冬凌草甲素

仪器信息网冬凌草甲素专题为您提供2024年最新冬凌草甲素价格报价、厂家品牌的相关信息, 包括冬凌草甲素参数、型号等,不管是国产,还是进口品牌的冬凌草甲素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合冬凌草甲素相关的耗材配件、试剂标物,还有冬凌草甲素相关的最新资讯、资料,以及冬凌草甲素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

冬凌草甲素相关的资料

冬凌草甲素相关的论坛

  • 59.6 高效液相色谱法测定冬凌草糖浆中冬凌草甲素含量

    59.6 高效液相色谱法测定冬凌草糖浆中冬凌草甲素含量

    【作者】 蔡俊安(河南百年康鑫药业有限公司)【摘要】 目的建立测定冬凌草糖浆的冬凌草甲素含量的高效液相色谱法。方法采用Diamonsil C18色谱柱(250 mm×4.6 mm,5μm),以甲醇-水(50∶50)为流动相,流速为1.0 mL/min,检测波长为239 nm。结果冬凌草甲素进样量在0.093~0.746μg范围内与峰面积积分值线性关系良好,回归方程为Y=413 933.35-63 428.66 X,r=0.999 7(n=5);平均加样回收率为99.0%,RSD为1.06%(n=5)。结论该法简便、准确、专属性和重复性好,为冬凌草糖浆中冬凌草甲素的定量分析提供了科学有效的方法。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208211753_385117_1609970_3.jpg

