类叶升麻苷

仪器信息网类叶升麻苷专题为您提供2024年最新类叶升麻苷价格报价、厂家品牌的相关信息, 包括类叶升麻苷参数、型号等,不管是国产,还是进口品牌的类叶升麻苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合类叶升麻苷相关的耗材配件、试剂标物,还有类叶升麻苷相关的最新资讯、资料,以及类叶升麻苷相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

类叶升麻苷相关的资料

类叶升麻苷相关的论坛

  • 26.8 高效液相色谱法测定鼻炎片中升麻素苷含量

    26.8 高效液相色谱法测定鼻炎片中升麻素苷含量

    【作者】:何巧君,高幼衡,魏志雄【摘要】:目的建立高效液相色谱(HPLC)法测定鼻炎片中升麻素苷含量的方法。方法采用HPLC法,色谱柱为迪马Diamonsil C18分析柱(4.6mm×250mm,5μm),流动相为甲醇-乙腈-水(18∶12∶70);流速为1.0mL/min;检测波长为254nm。结果升麻素苷在0.1888~1.534μg范围内与峰面积积分值呈良好的线性关系,相关系数r=0.9997,加样回收率为101.74%,RSD为2.97%。结论该方法快速、准确,可用于鼻炎片的质量控制。关键词:鼻炎片;升麻素苷;高效液相色谱法【作者单位】: 广州中医药大学中药学院【关键词】:鼻炎片;升麻素苷;高效液相色谱法http://ng1.17img.cn/bbsfiles/images/2012/07/201207311352_380873_1838299_3.jpg

