折叠过程

仪器信息网折叠过程专题为您整合折叠过程相关的最新文章,在折叠过程专题,您不仅可以免费浏览折叠过程的资讯, 同时您还可以浏览折叠过程的相关资料、解决方案,参与社区折叠过程话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

折叠过程相关的耗材

  • 6倍折叠式显微放大镜
    由于其可折叠设计, 便于携带,使用方便。 折叠式显微放大镜 放大倍数:6X
  • 大流量折叠滤芯
    欢迎咨询订购,郑女士19332167653(微信同号)产品描述对于大多数过滤器来说,将高流速和高固体组份相结合是一个挑战。MS CrossPure-T过滤器采用了一种特殊的径向褶皱,在单个滤芯中形成了非凡的表面积,因此它以最高的流量和纳污能力组合来应对挑战。每种等级的MS大流量滤芯均采用熔喷聚丙烯微纤维介质或树脂粘合玻璃纤维制造,具有高颗粒去除效率和广泛的化学兼容性。所有支撑层和硬件均采用聚丙烯制成。 产品特点适合现有存在的3M的过滤器,并提供O形密封圈,无需修改外壳特殊径向褶皱设计符合人体工程学设计的手柄 - 便于轻松安装和拆卸滤芯 典型应用盐水溶液锅炉冷凝水RO预过滤食品饮料应用:工艺用水医药应用:工艺用水 欢迎咨询订购,郑女士19332167653(微信同号)订购信息产品货号 品名 类别 描述CRHCPP010050EAT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP, 10inch,0.5微米,三元乙丙密封,提手式接口CRHCPP010100EAT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP, 10inch, 1微米,三元乙丙密封,提手式接口CRHCPP010500EAT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP,10inch,5微米,三元乙丙密封,提手式接口CRHCPP029500EBT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP, 28.75 inch (730mm),5μm, EPDM密封,十字型接口CRHCPP030100ANBT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP, 30inch,绝对精度1微米,丁腈橡胶密封,十字型CRHCPP0304000EAT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯-横向打折PP, 30inch, 40μm, EPDM密封, 提手式接口, Handle ConnectCRHCPP030500AEAT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP,30inch,绝对精度5微米,三元乙丙胶密封,提手型CRHCPP030500EAT 仿3M大流量滤芯 仿3M大流量滤芯 仿3M大流量滤芯PP, 30inch,5um,EPDM密封,提手式接口CRHCPP039500EBT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3m大流量滤芯﹣横向打折PP, 39 inch (995mm), 5um,EPDM密封,十字型接口CRHCPP040065EAT 仿3M大流量滤芯﹣横向打折 仿3M大流量滤芯 仿3M大流量滤芯﹣横向打折PP, 40inch, 0.65μm, EPDM密封, 提手式接口 MS_600 FlowPure-HF-大流量折叠滤芯MS_CrossPure-大流量折叠滤芯MS_InnerPure-大流量折叠滤芯MS_PlatPure-大流量折叠滤芯CrossPure-T系列 大流量折叠滤芯LinePure 大流量折叠滤芯BagPure 大流量折叠滤芯真空滤杯无菌过滤器、一次性真空过滤装置、灭菌滤器针式过滤器、针头过滤器替代密理博替代pall、一次性针式过滤器、空纤维膜柱MBR、超滤离心管离心式超滤管、微孔滤膜圆片膜、切向流超滤膜包、转印膜印记膜、样品瓶、PES折叠滤芯PTFE折叠滤芯制药食品、仿pall 仿3M大流量滤芯、囊式过滤器囊式滤芯、纤维素网格膜微生物限度检测膜格栅膜、钟罩液体过滤器、小滤杯微生物监测仪、熔喷滤芯、尼龙滤膜PES滤膜、除菌级气体过滤器迈博瑞成立于2006年,是一家主营实验室耗材和工业滤芯的生产加工型企业,公司产品服务于石油化工、冶金、电力、食品饮料、饮用水、工业过滤、实验室过滤、大气监测及废水处理等众多领域。经多年发展,在江苏南通、上海、武汉、重庆拥有实体工厂,总生产研发面积达到3万平, 其中有近万平的无菌和半导体级洁净车间。公司拥有ISO9001和CE认证,并于2013年通过了美国FDA认证及NSF认证。从原材料到生产加工工艺,我们都会zui大程度保证全程品质监控,每一批次都经过严格品质检测,并出具产品保证书。"修身齐家,膜净天下“,做yi流的膜材料和膜产品是迈博瑞一直以来的生存发展理念。
  • 香港AZ8910折叠风速计
    香港AZ8910折叠风速计香港AZ8910折叠风速计香港AZ8910折叠风速计香港AZ8910折叠风速计销售热线:15300030867,联系人:张经理 功能描述 量程范围 风速:1.1-20m/s BF薄福 1~8 温度 -20℃~+50℃ 露点 0~50 相对湿度 0-100%RH 气压 400~1100 hPa 海拨高度 -600~+1880米 分辩率 风速:0.1m/s BF薄福 1 温度 0.1℃ 露点 0.1 相对湿度 1%RH 气压 1hPa 海拨高度 1米 准确度 风速 ± 2% 气压 ± 3hPa 温度 ± 1℃ 相对湿度 ± 3%RH 显示 4四位数多显示LCD 响应时间 风速:1秒,温度:1分,相对湿度:15秒,气压:15分 更新当前气压1分,海拨:1分 供电电源 3V单节片电池供电 工作环境 温度:0-50℃,湿度:90%RH

