝胶、有机材料和纳米颗粒等的表征实验承载体。 氮化硅薄膜窗口系列 SN-LDE-505-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:50nm SN-LDE-510-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:100nm SN-LDE-515-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:150nm SN-LDE-520-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:200nm SN-LDE-705-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:50nm SN-LDE-710-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:100nm SN-LDE-715-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:150nm SN-LDE-720-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:200nm SN-LDE-105-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:50nm SN-LDE-110-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:100nm SN-LDE-115-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:150nm SN-LDE-120-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:200nm 氮化硅薄膜窗口阵列系列 SN-AR-522-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,2×2阵列,膜厚:50nm SN-AR-733-15 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列;膜厚:50nm SN-AR-1044-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:100nm 氧化硅薄膜窗口系列 SO-505-15 氧化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:50nm SO-510-15 氧化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:100nm SO-520-15 氧化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:150nm SO-705-25 氧化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列,膜厚:50nm SO-710-25 氧化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列,膜厚:100nm SO-720-25 氧化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列,膜厚:200nm 氮化硅薄膜窗口系列 SN-1010-2-AU10 氮化硅基底框架:10×10mm,窗口:2×2mm,膜厚:100nm,金膜厚度:10nm SN-1020-2-AU10 氮化硅基底框架:10×10mm,窗口:2×2mm,膜厚:200nm,金膜厚度:10nm SN-710-2-AU10 氮化硅基底框架:7.5×7.5mm,窗口:2×2mm,膜厚:100nm,金膜厚度:10nm SN-720-2-AU10 氮化硅基底框架:7.5×7.5mm,窗口:2×2mm,膜厚:200nm,金膜厚度:10nm 特殊定制产品 SN-5H5-15 氮化硅基底框架:5×5mm,硅片厚度:200um,窗口:1.5×1.5mm,膜厚:500nm SN-5H10-15 氮化硅基底框架:5×5mm,硅片厚度:200um,窗口:1.5×1.5mm,膜厚:1000nm SN-LDE-4-10 氮化硅片100nm-4英寸整张,10×10mm切片 衬底厚度:200um 温度范围:1000℃ 真空适应:1个大气压 厚度可以选择:200um,381um,525um,需要提前说明。联系我们:
    留言咨询

氮化钽相关的耗材

  • 【SCANASYST-AIR】bruker afm探针 氮化硅针尖
    bruker afm探针氮化硅针尖ScanAsyst利用一种的曲线采集方法和复杂的算法,对图像质量进行持续的监测,并能自动地对参数进行适当的调整。因此无论用户的专业技术水平如何,图像自动优化都能更快获取更*的结果。-可直接控制力的强弱,调到超低力,从而保护易碎样品和针尖不受损坏。实现了悬臂调节的消除,定位调整,获得zui大优化让液态成像变得简单。仅适用于具有Scansyst成像的AFM。其中包含:DimensionIcon,Multimode8,BioscopeCatalyst,BioscopeResolve.【SCANASYST-AIR】brukerafm探针规格几何:旋转对称尖端高度h:2.5-8.0m前角FA:152.5背角BA:252.5侧角SA:17.52.5尖端半径Nom:2nm尖端半径最大:12nm尖端挫折TSBNom:5m尖端回缩TSBRNG:3-7m悬臂规范材料:氮化硅几何:三角悬臂梁数量:1悬臂厚度Nom:0.65m悬臂厚度RNG:0.6-0.7m背面涂层:反光铝
  • 布鲁克 AFM探针/原子力显微镜探针/氮化硅探针
    AFM配件,原子力探针,AFM探针,原子力探针针尖,显微镜探针针尖,原子力针尖,原子力显微镜探针针尖,接触探针,纳米压痕探针,氮化硅探针,硅探针,热探针,超尖探针,电子探针,显微镜针尖,原子力显微镜针尖,轻巧模式探针,AFM针尖,接触式探针,磁性探针,导电探针,显微镜探针,探针,布鲁克探针,原子力探针,BRUKER PROBE,AFM PROBE,BRUKER探针,原子力显微镜探针,AFM探针,VEECO探针作为一家能够提供AFM/SPM仪器和AFM/SPM探针的企业,布鲁克公司深刻理解每个单独的组件对于一整套性能AFM系统的价值。布鲁克公司以的生产工艺,专业的AFM领域背景,得天独厚的生产装备,赋予探针制造众多的优势,确保在应用领域中提供完整的AFM解决方案。布鲁克AFM探针制造优势:*Class100级别的无尘室*的设计、制造工序及制造工具*探针设计团队与AFM设备研发团队通力合作,配合紧密*训练有素的生产团队,制造出各种型号的探针*的质量管理体系,确保探针性能行业在实验中,用户所得到的数据取决于探针的质量及探针的重复性。布鲁克的探针具有严格的纳米加工控制,的质量测试,和AFM领域的专业背景。所以用户尽可放心,我们的探针不仅为您当前的应用提供所需的结果,同时也能为将来的研究提供参考数据。NameMountDescriptionPack SizeTip Radius (nm) OBL-10UnmountedAu Coated tips 2 Cantilevers, 0.006-0.03N/m, Au Reflective Coating1030
  • 多孔氮化硅载网
    多孔氮化硅TEM载网以高纯单晶硅为基底,超薄氮化硅(10-50nm)为支撑膜,可实现原子级分辨率。具有耐电子束辐照,电子束穿透率高,成像背景均匀和噪音小等优点。载网不含碳元素,避免积碳,尤其适合球差原子分辨表征。可以非常方便在不同分析仪器间转移分析,如TEM, AFM,XRD,EXAFS,Raman等。

氮化钽相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制