  • 【金秋计划】基于网络药理学探索升麻三萜皂苷对破骨细胞形成分化的影响

    [font=宋体] [font=宋体]升麻为毛茛科植物大三叶升麻[/font][i]Cimicifuga heracleifolia[/i] Kom.[font=宋体]、兴安升麻[/font][i]C. dahurica [/i](Turcz.) Maxim.[font=宋体]或升麻[/font][i]C. foetida [/i]L.[font=宋体]的干燥根茎,含有三萜皂苷、黄酮、生物碱和色酮等化学成分,具有缓解潮热、抗骨质疏松、抗人类免疫缺陷病毒、抗炎、抗糖尿病、抗疟疾和保护血管等多种生物活性[/font][sup][4][/sup][font=宋体]。同属植物黑升麻[/font][i]C. racemosa[/i] L.[font=宋体]在欧洲广泛应用于防治更年期综合征和骨质疏松症[/font][sup][5][/sup][font=宋体]。有研究表明升麻具有与黑升麻相似的缓解去卵巢大鼠更年期综合征和抗骨质疏松作用,其有效成分为三萜皂苷[/font][sup][6-7][/sup][font=宋体]。升麻三萜皂苷能够增加成骨细胞的骨形成[/font][sup][8][/sup][font=宋体],但其对破骨细胞形成分化和骨吸收的影响及机制尚不清楚。[/font] 破骨细胞为从骨髓巨噬细胞分化的,唯一具有骨吸收功能的细胞。破骨细胞活性增强,骨吸收大于骨形成,骨重建的平衡破坏,导致骨量减少和骨质疏松症的发生[/font][sup][9-10][/sup][font=宋体]。破骨细胞的典型特征为分泌[/font]TRAP[font=宋体]和形成[/font]F-actin[font=宋体]进行骨吸收。[/font]TRAP[font=宋体]是由破骨[/font][font=宋体]细胞分泌的酸性磷酸酶,具有溶解骨矿化基质的作用,是破骨细胞分化成熟的特异性标志酶[/font][sup][11][/sup][font=宋体]。[/font]F-actin[font=宋体]环是破骨细胞特有的进行骨吸收的细胞骨架蛋白,是破骨细胞附着于骨基质表面的重要结构[/font][sup][12][/sup][font=宋体]。培养的破骨细胞通过骨吸收,可在共培养的骨片上形成骨吸收陷窝,其数目和面积常用于表征破骨细胞的骨吸收活性。本研究以[/font]RANKL[font=宋体]及[/font]M-CSF[font=宋体]诱导[/font]BMMs[font=宋体]形成的破骨细胞为模型,观察升麻三萜皂苷对破骨细胞形成、分化和骨吸收的作用,结果表明升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇可显著抑制[/font]RANKL[font=宋体]诱导的破骨细胞[/font]TRAP[font=宋体]活性,减少[/font]TRAP[font=宋体]染色阳性的破骨细胞的数目,抑制[/font]F-actin[font=宋体]环的构建,降低破骨细胞在骨片上形成的骨吸收陷窝的数目和面积,显示出了确切的抑制破骨细胞骨吸收的作用。[/font] [font=宋体]破骨细胞由骨髓巨噬细胞分化形成的过程中,受[/font]c-Fos[font=宋体]和[/font]NFATc1[font=宋体]的调控[/font][sup][13][/sup][font=宋体]。[/font]c-Fos[font=宋体]是破骨细胞分化早期所必需的激活蛋白[/font]-1[font=宋体]家族的关键转录因子,可诱导破骨细胞[/font]NFATc1[font=宋体]的表达,调控前破骨细胞最终分化为成熟破骨细胞[/font][sup][14][/sup][font=宋体]。[/font]NFATc1[font=宋体]参与调控破骨细胞特异性基因[/font][i]TRAP[/i][font=宋体]、[/font][i]CTSK[/i][font=宋体]、树突状细胞特异性跨膜蛋白([/font]dendritic cell-specific transmembrane protein[font=宋体],[/font][i]DC-STAMP[/i][font=宋体])和降钙素受体([/font]calcitonin receptor[font=宋体],[/font][i]CTR[/i][font=宋体])等的表达,刺激破骨细胞的形成、分化和骨吸收[/font][sup][15-16][/sup][font=宋体]。升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇能够抑制破骨细胞转录因子[/font]NFATc1[font=宋体]和[/font]C-fos[font=宋体]的表达,抑制破骨细胞的形成分化。[/font]CTSK[font=宋体]是破骨细胞分泌的胶原降解酶,可降解骨基质中的胶原纤维[/font][sup][17][/sup][font=宋体]。[/font]MMP9[font=宋体]也是破骨细胞产生的参与骨基质胶原降解的蛋白酶[/font][sup][18][/sup][font=宋体]。升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇可显著抑制破骨细胞[/font]MMP9[font=宋体]和[/font]CTSK[font=宋体]的表达,进一步明确了其对破骨细胞骨吸收的抑制作用。[/font] [font=宋体]网络药理学是预测中药活性成分作用靶点及机制的重要手段[/font][sup][19-20][/sup][font=宋体]。本研究应用网络药理学预测了升麻三萜皂苷抑制破骨细胞骨吸收的潜在靶点和机制。[/font]KEGG[font=宋体]分析显示升麻三萜皂苷可能通过调控[/font]IL-17[font=宋体]、[/font]TNF-α[font=宋体]、脂质和动脉粥样硬化、[/font]MAPK[font=宋体]信号通路发挥抑制破骨细胞功能的作用。[/font]IL-17[font=宋体]和[/font]TNF-α[font=宋体]通路是机体调节炎症的重要机制[/font][sup][21][/sup][font=宋体]。衰老和雌激素缺失导致炎性细胞因子水平升高,抑制成骨细胞的骨形成,增加破骨细胞的骨吸收,导致骨量减少和骨质疏松症的发生[/font][sup][22][/sup][font=宋体]。