折叠过程相关的仪器

  • 可折叠方箱 400-831-3106
    可折叠方箱,能够提供生物制药用户轻便、高效的料液运输及短时存储。使用后折叠回收,节省运输仓储空间。特点1. 材质选用优质聚丙烯(PP),便于清洁、具有良好的耐化学腐蚀性,且防潮,吸水率低 2. 组成简单,单人即可安装,拆卸也方便3. 设计合理可堆叠4. 可选配配套推车,方便转运 应用场景培养基、缓冲液等短时存储及运输典型货号(含配置)
    留言咨询
  • 一、设备概述:本设备适用于医用加热毯发热元件以及电源软线机械强度的测试。二、符合标准:满足YY9706.235-2021《医用电气设备第235部分:医用毯、垫或床垫式加热设备基本安全和基本性能的专用要求》标准中第201.13.1.2.101.2章节试验1、试验2、试验3和试验4的要求以及图201.106所示的加热毯折叠试验方法的规定要求设计制造。三、 主要技术参数:1、供电电源:AC220V,50Hz。2、折叠速度范围:10~30次/min可调(根据样品尺寸确定)。3、折叠行程:250~500mm(可选)。4、试品折叠尺寸:3层宽65mm*长400mm;5层宽100mm*长400mm;5层宽65mm*长400mm5、试验工位: 单工位设计6、试验次数:0~999999次可预置,每工位计数独立,采用负载电流采样方式计数,当某一试品发生断路时,则该试品对应计数器停止计数。7、当试验达到计数器预置时,设备自动停止工作。8、覆盖隔热层尺寸:300mm*450mm9、落地式豪华型设计,高档铝合金结构。 10、试品电源有过载过流和漏电保护功能。 11、控制及操作:采用触摸屏+PLC控制操作。GS-YRT707医用加热毯折叠试验装置
    留言咨询
  • 1: 铝合金折叠担架 折叠担架 担架 型号:HAD-1A9本担架带支撑腿,可纵向和横向折叠,带手提背包。采用强度铝合金材料和牛津革担架面制成,它具有重量轻,体积小,携带方便、使用安、易消毒清洗等优点,主要适用于野外救护。 型号 展开尺寸(L× W× H) 折叠尺寸(L× W× H) 自重 承重 纸箱包装数量尺寸毛重HAD-1A9221× 53× 15cm110× 18× 11cm5Kg159Kg2112× 18× 22cm12KgHAD-1A10210× 53× 12cm61× 30× 12cm6Kg159Kg163× 25× 18cm7Kg 2:自动表面/界面张力仪/自动表面张力仪/自动表面张力计 型号:HF/QBZY-1产品介绍;① 采用际传感器,度更、重复性、稳定性; ② 使用铂金环测试方法时,增加了峰值自动保持能,方便使用; ③ 成开发了本公司的准确性自动校正能,用蒸馏水和乙醇对仪器的整体测试度行校准,可确保仪器长期处于出厂时的状态; ④ 成开发了本公司的温度自动补偿能,使用户在不同温度时的测量数据统修正到20℃时的测试状态; ⑤ 对仪器硬件分的控制、处理程序行了增强、优化,性能更; ⑥ 开发成自动表面张力仪/界面张力仪的数据处理软件:可自动采集测试数据,实时显示测试曲线,曲线可自动放大、存取打印。能行多条曲线对比,原始数据可转换成Excel文件,能自动计算使用铂金环测试方法时的表面张力值;⑦ 采用际的升降平台驱动,无震动和噪声 主要特点: 1. 铂金板、铂金环、铂金马镫形三种测试方法兼用; 2. 