  • 冬凌草乙素靶向Keap1介导PGAM5泛素化促进肝癌细胞线粒体凋亡

    [size=15px][font=宋体][color=black]冬凌草乙素[i][/i]([/color][/font][font=&][color=black]Ponicidin[/color][/font][font=宋体][color=black])是从中药冬凌草([/color][/font][i][font=&][color=black]Rabdosia rubescens[/color][/font][/i][font=宋体][color=black])中提取的二萜类化合物,具有免疫调节、抗炎、抗病毒和抗癌等多种活性。尽管冬凌草乙素对多种恶性肿瘤有疗效,但其与肝细胞癌([/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black])相关的确切功能和作用机制仍然未知。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]冬凌草乙素体外显著抑制肝癌细胞增殖和迁移,体内抑制肿瘤生长并促进肿瘤细胞凋亡。[/color][/font][font=宋体][color=red]机制上,冬凌草乙素靶向[/color][/font][font=&][color=red]Keap1[/color][/font][font=宋体][color=red]([/color][/font][font=&][color=red]E3[/color][/font][font=宋体][color=red]泛素连接酶)并促进[/color][/font][font=&][color=red]Keap1-PGAM5[/color][/font][font=宋体][color=red]复合物形成,介导[/color][/font][font=&][color=red]PGAM5[/color][/font][font=宋体][color=red]的泛素化降解。此外,冬凌草乙素通过[/color][/font][font=&][color=red]PGAM5[/color][/font][font=宋体][color=red]激活半胱氨酸依赖性线粒体通路,导致线粒体损伤和[/color][/font][font=&][color=red]ROS[/color][/font][font=宋体][color=red]产生,从而促进肝癌细胞线粒体凋亡。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]1[/color][/font][font=宋体][color=#0070c0]、冬凌草乙素抑制[/color][/font][font=&][color=#0070c0]HCC[/color][/font][font=宋体][color=#0070c0]细胞的增殖和迁移[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [align=center] [/align] [size=15px][font=宋体][color=black]作者首先通过体外实验发现能以剂量依赖性方式有效抑制[/color][/font][font=&][color=black]HepG2[/color][/font][font=宋体][color=black]细胞[i][/i]的增殖和迁移。为了确定冬凌草乙素的靶标,作者合成生物素标记的冬凌草乙素([/color][/font][font=&][color=black]Bio-Ponicidin[/color][/font][/size][font=宋体])开展[/font][font=宋体]Pulldown[/font][font=宋体]实验,通过质谱鉴定[/font][font=宋体]Keap1[/font][font=宋体]蛋白([/font][font=宋体]Kelch-like ECH-associated protein 1[/font][font=宋体],[/font][font=宋体]Keap1[/font][font=宋体],[/font][font=宋体]E3[/font][font=宋体]泛素连接酶的底物识别亚单位)为冬凌草乙素的可能靶标。[/font] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]2[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]PGAM5[/color][/font][font=宋体][color=#0070c0]在[/color][/font][font=&][color=#0070c0]HCC[/color][/font][font=宋体][color=#0070c0]组织样本中上调[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]接着,作者利用[/color][/font][font=&][color=black]TCGA[/color][/font][font=宋体][color=black]数据库发现[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]高表达与[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]患者较低的生存率有关,并利用[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]组织芯片发现肝癌组织中[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的表达高于癌旁组织,结果表明[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]在[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]发病机制中具有潜在作用。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]蛋白是一种重要的调节蛋白,可以通过与其他蛋白质相互作用来调节细胞内信号通路,于是作者通过文献检索发现[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]是一种与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]互作的重要蛋白质,且前面的[/color][/font][font=&][color=black]Pulldown[/color][/font][font=宋体][color=black]实验也显示[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]被拉下。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=&][color=black]TCGA[/color][/font][font=宋体][color=black]数据库分析显示[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]高表达与[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]存活率较低相关,组织芯片显示[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]组织中的[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]表达高于癌旁组织,且与较高的病理分级相关,结果表明[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]同样在[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]发病机制中具有潜在作用。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]进一步作者通过人类蛋白质组微阵列[i][/i]检测冬凌草乙素的直接靶蛋白,发现冬凌草乙素与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]直接结合而不与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]蛋白结合,结果表明冬凌草乙素可能直接与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]结合并影响[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black],从而在[/color][/font][font=&][color=black]HCC[/color][/font][font=宋体][color=black]中发挥药理作用。