升麻三萜皂苷参与[/font]IL-17[font=宋体]和[/font]TNF-α[font=宋体]通路的调控,表明其可能通过抑制炎症发挥抗骨质疏松的作用。[/font] [font=宋体]升麻三萜皂苷也可能参与脂质和动脉粥样硬化通路的调控。骨髓间充质干细胞在向成骨细胞分化的过程中,成脂和成骨分化程序具有竞争性平衡,促进脂肪生成的机制会主动抑制成骨细胞的形成与分化[/font][sup][23][/sup][font=宋体]。骨髓脂肪细胞可通过分泌破骨细胞活化因子促进破骨细胞的形成、分化和骨吸收作用[/font][sup][24][/sup][font=宋体]。绝经后骨质疏松患者存在骨量减少、成骨细胞的数量和功能下降、骨髓脂肪增加等现象,表明脂肪细胞的分化可能会影响成骨细胞或破骨细胞的形成分化[/font][sup][25][/sup][font=宋体]。[/font][font=宋体]因此,升麻三萜皂苷也可能通过抑制骨髓基质干细胞向脂肪细胞的分化,增加成骨细胞的骨形成、抑制破骨细胞的骨吸收,发挥抗骨质疏松的作用。[/font] MAPK[font=宋体]是[/font]RANKL/RANK/TRAF6[font=宋体]信号传导下游的一条通路[/font][sup][26][/sup][font=宋体],[/font]RANKL[font=宋体]与[/font]RANK[font=宋体]的结合导致[/font]MAPK[font=宋体]的[/font]p38[font=宋体]、[/font]JNK[font=宋体]和[/font]ERK[font=宋体]磷酸化,诱导破骨细胞的形成分化[/font][sup][27][/sup][font=宋体]。[/font]p38 MAPK-[font=宋体]环磷腺苷效应元件结合蛋白([/font]adenosinecyclophosphate-response element binding protein[font=宋体],[/font]CREB[font=宋体])通路在[/font]RANKL[font=宋体]介导的破骨细胞分化中发挥重要作用,[/font]p38 MAPK[font=宋体]抑制剂可抑制[/font]TNF-α[font=宋体]或[/font]RANKL[font=宋体],通过[/font]CREB[font=宋体]磷酸化调节[/font]c-Fos[font=宋体]和[/font]NFATc1[font=宋体]的表达,抑制破骨细胞的形成分化[/font][sup][28][/sup][font=宋体]。[/font]p38[font=宋体]可刺激破骨细胞成熟所必需的小眼相关转录因子([/font]microphthalmia-associated transcription factor[font=宋体],[/font]MITF[font=宋体])的下游激活,调控破骨细胞[/font][i]TRAP[/i][font=宋体]和[/font][i]CTSK[/i][font=宋体]的基因表达[/font][sup][29][/sup][font=宋体]和骨吸收。[/font]ERK[font=宋体]激活是成熟破骨细胞存活的关键[/font][sup][30][/sup][font=宋体],[/font]M-CSF[font=宋体]刺激的[/font]ERK1[font=宋体]和[/font]ERK2[font=宋体]激活,直接磷酸化[/font]MITF[sup][31][/sup][font=宋体],影响破骨细胞的骨吸收活性。[/font]RANKL[font=宋体]诱导破骨前细胞[/font]ERK[font=宋体]的激活,通过[/font]TRAF6[font=宋体]诱导[/font]MMP9[font=宋体]的表达和活性,调节破骨细胞迁移和骨吸收[/font][sup][32][/sup][font=宋体]。[/font]JNK[font=宋体]的激活参与破骨细胞的分化、融合和骨吸收的调节,也通过[/font]B[font=宋体]淋巴细胞瘤[/font]-2[font=宋体]([/font]B-cell lymphoma-2[font=宋体],[/font]Bcl-2[font=宋体])通路调节破骨细胞的凋亡和自噬[/font][sup][33][/sup][font=宋体]。在破骨细胞融合前阶段阻断[/font]JNK[font=宋体]活性会导致[/font]TRAP[font=宋体]阳性细胞(代表融合前阶段的破骨细胞)逆转为[/font]TRAP[font=宋体]阴性细胞(代表破骨细胞前体)[/font][sup][34][/sup][font=宋体]。[/font][font=宋体]本研究发现升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇与[/font]ERK1/ERK2[font=宋体]、[/font]JNK[font=宋体]、[/font]p38[font=宋体]均有较好的结合特性,可显著抑制[/font]RANKL[font=宋体]和[/font]M-CSF[font=宋体]诱导[/font]BMMs[font=宋体]分化的破骨细胞[/font]p38[font=宋体]、[/font]JNK[font=宋体]和[/font]ERK[font=宋体]的磷酸化和激活,进一步明确了升麻三萜皂苷通过[/font]MAPK[font=宋体]通路抑制破骨细胞的形成分化和骨吸收的作用机制。[/font] [font=宋体]三萜皂苷是升麻属植物的特征性化学成分,目前已从升麻属多种植物中分离鉴定了[/font]400[font=宋体]余个三萜皂苷类成分,其中[/font]44[font=宋体]个化合物显示出抗骨质疏松、抗肿瘤、抗炎、抗氧化及免疫调节等多种生物活性[/font][sup][35][/sup][font=宋体]。本研究考察了升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇抑制破骨细胞骨吸收的作用,并通过网络药理学预测了其作用机制。后续还应该深入研究这些化合物抑制破骨细胞活性的靶点及对成骨细胞的作用及机制,为其临床用于骨质疏松症的防治奠定基础。另外,鉴于升麻属植物含有结构多样的三萜皂苷类成分,应采用现代化学生物学的思路和方法,研究升麻三萜皂苷抗骨质疏松的作用靶点、构效关系及深入的机制,为抗骨质疏松新药的研发提供先导化合物。[/font]