铂金板测试时,显示值即为表面张力值;3. 使用白金环测试方法时,显示值自动锁定试样的力值,然后通过附送的计算软件计算表面张力值或选用数据处理软件由计算机自动计算;4. 铂金环尺寸:丝半径为0.185mm,环半径为9.55mm,环周长为60mm;5. 使用铂金环测试方法时,符合下列内、际标准: GB/T 22237-2008 表面活性剂 表面张力的测定 JB/T 9388 - 2002 界面张力仪条件 JB/T 18396-2001 天然乳胶 环法测定表面张力 SH/T 1156-95 合成乳胶 表面张力测定法 GB/T 6541 - 86 石油产品油对水界面张力测定法(圆环法) ISO 1409-1995 塑料、橡胶、聚合物分散体和乳胶表面张力的测定 ISO 6295-1983 石油产品 矿物油 油对水界面张力的测定(圆环法) GB/T 5549(ISO304-1985) 用拉起膜法测定表面张力 以及ISO14090-82、ASTM D1417、EN14370、ZB2025-93、GB2960-82、GB6541-86等标准 6. 自动测量,避免人为操作误差;7. 量程自动校正,数据准确可靠、重复性;8. 键清零,瞬间成,零位稳定无漂移;9. 采用际的升降平台驱动,无震动和噪声;10. 仪器结构合理,立作,无需何附加设备(如外接电脑等),也可选配电脑行数据处理;11. 使用铂金板时,能实时测量液体的表面张力或界面张力,对于测量含有表面活性剂或挥发性物质,其表面张力会随时间不同而发生变化的试样,非常实用(选用数据处理软件,可实时显示测试曲线,得到张力变化的详细情况);12. 使用铂金板测试时能自动测试中、粘度液体样品的表面张力;13. 二种测试方式均可测量不相混合液体之间界面张力如:油/水界面; 14. 数据处理软件(选件):可自动采集测试数据,实时显示测试曲线,曲线可自动放大、存取打印。能行多条曲线对比,原始数据可转换成Excel文件,能自动计算使用铂金环测试方法时的表面张力值; 15. 准确性校准能(选件):以2次蒸馏水和纯乙醇为标准物,对仪器的整体测试误差自动行校准,能确保仪器长期处于出厂时的状态; 16. 温度自动补偿能(选件):以2次蒸馏水和纯乙醇为标准物,自动对不同温度下的试样统归纳到20℃时的测试值; 17. USB数据接口输出,方便与笔记本电脑连接;18. 附有多种温度控制选件,满足不同的测试要求; 19. 满足用户的要求,承接非标产品。参数:操作方式:样品台自动升降,自动测量测试方式:铂金板法(或铂金环)测试范围:0-600 mN/m 清零范围:0-600 mN/m量程校正:600 mN/m 灵 敏 度:0.1 mN/m准 确 度:± 0.1 mN/m (测试20℃时二次蒸馏水或纯乙醇,与文献值的误差) 重 复 性:± 0.1 mN/m (测试20℃时二次蒸馏水或纯乙醇,与文献值的误差) 显示方式 :宽视角背光液晶显示屏试样恒温范围:0 &mdash 110℃ (需选配试样恒温池及外接恒温槽,标配只能在室温下使用) 测量时间:测量低浓度样品:铂金板法需3-5秒 ,铂金环法需40-60秒配置:主机1台 酒灯1个 白金板1片 镊子1个 玻璃器皿2套 操作手册1本 标准砝码1个 温馨提示:以上产品资料与图片顺序相对应。
    留言咨询