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]3[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]Keap1[/color][/font][font=宋体][color=#0070c0]和[/color][/font][font=&][color=#0070c0]PGAM5[/color][/font][font=宋体][color=#0070c0]相互作用的结构基础[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]可以与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]结合,然而,它们结合的结构基础尚不清楚。为了观察[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]结合过程的动态变化,作者通过分子动力学模拟发现[/color][/font][font=&][color=black]Keap1-PGAM5[/color][/font][font=宋体][color=black]复合物的结构总体上保持稳定,且[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]上的[/color][/font][font=&][color=black]Val78[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Glu79[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Ser80[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]Glu83[/color][/font][font=宋体][color=black]氨基酸与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的[/color][/font][font=&][color=black]Kelch[/color][/font][font=宋体][color=black]结构域相互作用。采用[/color][/font][font=&][color=black]AlphaFold3[/color][/font][font=宋体][color=black]算法来预测[/color][/font][font=&][color=black] Keap1-PGAM5 [/color][/font][font=宋体][color=black]的相互作用,发现复合物的总体预测折叠与真实结构相似。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]4[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]Keap1-PGAM5[/color][/font][font=宋体][color=#0070c0]配合物中晶体整体结构及相互作用的洞察分析[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]为了更好地理解[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]相互作用的分子机制,作者进行了结构生物学实验。通过晶体学实验获得了[/color][/font][font=&][color=black]Keap1-PGAM5[/color][/font][font=宋体][color=black]配合物的结构,分析得到两者的结合模式和结合位点,并通过蛋白点突变后的[/color][/font][font=&][color=black]ITC[/color][/font][font=宋体][color=black]实验发现[/color][/font][font=&][color=black]Glu79[/color][/font][font=宋体][color=black]是[/color][/font][font=&][color=black]Kelch[/color][/font][font=宋体][color=black]与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]结合的关键残基。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]进一步作者通过[/color][/font][font=&][color=black]SPR[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]CETSA[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Co-IP[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]EMSA[i][/i][/color][/font][font=宋体][color=black]等实验验证冬凌草乙素和[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的[/color][/font][font=&][color=black]Kelch[/color][/font][font=宋体][color=black]结构域结合,而不能和[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]的[/color][/font][font=&][color=black]?54-PGAM5[/color][/font][font=宋体][color=black]([/color][/font][font=&][color=black]54-289[/color][/font][font=宋体][color=black]号氨基酸)突变蛋白结合。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]考虑到[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]是一种[/color][/font][font=&][color=black]E3[/color][/font][font=宋体][color=black]连接酶,促进蛋白质的泛素化和降解。作者发现冬凌草乙素可以增加[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]的泛素化,增加[/color][/font][font=&][color=black]Keap1-PGAM5[/color][/font][font=宋体][color=black]蛋白共定位,表明冬凌草乙素可以与[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]结合,从而促进[/color][/font][font=&][color=black]Keap1[/color][/font][font=宋体][color=black]与[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]的互作,促进[/color][/font][font=&][color=black]PGAM5[/color][/font][font=宋体][color=black]的泛素化。 [/color][/font][/size] [size=15px][b][font=&][color=#0070c0]5[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=宋体][color=#0070c0]冬凌草乙素影响[/color][/font][font=&][color=#0070c0]Keap1[/color][/font][font=宋体][color=#0070c0]的[/color][/font][font=&][color=#0070c0]Kelch[/color][/font][font=宋体][color=#0070c0]结构域的变构来稳定[/color][/font][font=&][color=#0070c0]Keap1[/color][/font][font=宋体][color=#0070c0]与[/color][/font][font=&][color=#0070c0]PGAM5[/color][/font][font=宋体][color=#0070c0]结合[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]进一步通过分子对接模拟发现冬凌草乙素可以与[/color][/font][font=&][color=black]Keap1[/color][/font]