类叶升麻苷相关的方案

  • 得利特:高效液相色谱法测定中药升麻中异阿魏酸的含量
    升麻为常用中药,中国药典(1995年版)收载升麻为毛茛科升麻属植物升麻(Cimicifug a foetida L.)、兴安升麻(C.dahurica Maxim.)、大三叶升麻(C.heracleifolia Kom.)3种,以根茎入药,具有发表透疹、清热解毒、升举阳气的功能。升麻主要含有机酸 类、呋喃色原酮类和三萜类等成分。文献[1]及作者自己进行的药理实验均证明阿 魏酸、 异阿魏酸是升麻的主要活性成分。有关升麻中阿魏酸和异阿魏酸的含量测定有分光光度法、 薄层扫描法,未见用高效液相色谱法测定。本文对药典收载升麻3种植物14 个不同产地的样 品,进行了阿魏酸和异阿魏酸的含量测定。
  • 得利特:高效液相色谱法测定中药升麻中阿魏酸的含量
    升麻为常用中药,中国药典(1995年版)收载升麻为毛茛科升麻属植物升麻(Cimicifug a foetida L.)、兴安升麻(C.dahurica Maxim.)、大三叶升麻(C.heracleifolia Kom.)3种,以根茎入药,具有发表透疹、清热解毒、升举阳气的功能。升麻主要含有机酸 类、呋喃色原酮类和三萜类等成分。文献[1]及作者自己进行的药理实验均证明阿 魏酸、 异阿魏酸是升麻的主要活性成分。有关升麻中阿魏酸和异阿魏酸的含量测定有分光光度法、 薄层扫描法,未见用高效液相色谱法测定。本文对药典收载升麻3种植物14 个不同产地的样 品,进行了阿魏酸和异阿魏酸的含量测定。
  • 高效液相色谱法测定中药升麻中阿魏酸和异阿魏酸的含量
    升麻为常用中药,中国药典(1995年版)收载升麻为毛茛科升麻属植物升麻(Cimicifug a foetida L.)、兴安升麻(C.dahurica Maxim.)、大三叶升麻(C.heracleifolia Kom.)3种,以根茎入药,具有发表透疹、清热解毒、升举阳气的功能。升麻主要含有机酸 类、呋喃色原酮类和三萜类等成分。文献[1]及作者自己进行的药理实验均证明阿 魏酸、 异阿魏酸是升麻的主要活性成分。有关升麻中阿魏酸和异阿魏酸的含量测定有分光光度法、 薄层扫描法,未见用高效液相色谱法测定。本文对药典收载升麻3种植物14 个不同产地的样 品,进行了阿魏酸和异阿魏酸的含量测定。