  • 极草5X冬虫夏草含片未检出虫草素 厂家称不便回复

    极草5X冬虫夏草含片未检出虫草素  厂家称不便回复

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412051620_526021_2206495_3.jpg12月1日,一家检测机构内,打假人王海向记者展示“极草含片”的检测报告显示:未检出虫草素。新京报记者 王嘉宁 摄http://ng1.17img.cn/bbsfiles/images/2014/12/201412051621_526022_2206495_3.jpg打假人王海送检的青海春天药用资源科技有限公司生产的极草5X经典含片。 实习生 彭子洋 摄 极草含片未检出虫草素遭质疑  专家称冬虫夏草可以调节人体免疫力,但“抗癌”效果不明确,此前并未有明确证据显示其含虫草素  新京报讯 (记者侯润芳)极草5X冬虫夏草,一种宣称可以“含着吃”的冬虫夏草,以其价格昂贵为市民所熟知。近日,打假人士王海将一盒青海春天药用资源科技有限公司(以下简称“青海春天公司”)生产的极草5X经典含片送检,结果显示,该品牌冬虫夏草并不含有虫草素。  对此,青海春天公司回应记者称,“不方便回复”。  从事真菌学研究的中科院一研究机构也表示,此前研究中也并未在采集的野外冬虫夏草中检测出虫草素。负责检测的专家表示,冬虫夏草确实可以调节人体免疫力,但是否有抗癌效果并不明确,公众应理性看待冬虫夏草。  11月17日,打假人士王海携带一盒青海春天公司生产的极草5X经典含片到北京某检测中心检测是否含有虫草素,“冬虫夏草宣传的神奇功效让我产生了质疑。”  “冬虫夏草有效成分中,只有虫草素是冬虫夏草独有,其他成分在别的物质上也有。”王海称,“检测虫草素含量就能知道冬虫夏草的真实功效。”  王海介绍,他送检的结果是“未检出虫草素。”但该检测中心工作人员介绍,检测仪器的检出限是5.63μ克/克,“未检测出极草含有虫草素(不等于完全没有),也可能有,但因为极其微量,无法检测出。”  记者现场看到,王海所选择的这家检测中心属中国合格评定国家认可委员会实验室认可中心,具有食品验证机构资质认定证书和资质认定计量认证证书等认证。