类叶升麻苷相关的资讯

  • 官方猴痘治疗指南发布,明确传染源与传播途径
    6月14日,国家卫生健康委、国家中医药管理局共同发布《猴痘诊疗指南(2022年版)》(以下简称《诊疗指南》),这也是我国首次发布有关猴痘的诊疗指南,提前做好猴痘医疗应对工作准备,提升临床早期识别和规范诊疗能力。目前已有多家检测公司做出应对,发布了多种猴痘病毒核酸检测试剂盒产品(点击查看)。《诊疗指南》指出猴痘为自限性疾病,大部分预后良好,另外人群普遍易感,主要通过密切接触传播,也可通过飞沫传播,接触被病毒污染的物品也有可能感染,还可通过胎盘垂直传播。全文如下:猴痘诊疗指南(2022年版)猴痘是一种由猴痘病毒(Monkeypox virus,MPXV)感染所致的人兽共患病毒性疾病,临床上主要表现为发热、皮疹、淋巴结肿大。该病主要流行于中非和西非。2022年5月以来,一些非流行国家也报道了猴痘病例,并存在社区传播。为提高临床医师对猴痘的早期识别及规范诊疗能力,特制定本诊疗指南。一、病原学猴痘病毒(MPXV)归类于痘病毒科正痘病毒属,是对人类致病的4种正痘病毒属之一,另外3种是天花病毒、痘苗病毒和牛痘病毒。电镜下猴痘病毒颗粒呈砖形或椭圆形,大小为200nm×250nm,有包膜,病毒颗粒中有结构蛋白和DNA依赖的RNA多聚酶,基因组为双链DNA,长度约197kb。猴痘病毒分为西非分支和刚果盆地分支两个分支。本次非流行国家部分病例病毒测序结果为西非分支。猴痘病毒的主要宿主为非洲啮齿类动物(包括非洲松鼠、树松鼠、冈比亚袋鼠、睡鼠等)。猴痘病毒耐干燥和低温,在土壤、痂皮和衣被上可生存数月。对热敏感,加热至56℃30分钟或60℃10分钟可灭活。紫外线和一般消毒剂均可使之灭活,对次氯酸钠、氯二甲酚、戊二醛、甲醛和多聚甲醛等敏感。二、流行病学(一)传染源主要传染源为感染猴痘病毒的啮齿类动物。灵长类动物(包括猴、黑猩猩、人等)感染后也可成为传染源。(二)传播途径病毒经黏膜和破损的皮肤侵入人体。人主要通过接触感染动物病变渗出物、血液、其它体液,或被感染动物咬伤、抓伤而感染。人与人之间主要通过密切接触传播,也可通过飞沫传播,接触被病毒污染的物品也有可能感染,还可通过胎盘垂直传播。尚不能排除性传播。(三)易感人群人群普遍易感。既往接种过天花疫苗者对猴痘病毒存在一定程度的交叉保护力。三、临床表现潜伏期5-21天,多为6-13天。发病早期出现寒战、发热,体温多在38.5℃以上,可伴头痛、嗜睡、乏力、背部疼痛和肌痛等症状。多数患者出现颈部、腋窝、腹股沟等部位淋巴结肿大。发病后1-3天出现皮疹。皮疹首先出现在面部,逐渐蔓延至四肢及其他部位,皮疹多呈离心性分布,面部和四肢皮疹较躯干更为多见,手心和脚掌均可出现皮疹,皮疹数量从数个到数千个不等;也可累及口腔黏膜、消化道、生殖器、结膜和角膜等。皮疹经历从斑疹、丘疹、疱疹、脓疱疹到结痂几个阶段的变化,疱疹和脓疱疹多为球形,直径约0.5-1厘米,质地较硬,可伴明显痒感和疼痛。从发病至结痂脱落约2-4周。结痂脱落后可遗留红斑或色素沉着,甚至瘢痕,瘢痕持续时间可长达数年。部分患者可出现并发症,包括皮损部位继发细菌感染、支气管肺炎、脑炎、角膜感染、脓毒症等。猴痘为自限性疾病,大部分预后良好。严重病例常见于年幼儿童、免疫功能低下人群,预后与感染的病毒分支、病毒暴露程度、既往健康状况和并发症严重程度等有关。西非分支病死率约3%,刚果盆地分支病死率约10%。四、实验室检查(一)一般检查外周血白细胞正常或升高,血小板正常或减少。部分患者可出现转氨酶水平升高、血尿素氮水平降低、低蛋白血症等。(二)病原学检查1.核酸检测:采用核酸扩增检测方法在皮疹、疱液、痂皮、口咽或鼻咽分泌物等标本中可检测出猴痘病毒核酸。2.病毒培养:采集上述标本进行病毒培养可分离到猴痘病毒。病毒培养应当在三级及以上生物安全实验室开展。五、诊断和鉴别诊断(一)诊断标准1.疑似病例出现上述临床表现者,同时具备以下流行病史中的任一项:(1)发病前21天内有境外猴痘病例报告地区旅居史;(2)发病前21天内与猴痘病例有密切接触;(3)发病前21天内接触过猴痘病毒感染动物的血液、体液或分泌物。2.确诊病例疑似病例且猴痘病毒核酸检测阳性或培养分离出猴痘病毒。对符合疑似病例或确诊病例标准的病例,应按相关要求进行传染病报告。(二)鉴别诊断主要和水痘、带状疱疹、单纯疱疹、麻疹、登革热等其它发热出疹性疾病鉴别,还要和皮肤细菌感染、疥疮、梅毒和过敏反应等鉴别。六、治疗目前国内尚无特异性抗猴痘病毒药物,主要是对症支持和并发症的治疗。(一)对症支持治疗。卧床休息,注意补充营养及水分,维持水、电解质平衡。体温高者,物理降温为主,超过38.5℃,予解热镇痛药退热,但要注意防止大量出汗引发虚脱。保持皮肤、口腔、眼及鼻等部位清洁及湿润,避免搔抓皮疹部位皮肤,以免继发感染。皮疹部位疼痛严重时可予镇痛药物。(二)并发症治疗。继发皮肤细菌感染时给予有效抗菌药物治疗,根据病原菌培养分离鉴定和药敏结果加以调整。不建议预防性应用抗菌药物。出现角膜病变时,可应用滴眼液,辅以维生素A等治疗。出现脑炎时给予镇静、脱水降颅压、保护气道等治疗。(三)心理支持治疗。患者常存在紧张、焦虑、抑郁等心理问题,应加强心理支持、疏导和相关解释工作,根据病情及时请心理专科医师会诊并参与疾病诊治,必要时给予相应药物辅助治疗。(四)中医治疗。根据中医“审因论治”、“三因制宜”原则辨证施治。临床症见发热者推荐使用升麻葛根汤、升降散、紫雪散等;临床症见高热、痘疹密布、咽痛、多发淋巴结肿痛者推荐使用清营汤、升麻鳖甲汤、宣白承气汤等。七、出院标准符合以下标准可以出院:体温正常,临床症状明显好转,结痂脱落。八、医疗机构内感染预防与控制疑似病例和确诊病例应安置在隔离病房。疑似病例单间隔离。医务人员执行标准预防,采取接触预防、飞沫预防措施,佩戴一次性乳胶手套、医用防护口罩、防护面屏或护目镜、一次性隔离衣等,同时做好手卫生。对患者的分泌物、粪便及血液污染物按照《医疗机构消毒技术规范》进行严格消毒处理。
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
  • 基于成像质谱显微镜对人参皂苷类物质的空间分布评价
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1. 摘 要 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 参类目前是世界上被广泛应用的天然药物,特别是人参,西洋参和三七。其中人参皂苷(Ginsenoside)被认为是其中的主要活性成分,主要包括人参皂苷Ginsenoside Rb1, Rb2 和Rg1。人参中皂苷的种类,表达水平以及局部分布模式的差别不仅可以鉴别人参品种和产地,同时帮助探索有效成分的代谢通路。采用iMScope i TRIO /i 质谱成像的方法对人参品种和年限进行鉴定,不仅前处理简单,不需要染色或者标记,同时还能原位观察到人参皂苷在植物组织中的空间分布信息。本研究建立了成像质谱显微镜技术对人参皂苷类物质在组织中的空间分 span style=" text-indent: 2em " 布的直接分析(不需要染色和标记)及其结构确证的方法,对于植物类样品中有效成分或者毒物毒素的原位分析来说具有借鉴意义。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 前 言 /p p style=" line-height: 1.75em text-indent: 2em " 人参皂苷(Capsaicinoids)属于固醇类化合物,三萜皂苷,被认为是参类物质的主要活性成分,研究发现人参皂苷具有缓解疲劳,延缓衰老,抑制癌细胞增殖等作用。目前对于人参皂苷类物质的研究主要集中在分离提取纯化工艺改进及其生物活性的相关研究。常规的方法是把样品均质化,过柱子分离提取纯化,最后通过质谱检测器进行检测。但是这种方法样品前处理复杂,且其在组织中的原位空间分布信息不得而知。目前常用的成像方法,需要对目标物进行标记,但是标记物容易解离,且未知物无法测定。针对这些局限性,岛津开发了质谱显微镜,把显微镜和质谱仪精准的融合在一起。借助iMScope i TRIO /i 前端搭载的高分辨光学微镜,可以清晰的观察并定位到人参的细微组织上,从而进行多点的质谱成像分析。后端配置离子阱和飞行时间串联质谱仪(ITTOF),具有高质量分辨率的多级质谱分析功能,提供丰富的碎片信息,进一步验证人参皂苷的结构。