冬凌草甲素相关的方案

冬凌草甲素相关的资讯

  • “合成生物学技术及应用进展”嘉宾报告大放送
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大科研工作者及时了解合成生物技术的最新研究及应用进展,仪器信息网将于2023年10月10 日-11日举办第一届“合成生物学技术及应用进展”网络会议。届时将邀请业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。~~~~~报告嘉宾~~~~~报告题目:《高效细胞工厂构建及产业应用》【摘要】 化学品绿色生物制造是实现人类社会可持续发展的重要路径,人工高效细胞工厂构建是实现绿色生物制造的核心。本报告介绍了现阶段细胞工厂构建存在的科学、技术问题及挑战,从新生化反应发现、非天然途径设计构建、稳定自调控共培养系统建立及群体感应调控原理及应用等角度阐述了高效细胞工厂构建的新技术及策略,为化学品的绿色生物制造提供了参考。报告题目:《HMOs的生物“智”造以及产业化》【摘要】 人乳寡糖(HMO)对婴幼儿消化系统、肠道健康及免疫系统完善具有不可替代的作用。因此,生物合成HMOs,形成规模化生产被市场所期待。 本项目中,我们通过“HLBrain”的计算云平台,形成了自主技术路线,实现了产业化,产品纯度达到了98%以上,实现了我国在HMOs领域的突破。报告题目:《赛默飞合成生物学中的高分辨质谱策略》【摘要】 合成生物学是近年来迅速发展的一门综合性交叉学科,涉及了生物工程、制药工程、食品工程、生物学、化学等多领域多学科内容。在合成生物学中核心内容即构建DBTL循环,赛默飞Orbitrap高分辨质谱仪是将扫描速度,高分辨率,高灵敏度,谱图质量,质量精度完美融合,将高性能定性和定量能力有机的统一,助力合成生物学难题攻克!报告题目:《利用合成生物学方法增加小分子结构多样性》【摘要】 天然产物长期以来一直是小分子药物的宝贵来源,但它们在自然来源中的含量通常很低,且其化学结构复杂,这使得它们的提取或化学合成变得十分困难和成本高昂。异源生物合成复杂天然产物已成为一种有吸引力的方法,因为它们成本低且供应稳定。我们已经建立了几种不同的方法,用于在细菌和酵母中异源生物合成各种天然产物,包括抗生素和抗癌药物。更重要的是,我们通过理性设计或定向进化及高通量筛选,成功的改造了途径中的酶,以实现天然产物类似物的生产,这显著扩展了当前天然产物的化学空间。我们还开发了自动化系统来辅助酶进化和菌株构建,这将有助于发现具有多种结构、靶向选择性和药代动力学特性的天然产物或其类似物。报告题目:《优化“启动子-RNA聚合酶”以实现目标产物的高产》【摘要】 启动子及RNA聚合酶是转录水平的两个关键调控元件,控制细胞内代谢流量的分配。目标产物的合成与宿主细胞的生长竞争利用有限的RNA聚合酶。启动子招募过多或过少RNA聚合酶都不利于高产目标产物。研究发现,适度串联的启动子能明显提高3-羟基丙酸和吡咯喹啉醌的产量,而过度消耗RNA聚合酶导致宿主细胞生长变慢,从而阻碍目标产物3-羟基丙酸的生成。此外,受诱导的CRISPRi可协调和切换细胞生长和产物合成,从而高产目标产物。报告题目:《岛津最新色谱质谱技术在合成生物学中的应用》【摘要】 主要介绍岛津分析方法包及LCMSMS、LCMS-QTOF、MALDI-TOF等仪器在合成生物学质量控制中的应用。报告题目:《人工智能驱动的合成生物制造创新模式》【摘要】 当前合成生物制造产业发展瓶颈是如何从无到有构建生物合成途径,我们开发了全球最大的生物合成反应/途径数据库,进而构建了全球领先的合成生物设计技术体系,创建了人工智能驱动的合成生物制造研发链条,正在打造人工智能驱动的合成生物制造创新模式。报告题目:《基于DNA纳米框架结构的仿病毒分子工具》【摘要】 利用DNA折纸技术构建框架核酸纳米结构,可以指导各类分子在纳米尺度的精确空间排布和组装,构建纳米器件并实现功能化,为合成生物学提供了全新的研究工具和应用平台。受到病毒启发设计的三维框架核酸被用于组装具有明确尺寸形状的磷脂膜囊泡;组装仿病毒被动侵染颗粒和抑制侵染颗粒等。报告题目:《基于液滴微流控技术氧化还原酶分子改造及其合成生物学应用研究》【摘要】 液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴微流控高通量筛选氧化还原酶,获取高性能突变体,为生物医药酶定向进化及合成生物学代谢途径关键酶性能优化提供了技术平台。报告题目:《安捷伦高通量自动化流程在合成生物学领域的创新应用》【摘要】 安捷伦高通量自动化流程在合成生物学领域的创新应用。报告题目:《Hamilton自动化移液工作站在合成生物学领域的应用和卓越技术》【摘要】 合成生物学领域需要严谨准确无交叉污染的DNA基因合成、基因克隆、微生物或细胞的克隆挑选与培养、发酵培养以及产物纯化鉴定等步骤,且往往需要较高的通量。Hamilton以其卓越的自动化移液技术及先进的台面内设备,为合成生物学领域的各个步骤均提供了优秀的硬件和自动化解决方案,其中多种设备和技术是业内独有,且对合成生物学关键步骤的长时间稳定准确运行至关重要。本报告将通过合成生物学的各种实验需求介绍Hamilton公司的解决方案和技术优势,为科学家和企业研发人员的相关研发工作提供助力。报告题目:《创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶》【摘要】 酶作为生物合成中的催化剂,其活性高低决定了目标产物能否高产。蛋白质工程介导的酶改造需快速简易的筛选方法。由此,以高值化合物没食子酸合成途径中羟化酶PobA为例,基于催化产物的独有特性,建立了一种肉眼可视化筛选方法,并从突变库中筛选到高活性突变体。高活性突变体的引入实现了没食子酸从葡萄糖起始的高效生物合成。报告题目:《植物二萜的合成生物学研究》【摘要】 二萜类化合物广泛存在于自然界,因其化学结构的多样性和良好的生物活性,在工业、医疗等领域具有广阔的应用前景。二萜合酶以及糖基化酶、羟基化酶等后修饰酶是二萜化合物生物合成过程中影响其化学结构多样性的主要因素。在过去几年,本课题组针对三尖杉烷二萜、贝壳杉烷二萜为代表的二萜化合物的合成过程进行了深入的研究。如通过对柱冠粗榧(Cephalotaxus harringtonia)转录组基因的挖掘,报道了三尖杉属植物二萜生物合成途径的关键萜类环化酶,揭示了三尖杉烷型二萜前体骨架三尖杉-12-烯的生物合成过程,为裸子植物二萜代谢多样性的起源和演化提供了深入见解;通过对冬凌草(Isodon rubescens (Hemsl.)Hara)基因组学的研究,揭示了贝壳杉烷二萜冬凌草甲素的氧化修饰机制;通过对甜叶菊等转录组学的挖掘,揭示了贝壳杉烷二萜糖基化修饰过程中底物识别专一性和产物生成特异性的分子机制。基于这些研究,本课题组以大肠杆菌为底盘高效地实现了11种不同氧化形式的对映-贝壳杉烷类二萜化合物的从头生物合成,实现了多种稀有二萜糖苷的高效合成,并实现了产业化推广。报告题目:《技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化》【摘要】 1.合成生物学科研与产业化流程与技术痛点 2.技术瓶颈的突破性新技术 3.应用案例介绍。报告题目:《过程数据驱动下的精准高通量筛选技术》【摘要】 合成生物学的DBTL研究循环中,T环节急需要开发高通量、自动化和在线多参数测控技术的新型生物反应器,规避过去基于三角瓶培养方式测试菌种和工艺的结果误判和漏选现象。建立基于过程多尺度参数相关分析方法的高通量菌种筛选和工艺开发平台,形成过程数据驱动的理性决策方法。报告题目:《翻译机制启发的氨基酸高产菌株筛选策略》【摘要】 氨基酸是构成蛋白质的基本单元,也是动物生长和生产所需的大量营养素之一,全球市场总量已接近300亿美元。商业化的氨基酸主要由微生物发酵法制成,然而,除了谷氨酸、赖氨酸等少数大宗氨基酸品类,大多数氨基酸的发酵产量仍处于较低水平,部分氨基酸生产菌株与国外存在代差,因此,选育优良的生产菌株已成为填补氨基酸产能与需求差距的关键。基于自然界普遍存在的“密码子偏好性”规律及氨酰化反应的动力学特征,报告人开发了基于稀有密码子和人造tRNACUA的氨基酸高产菌株筛选策略,实现了对20种标准氨基酸乃至非蛋白质类氨基酸的快速指征,解决了长期困扰氨基酸生物制造的菌株选育难题,促进了氨基酸高产新机制的发现。扫码报名~~~~~赞助单位~~~~也欢迎各位对合成生物学感兴趣的小伙伴进群交流~扫码进群
  • 博纳艾杰尔开设2015版《中国药典》分析案例专题
    《中华人民共和国药典》,简称《中国药典》。是由国家药典委员会负责组织编纂,国家食品药品监督管理部门批准颁布实施。2015年6月,国家食品药品监督管理总局正式颁布了《中华人民共和国药典》2015版,并于12月1日起实施。《中国药典》2015年版加强了药物中的杂质分析,对色谱柱提出了更高的要求。博纳艾杰尔科技紧密贴合药典要求,及时推出一系列分析案例,并在不断更新中。以下应用均可在博纳艾杰尔科技官方网站(www.agela.com.cn)首页——医药分析分类中的“2015版药典”专题内浏览下载:1) 曲克芦丁分析 —— Venusil MP C182)《中国药典》2015 年版盐酸水苏碱采用的亲水色谱柱—— Venusil HILIC3) 阿奇霉素有关物质分析专用柱 —— Durashell C18-AM Plus4) 磷酸肌酸钠含量测定项的分析——Durashell C18-AM5) 头孢羟氨苄及其颗粒剂分析 —— Innoval AQ C186) 头孢泊污酯有关物质检测的分析 —— Venusil MP C187) 复方丹参片(胶囊、颗粒)中三七检测项的分析 —— Venusil XBP C18(L)&Venusil MP C18(2)8) 头孢羟氨苄分析 —— Innoval AQ C189) 头孢米诺钠分析 —— Innoval AQ C1810) 头孢他啶分析 —— Innoval AQ C1811) 注射用头孢拉定分析 —— Durashell C18-AM12) 头孢尼西钠分析 —— Durashell C18-AM13) 头孢美唑钠分析 —— Venusil XBP C18(L)14) 头孢噻肟钠分析 —— Venusil XBP C18(L)15) 甲钴胺分析 —— Durashell C18-AM16) 盐酸布桂嗪分析 —— Venusil XBP C18(L)17) 法莫替丁分析 —— Durashell C1818) 醋酸地塞米松分析 —— Innoval AQ C1819) 尼莫地平片分析 —— Venusil XBP C18(2)20) 冬凌草分析 —— Venusil XBP C18(2)21) 藿香正气水分析 —— Promosil C18
  • 甘肃新增草地农业系统国家重点实验室
    4月14日,记者从省科技厅了解到,科技部2010年依托高校和科研院所新建国家重点实验室的评审工作于日前结束,兰州大学申报的草地农业系统国家重点实验室获准立项。这是“十二五”开局之年甘肃省获批的首个国家重点实验室,也是我省第七个国家重点实验室。   草地农业系统国家重点实验室的立项建设将对加强我国草业科学基础研究,培养草业科学领域科技创新人才发挥重要作用,为国家生态安全、食物安全与可持续发展等战略目标及甘肃省富民强省战略提供科技支撑。为保证国家重点实验室的建设水平和质量,科技部将组织专家对草地农业系统国家重点实验室名称、研究方向、队伍建设、平台建设和运行机制等进行可行性论证。通过可行性论证后科技部将正式批准立项建设。