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3. 实 验 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.1 材料和仪器 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 三年生长白山产人参购自中国中医科学院中药研究所。MALDI级别的a-Cyano-4hydroxycinnamic acid (CHCA),购自西格玛公司。人参皂苷Ginsenoside Rb1,Rb2和Rg1购自ChromaDex公司,Rb1, Rb2和Rg1的化学结构式见下图1。HPLC级别的乙腈和甲醇购自默克公司。25 mm X 75 mm导电载玻片购自德尔塔科技公司。明胶购自西格玛公司。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.2 切片的制作以及基质涂敷 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 干燥人参取根须部位,用100 mg/ml明胶进行包埋。使用Leica CM1950在-20℃的环境下制作15μm厚切片。采用升华+喷涂的two-step基质涂敷方法,其中基质升华通过SVC-700TMSG iMLayer自动升华仪完成。基质喷涂使用GSI Creos Airbrush完成。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.3 基于iMScope i TRIO /i 的质谱成像分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 分析条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/a89b5578-4bc2-4bff-99f7-11fad88f2941.jpg" title=" 微信截图_20200619174751.png" alt=" 微信截图_20200619174751.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 结果与讨论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4.1 人参皂苷Ginsenoside标准品的化学结构及其相应的质谱图 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/06529eee-65af-4b74-a856-2e5ef1e54bfd.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图 1. 人参皂苷化学结构式及其单同位素质量(A) Ginsenoside Rb1(B)Ginsenoside Rb2(C)Ginsenoside Rg1 /p p style=" text-align: center" img style=" width: 600px height: 520px " src=" https://img1.17img.cn/17img/images/202006/uepic/00d99d47-ee07-4161-a799-833f1bf69896.jpg" title=" 2.png" width=" 600" height=" 520" border=" 0" vspace=" 0" alt=" 2.png" / /p p style=" text-align: center" img style=" width: 600px height: 264px " src=" https://img1.17img.cn/17img/images/202006/uepic/f880816d-99a9-4a55-b585-1c0d964da052.jpg" title=" 3.png" width=" 600" height=" 264" border=" 0" vspace=" 0" alt=" 3.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图 2. 人参皂苷Ginsenoside标准品的质谱图。(A) Rb1[M+K]+一级平均质谱图及其(B) 二级平均质谱图。(C) Rb2[M+K] + 一级平均质谱图及 span style=" text-indent: 2em " 其(D) 二级平均质谱图。(E) Rg1[M+K] + 一级平均质谱图及其(F) 二级平均质谱图。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4.2 人参切片上人参皂苷类物质的质谱图 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b21f3f6a-6be7-4fde-9a8d-45f23c1b94d7.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " 图 3. 人参切片多点成像质谱分析. (A) m/z 800-1250全扫描平均质谱图。(B) 人参皂苷Rb1[M+K] +的扩大质谱图。(C) 人参皂苷Rb2[M+K] +的扩大质谱图。(D) 人参皂苷Rg1[M+K] +的扩大质谱图。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ee5cb9f3-82b0-4eb5-a439-df0bc03d04ba.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-align: center " 图 4. 人参中人参皂苷(Ginsenoside)类物质的多点成像质谱分析(放大倍数为1.25X)。(A) 人参根茎切片的光学图像。(B).人参皂苷Rb1([M+K]+:1147.52)的一级离子密度图。(C).人参皂苷Rb2([M+K] +:1117.50)的一级离子密度图。(D).人参皂苷Rg1([M+K] +:839.41的一级离子密度图. Scale bar: 500 μm。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-align: center " /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 结 论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 通过iMScope i TRIO /i 前端搭载的高分辨光学显微镜拍摄的光学图像和相应的多点质谱图像的重叠,我们可以直观 span style=" text-indent: 2em " 地观察到人参皂苷Rb1,Rb2和Rg1都主要分布在人参的韧皮层及其表皮,且Rb1和Rb2的丰度相比Rg1高。其中, /span span style=" text-indent: 2em " 加钾峰丰度比较高,推测可能人参中钾离子的含量比较大。通过IT-TOF串联质谱提供丰富的碎片信息,进一步 /span span style=" text-indent: 2em " 确认人参皂苷类物质的结构。本研究成功建立了不需要染色和标记,直接评价人参皂苷类物质在人参组织上原 /span span style=" text-indent: 2em " 位空间分布的研究方法。为植物类样品中有效成分的原位分布研究开辟了新的途径。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6. 文 献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " [1] Taira Shu et al Mass spectrometric imaging of ginsenosides localization in Panax ginseng root. Am J Chin Med. 2010 /p