冬凌草甲素相关的仪器

  • 夹套恒温浴槽 槽体使用高品质 316L 不锈钢制成,也可以进行te殊表面氧化涂层处理,或 PFA 防腐涂层处理 夹套恒温设计温场均匀性好,槽体内无任何操作死角 根据需要增加各种夹具,槽盖等附件 所示温度为槽体可使用温度,实际控温范围根据客户需要选择不同 JULABO 高低温恒温设备,满足不同温度应用需要。 技术参数货号体积大小浴槽耐温范围夹套耐压材质推荐配套JUS4S-B-01≤30L-40…+200℃≤4bar不锈钢F500, FL601,CS-6JUS4S-B-02≤60L-40…+200℃≤4bar不锈钢F1000,CS-12JUS4S-B-03≤90L-40…+150℃≤4bar不锈钢FL4003,CS-50
    留言咨询
  • 中文名称草酸二甲酯英文名称Dimethyl oxalate中文别名乙二酸二甲酯 草酸甲酯CAS RN553-90-2EINECS号209-053-6分 子 式C4H6O4分 子 量118.088危险品标志 Xi:Irritant风险术语R36/38 安全术语S24/25 物化性质用  途主要用于制药、农药、有机合成,也用作增塑剂我公司关于订购说明:1、质优价廉,量大从优,欢迎您的订购;2、物流信息:快递、汽车物流等;3、其他服务:如您对产品服务及技术指标有特殊要求,请及时通知我方;欢迎新老客户前来洽谈!订购流程:电话询单议价→签订合同→打款订货→安排发货→物流跟踪→货物送达→客户验收(7天产品质量异议期,15天产品数量异议期)→货物验收确认服务宗旨:竭诚提供 产品,售后服务客户满意 。我公司产品出厂前均由质检部检验合格方可出货,质量有保证特别说明:1,产品价格会受到季节性波动影响,具体价格请客户来电核实2,产品都是完整包装,需拆分少量时价格会稍微提高3,大货急需的客户还请提前来电,我公司提前给您备货4,收货后请仔细确认完整性无损再签收,按该产品执行标准验收,如有产品不符,我们包退包换
    留言咨询
  • 草原生态气象站厂家 400-860-5168转4652
    草原生态气象站厂家:是一种集成了多种气象监测技术的设备,可以实时监测草原地区的气温、湿度、风速、风向、气压等关键气象参数。同时,它还可以结合超声波技术,对草原的植被覆盖、生长状况以及土壤湿度等生态信息进行非接触式测量,从而实现对草原生态的全面监测。一、产品简介TH-CQX9超声波气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。草原生态气象站厂家:该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。草原生态气象站厂家:该设备创新性的采用九要素一体式传感器,可对风速、风向、温度、湿度、气压、光学雨量、辐射、pm2.5、pm10等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将九项参数一次性输出给用户。二、产品特点1.顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2.原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3.风速、风向、温度、湿度、气压、光学雨量、总辐射、pm2.5、pm10九要素一体式传感器4.标配GPRS;可选配RJ45、以太网、4-20ma、Lora透传、4G透传、蓝牙、485转USB等多种传输方式5.两米碳钢支架,顶部无需法兰盘可直接套接传感器6.传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1.风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2.风向:测量原理超声波,0~360°(±2°);分辨率:1°;3.空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃),分辨率0.01℃;4.空气湿度:测量原理电容式,0-100%RH(±3%RH),分辨率:0.01%RH;5.大气压力:测量原理压阻式,300-1100Hpa(±0.25%),分辨率0.1hpa;6.PM2.5:测量原理光散射,0-1000ug/m³ (±10%),分辨率1ug/m³ ;7.PM10:测量原理光散射,0-1000ug/m3(±10%),分辨率1ug/m³ ;8.总辐射:测量原理光电效应,0~1242W/㎡(<±3%),分辨率1W/㎡;9.光学雨量:测量原理光电式,0-4mm/min(≤±4%),分辨率0.01mm;10.采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,11.传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V12.太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%13.数据上传间隔:1分钟-1000分钟可调14.安卓7寸触屏,屏幕分辨率:1024*600 RGB LCD15.整机具有第三方CMA/CNAS检测报告16.生产企业具有ISO9001质量管理体系17.生产企业具有计算机软件注册证书
    留言咨询

冬凌草甲素相关的耗材

冬凌草甲素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制