类叶升麻苷相关的仪器

  • 小型粉碎机简介: 小型粉碎机是通过活动盘和固定盘间的高速相对运动,使被粉碎的物料经活动盘和固定盘间的冲击、剪切、摩擦及物料彼此间的撞击等综合作用获得物料的粉碎,该粉碎机具有温度低、噪音小、效率高、粉碎细度高等特点,适合粉碎化学物料、中药材等干燥的脆性物料。是目前各种小型粉碎机、粉碎机、中药材粉碎机中粉碎效果最理想最实用的机型。 小型粉碎机适用范围: 小型粉碎机它具有粉碎适应面广、粉碎细度高、结构合理、操作简便,用途广,粉碎效率高等特点。例:全草类中药:麻黄、仙鹤草、、广藿香、半枝莲、益母草、薄荷、青蒿、茵陈、锁阳等果实及种子类中药:火麻仁、五味子、木瓜、杏仁、决明子、蛇床子、女贞子、藻、菌、海藻、冬虫夏草、茯苓、猪苓、雷丸、马勃、松萝等根茎类中药:狗脊、大黄、何首乌、黄连、升麻、黄芪、人参、三七、当归、柴胡、明党参、党参、山药、天麻等养生美容类:珍珠、玫瑰花、白芷、白芨、海藻、甘草、桑叶、鱼腥草、首乌、木耳、苦瓜、肉桂、雷公根、杏仁、番茄、芡实、芦荟、绿茶、柠檬、南瓜等五谷杂粮类:黄豆、绿豆、红豆、黑豆、青皮豆、蚕豆、咖啡豆、桂皮、香叶、小茴香、孜然、辣椒、白胡椒、黑胡椒、甘草、、公丁香、八角、香菇、木耳、莲子、大米、糯米、糙米、黑香米、籼米、紫米、稻谷、红米、西米等 小型粉碎机技术参数: 主轴转速: 4000 转/分 工作噪音: ≤85分贝 粉碎细度: 中:10-120,西:10-160 进料柄限: 8×8×8 mm 进料粒度: ≤5mm 产量: 西药:10-20kg/h,中药:8-15kg/h 功率: 2.2KW 外型尺寸: 680×440×920mm 重量: 85公斤
    留言咨询
  • FS系列制备色谱是一款典型的高压制备色谱系统,三为科学致力于制备色谱仪研制开发、生产和制备色谱应用服务研究,FS系列制备色谱、高压制备色谱采用模块化设计,功能强大、系统操作简捷,允许使用多达 4 种不同的溶剂的梯度洗脱,两波长同时在线检测,可轻松储存并调用方法,并可在同一平台下完成馏分分收集工作,支持不锈钢色谱柱和高压玻璃色谱柱的系统连接,广泛应用于皂苷类化合物分离纯化 、酮类化合物分离纯化、异黄酮类化合物分离纯化、香豆素类化合物分离纯化、色原酮类化合物分离纯化、生物碱类化合物分离纯化、酚酸类化合物分离纯化、萜类化合物分离纯化、蒽醌类化合物分离纯化、木脂素类化合物分离纯化。中草药酚酸类化合物包含:没食子酸类化合物、鞣花酸鞣质、聚黄烷醇多酚、间苯三酚类化合物、苯丙酸类化合物、绿原酸及奎宁酸类衍生物、天然低聚芪类化合物、丹参的酚酸类化合物、茶多酚三为科学应用制备色谱分离酚酸类化合物活性成分部分案例:中文名英文名CAS No纯度(%)植物来源丹酚酸B;丹参酚酸B;紫草酸BSalvianolic acid B;Lithospermic acid B;Danfensuan B121521-90-2;115939-25-8≥98.5丹参丹酚酸ASalvianolic acid A96574-01-5≥98.0丹酚酸CSalvianolic acid C115841-09-3≥98.0迷迭香酸Rosmarinic acid;Rosemaric acid Rosemary acid20283-92-5≥98.5菊苣酸Cichoric acid70831-56-0≥98.0紫锥菊芍药苷Paeoniflorin23180-57-6≥98.0芍药羟基芍药苷Oxypaeoniflorin39011-91-1≥98.0松果菊苷;海胆苷Echinacoside82854-37-3≥98.5肉苁蓉类叶升麻苷;麦角甾苷;毛蕊花糖苷;阿克苷;毛蕊花苷Acteoside;Verbascoside;Kusaginin61276-17-3≥98.5异类叶升麻苷;异麦角甾苷Isoacteoside61303-13-7≥98.5绿原酸; 3-咖啡酰奎宁酸Chlorogenic acid327-97-9≥98.0金银花隐绿原酸; 4-咖啡酰奎宁酸cryptochlorogenic acid905-99-7≥98.0新绿原酸; 5-咖啡酰奎宁酸neochlorogenic acid906-33-2≥98.0洋蓟素; 1,3-二咖啡酰奎宁酸Cynarin1182-34-9≥98.0 1,5-二咖啡酰奎宁酸1,5-Dicaffeoylquinic acid30964-13-7≥98.0异绿原酸B; 3,4-二咖啡酰奎宁酸Isochlorogenic acid B14534-61-3≥98.0异绿原酸A; 3,5-二咖啡酰奎宁酸Isochlorogenic acid A2450-53-5≥98.0异绿原酸C; 4,5-二咖啡酰奎宁酸Isochlorogenic acid C32451-88-0≥98.0 3,4,5-三咖啡酰奎宁酸3,4,5-Tricaffeoylquinic acid86632-03-3≥98.0高压制备色谱系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网:流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询
  • FS-50制备色谱是一款典型的高压制备色谱系统,三为科学致力于制备色谱仪研制开发、生产和制备色谱应用服务研究,FS系列制备色谱、高压制备色谱采用模块化设计,功能强大、系统操作简捷,允许使用多达 4 种不同的溶剂的梯度洗脱,两波长同时在线检测,可轻松储存并调用方法,并可在同一平台下完成馏分分收集工作,支持不锈钢色谱柱和高压玻璃色谱柱的系统连接,广泛应用于皂苷类化合物分离纯化 、酮类化合物分离纯化、异黄酮类化合物分离纯化、香豆素类化合物分离纯化、色原酮类化合物分离纯化、生物碱类化合物分离纯化、酚酸类化合物分离纯化、萜类化合物分离纯化、蒽醌类化合物分离纯化、木脂素类化合物分离纯化。中草药酚酸类化合物包含:没食子酸类化合物、鞣花酸鞣质、聚黄烷醇多酚、间苯三酚类化合物、苯丙酸类化合物、绿原酸及奎宁酸类衍生物、天然低聚芪类化合物、丹参的酚酸类化合物、茶多酚三为科学应用制备色谱分离酚酸类化合物活性成分部分案例:中文名英文名CAS No纯度(%)植物来源丹酚酸B;丹参酚酸B;紫草酸BSalvianolic acid B;Lithospermic acid B;Danfensuan B121521-90-2;115939-25-8≥98.5丹参丹酚酸ASalvianolic acid A96574-01-5≥98.0丹酚酸CSalvianolic acid C115841-09-3≥98.0迷迭香酸Rosmarinic acid;Rosemaric acid Rosemary acid20283-92-5≥98.5菊苣酸Cichoric acid70831-56-0≥98.0紫锥菊芍药苷Paeoniflorin23180-57-6≥98.0芍药羟基芍药苷Oxypaeoniflorin39011-91-1≥98.0松果菊苷;海胆苷Echinacoside82854-37-3≥98.5肉苁蓉类叶升麻苷;麦角甾苷;毛蕊花糖苷;阿克苷;毛蕊花苷Acteoside;Verbascoside;Kusaginin61276-17-3≥98.5异类叶升麻苷;异麦角甾苷Isoacteoside61303-13-7≥98.5绿原酸; 3-咖啡酰奎宁酸Chlorogenic acid327-97-9≥98.0金银花隐绿原酸; 4-咖啡酰奎宁酸cryptochlorogenic acid905-99-7≥98.0新绿原酸; 5-咖啡酰奎宁酸neochlorogenic acid906-33-2≥98.0洋蓟素; 1,3-二咖啡酰奎宁酸Cynarin1182-34-9≥98.0 1,5-二咖啡酰奎宁酸1,5-Dicaffeoylquinic acid30964-13-7≥98.0异绿原酸B; 3,4-二咖啡酰奎宁酸Isochlorogenic acid B14534-61-3≥98.0异绿原酸A; 3,5-二咖啡酰奎宁酸Isochlorogenic acid A2450-53-5≥98.0异绿原酸C; 4,5-二咖啡酰奎宁酸Isochlorogenic acid C32451-88-0≥98.0 3,4,5-三咖啡酰奎宁酸3,4,5-Tricaffeoylquinic acid86632-03-3≥98.0高压制备色谱系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-50.00ml/min(梯度)流速精度±0.5%压力范围0-30MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求 更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网: 流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询

类叶升麻苷相关的耗材

  • KNORTH® 草铵膦/草甘膦专用净化管(茶叶、香辛料类、青椒、谷物)
    KNORTH® 草铵膦/草甘膦农药净化管(适用于茶叶、香辛料类、青椒、谷物),是北京科德诺思技术有限公司专为草铵膦/草甘膦农残检测推出的高效净化产品。产品货号:OD65193包装清单:50支/盒货期:现货咨询电话:4006883608适用于以下标准: GB 23200.108-2018植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法GB 23200.118-2018食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法
  • Jsphere ODS-M80色谱柱(C18)
    J' sphere ODS系列液相色谱填料是在高纯度硅颗粒上键合十八烷基,有三种不同碳载量(即十八烷基覆盖率不同)的产品以供选择,不同十八烷基覆盖率将影响分析物中疏水组分的保留行为,分析物的官能基团或三级结构将决定分离行为的结果。 J' sphere ODS-M80色谱柱填料覆盖中等的碳载量(14%),具有均衡的疏水性和氢键键合能力。产品特点 1、具有卓越的柱效: 粒径为4µ m和孔径为80Å 的填料具有极高的比表面积(500m2/g),提供了极高的色谱柱效,保证了非常优良的选择性和分辨率。 2、特别适合分离碱性样品:超高纯度的硅胶具有极低的金属含量和中性pH的特点,采用专利的封端技术,使硅醇基影响达到最小。这些都保证了优良的峰形和对称性,甚至对碱性很大的化合物也是如此。 3、可选择的保留时间:J' sphere 系列色谱填料有三种不同的碳含量9%(ODS-L80)、14%(ODS-M80)和22%(ODS-H80),并有不同的氢键键合能力,提供三种不同的保留行为和选择性。三种型号的液相色谱柱, 在高纯度、高柱效、重现性好的前提下,提供了广泛的可选择性的保留时间范围。 4、适中的碳载量:具有均衡的疏水性和亲水性,适合于大多数化合物分离。技术参数 1、粒径:4μm 2、孔径:8nm (80A) 3、碳载量:14% 4、pH耐受范围:2.0-7.5美国药典中推荐使用J' sphere ODS-M80色谱柱的品种 1、黑升麻 Black Cohosh (P/N:JM08S04-2546WT) 2、黑升麻片 Black Cohosh Tablets (P/N:JM08S04-2546WT) 3、黑升麻粉末 Powered Black Cohosh (P/N:JM08S04-2546WT) 4、黑升麻提取物粉末 Powered Black Cohosh Extract (P/N:JM08S04-2546WT) 5、地氯雷他定 Desloratadine(P/N:JM08S04-2546WT)订货信息粒径(μm)孔径(nm)内径x长度(mm)订货号4801.0x150JM08S04-1501WT1.0x250JM08S04-2501WT1.5x150JM08S04-15P5WT1.5x250JM08S04-25P5WT2.0x75JM08S04-L502WT2.0x100JM08S04-1002WT2.0x150JM08S04-1502WT2.0x250JM08S04-2502WT3.0x150JM08S04-1503WT3.0x250JM08S04-2503WT4.6x75JM08S04-L546WT4.6x150JM08S04-1546WT4.6x250JM08S04-2546WT6.0x150JM08S04-1506WT6.0x250JM08S04-2506WT10.0x150JM08S04-1510WT10.0x250JM08S04-2510WT20.0x150JM08S04-1520WT20.0x250JM08S04-2520WT更多产品信息请与我们联系咨询!
  • 菲罗门 Mars 糖类分离柱
    菲罗门 Mars系列糖类、有机酸分析柱MARS系列离子排阻色谱柱由低交联度的磺化交联的聚苯乙烯-二乙烯基苯(PS/DVB)颗粒填装而成,PS/DVB具有背压低、耐高温、化学稳定性高等特点。多种作用模式(包括体积排阻、离子排斥、配体交换、反相及正相作用)结合多种离子形式(H、Ca、Pb、Na),提供了非常宽泛的选择性,适用于糖类和有机酸的分离。可替代Bio-Rad® Aminex® 、Phenomenex® RezexTM、Waters® Suger-PakTM 、Supelco® SUPELCOGELTM等同类型色谱柱。 优异的特性 ? 粒径更均一,具有更高的分离效率 ? 多种离子形态,提供更多的选择性 ? 优异的稳定性 ? 稳定的批次间重现性 不同离子态的选择及对应品牌参照图表:固定相 描述 应用 Phenomenex Rezex Bio-Rad Aminex Supelco Supelcogel MARS MOA (USP L22) 8%交联度 氢离子 -发酵产物 -有机酸 -醇类和糖类 ROA HPX-87H Supelcogel C-610H、H MARS MCa (USP L19) 8%交联度 钙离子 -单糖、二聚糖、三聚糖、四聚糖及糖醇的分离 -甜味剂、玉米和甘蔗中的糖 RCM HPX-87C Supelcogel Ca MARS MPb (USP L34) 8%交联度 铅离子 -单糖和糖醇的分析 -木制品中的戊糖和己糖 -含有蔗糖、乳糖等的奶制品 RPM HPX-87P Supelcogel Pb MARS MNa (USP L58) 8%交联度 钠离子 极好地分离低聚糖,尤其是在含有大量无机钠离子的情况下,如蜂蜜等 RNM HPX-87N N/A 色谱柱技术参数表: Mars MOA Mars MCa Mars MPb Mars MNa 填料基质 PS/DVB PS/DVB PS/DVB PS/DVB 离子形式 氢 钙 铅 钠 粒径(μm) 10 10 10 10 交联度 8% 8% 8% 8% 最大耐压(psi) 1000 1000 1000 1000 典型流动相 2.5mM H2SO4 /0.1%H3PO4 H2O H2O H2O pH稳定性 1-3 5-9 5-9 5-9 最高使用 温度(℃) 85 85 85 85 典型的流速(mL/min) ID 7.8mm 0.4-0.8 0.4-0.8 0.4-0.8 0.4-0.8 ID 4.6mm 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3 订购信息: 50 × 4.0mm 50 × 7.8mm MARS MOA / FMF-1138-KONU FMH-1138-KONU / FMB-1138-KONU MARS MCa FMG-1130-DONU / Mars系列糖类、有机酸分析柱(10 μm, 8%交联度) 保护柱 规格 250 × 4.0mm 150 ×7.8mm 300 × 7.8mm FMH-1130-KONU FMB-1130-DONU FMB-1130-KONU MARS MPb / / FMH-1133-KONU / FMB-1133-KONU MARS MNa / / FMH-1136-KONU / FMB-1136-KONU 250*4.6mm的规格请咨询 48种糖、醇的标准保留时间表(单位:min): 固定相类型 MARS MOA(8%交联) MARS MCa(8%交联) MARS MPb(8%交联) 乙酸 15.33 / / 核糖醇 11.76 14.65 20.07 D-(-)-阿拉伯糖 11.71 13.36 16.08 L-(-)-阿拉伯糖 11.71 13.38 16.12 1,4丁二醇 20.63 15.41 16.64 正丁醇 33.79 25.19 28.09 叔丁醇 23.80 16.24 16.95 仲丁醇 28.81 20.10 21.37 D-(+)-纤维二糖 9.55 9.06 11.47 柠檬酸 9.90 / / 赤藓糖醇 12.62 15.35 19.77 乙醇 21.22 16.39 17.09 甲酸 14.30 / / D-果糖 11.17 13.35 17.22 富马酸 13.77 / / 半乳糖醇 11.45 20.34 32.43 D-(+)-半乳糖 11.05 11.81 14.88 D-葡萄糖 10.64 10.71 13.18 甘油 13.98 15.97 19.42 异丙醇 22.87 16.37 17.11 乳酸 13.27 / / B-乳糖 9.71 9.45 12.21 D-来苏糖 11.43 13.92 16.61 马来酸 9.96 / / 苹果酸 10.93 / / 麦芽糖醇 9.87 12.27 18.65 D-(+)-麦芽糖 9.65 9.27 12.01 D-甘露醇 11.34 17.24 24.86 D-(+)-甘露糖 10.02 12.09 16.37 D-(+)-松三糖 9.26 8.51 10.60 甲醇 19.14 16.13 16.69 草酸 9.12 / / 正丙醇 25.63 19.40 20.76 1,2-丙二醇 17.00 17.27 20.45 D-(-)-核糖 11.90 21.91 31.10 D-山梨醇 11.43 21.21 34.72 琥珀酸 12.49 / / D-(+)-蔗糖 / 9.18 11.51 酒石酸 10.23 / / 木糖醇 12.15 20.79 31.54 D-木糖 11.11 11.69 14.10 鼠李糖 11.46 12.09 14.79 海藻糖 9.64 9.16 11.58 丙酸 17.27 / / 正丁酸 20.17 / / 异丁酸 18.83 / / 丁烷四羧酸 9.73 / / 醋酸钠 15.34 / / 色谱条件: (300 × 7.8mm) 流动相:2.5 mM H2SO4 流速:0.6 mL/min 检测器:RID 柱温:55 ℃ 流动相:H2O 流速:0.6 mL/min 检测器:RID 柱温:80 ℃ 流动相:H2O 流速:0.6 mL/min 检测器:RID 柱温:75 ℃ 应用实例

类叶升麻苷相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制