折叠过程相关的试剂

折叠过程相关的方案

折叠过程相关的论坛

  • 使用AFS检测单分子水平的蛋白去折叠过程

    使用AFS检测单分子水平的蛋白去折叠过程

    [b]使用声力研究蛋白去折叠[/b]单分子力谱(SMFS)技术是研究蛋白结构与蛋白去折叠中的生物力学性质的有力工具。SMFS能够为研究和药物开发提供有价值的信息。SMFS有助于揭示人类疾病病理的分子机制,而机制往往被认为与错误折叠的蛋白的形成和积聚有关,如阿茲海默症和帕金森氏症。然而现有的SMFS仪器缺少同时并行研究多个蛋白去折叠的功能,使得研究过程耗时很长。使用声波来对数以百计的生物分子施力并操控是非常理想的高通量研究方法。此案例中,声力谱学(AFS)是最新的用于研究蛋白去折叠的单分子操控方法。[img=,500,145]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021031435408_23_981_3.png!w690x201.jpg[/img]1 AFS检测蛋白去折叠的图解。蛋白一端栓住玻璃表面,另一端拴住聚苯乙烯微球。[img=,400,238]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021032257008_8827_981_3.png!w421x251.jpg[/img]2 对视野范围内被蛋白分子拴在玻璃表面的4.5 μm聚苯乙烯微球同时成像。物镜放大倍数为20x。AFS设备使用压电元件共振激发平面声阱穿过微流控芯片。共振波对与周围介质密度不同的微球施力,每个生物分子被单独地由微球拉伸(图1)。仪器可以实时并行操控视野范围内数以百计的微球,获得大量的数据以研究每个生物分子的随机与异质行为(图2)。在Yan Jie(NUS)的实验室的这项试点研究中,我们首次展示了AFS如何对蛋白施力并操控。实验对踝蛋白施力引发(去)折叠同时以高精确度记录蛋白的拉伸。踝蛋白属于机械敏感性大分子,在调控蛋白粘附于胞外基质中起作用。踝蛋白是细胞代谢过程和信号通路中的关键,并能够在力的作用下改变构象,在单分子生物物理学中备受关注。[img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021033524578_3892_981_3.png!w679x212.jpg[/img]3 使用AFS得到的单个踝蛋白分子的去折叠曲线,力变化速率为1 pN/s。轨迹在500 Hz下获得(彩色点),并平衡至50 Hz(黑色线)。3a 单个踝蛋白多次拉伸的力-距离曲线。3b 单个拉伸循环的力-距离曲线。3c 图3b中分子的时间-距离曲线。在这项研究中,连接了DNA的踝蛋白拴在聚苯乙烯微球和玻璃表面。启动声波后形成平面声阱,连接了踝蛋白的微球受到朝向声阱的力。实验中通过调节声波的振幅来改变力的大小。逐渐增加力的大小使得蛋白的结构域按顺序去折叠。实验循环进行拉伸与收缩的过程(力变化速率为1 pN/s)并同时以nm级的分辨率检测每个蛋白的拉伸长度(图3)。通过力-距离曲线(图3a)可以观察到单个踝蛋白的去折叠循环。将单个蛋白的去折叠轨迹叠加即可检测到单个结构域去折叠的发生,研究人员可以得到蛋白结构和蛋白去折叠自由能图谱信息。AFS仪器产生的超声并不会损害生物分子的结构完整性,因此蛋白可以连续去折叠和再折叠长达数小时,并能够得到单个蛋白多次去折叠和再折叠的曲线。相比于其他SMFS方法经过多次拉伸和收缩之后对蛋白造成光学损伤或力学损伤使得实验被迫终止,AFS能够获得更多的信息。图3b: 单个力-距离曲线中截取一小段,表示一个拉伸过程。将力从15 pN增加至19 pN,可以观察到4个去折叠过程,与蛋白的4个结构域相符合,拉伸长度为30 nm至100 nm。AFS的高分辨率检测功能可以很清晰地区分去折叠过程。AFS在x,y方向精度为2 nm,在z方向精度为4 nm(频率为25 Hz),可以大幅提高(去)折叠研究的精密程度。图3c: 图3b中分子的18秒范围内的时间-距离曲线。AFS可以检测短至毫秒级至长达10小时以上的事件,用于研究蛋白的热力学和动力学。通过检测踝蛋白的去折叠步骤并记录连续的高分辨率的去折叠轨迹,可以得出AFS如何用于研究蛋白去折叠。研究蛋白(去)折叠的详细机制能够在生物物理和生物医药领域产生突破性发现。今后的蛋白折叠以及蛋白相互作用的研究中,AFS的多分子并行操控功能将发挥重要作用,用户可以同时并行检测大量的蛋白分子。用户可以获得大量的实验数据,在不影响分辨率的同时对蛋白的机械性质数据作出分析。

  • 使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学

    使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学

    [b]研究多结构域蛋白阶段性去折叠[/b]很多生物大分子的功能与其构象和构象动力学密切相关,如蛋白质的生物功能需要其正确折叠成自然形态。错误折叠或者未折叠的蛋白会(部分)失活或者产生毒性,如错误折叠的蛋白与神经退行性疾病有关。研究蛋白如何正确折叠并改变构象以实现生物功能对理解其机制与疾病发生至关重要。单分子力谱(SMFS)是研究这些分子现象的理想工具,因为其具有独特的分离个体生物分子和实时观察构象变化及去折叠过程的功能。由于SMFS具有高敏感度和施加机械力的能力,可以直接操纵单个蛋白并通过测量其长度变化(亚nm级)观察构象改变。接下来我们使用LUMICKS开发的高分辨率光镊-荧光显微镜C-Trap演示了对钙调蛋白(CaM)的折叠过程的研究。[img=,500,110]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021105519876_1986_981_3.png!w690x153.jpg[/img][img=,218,200]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021106425366_604_981_3.png!w217x199.jpg[/img]1 多结构域蛋白的去折叠实验图解。具有3个结构域的蛋白通过DNA连接至两个被光所捕获的微球。2 通过改变光阱之间的距离可以对蛋白施力并检测断裂的发生。使用层流微流控和自动装载功能,N-端和C-端连接有DNA的单个CaM蛋白可被两个微球捕获(图1)。[img=,227,200]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021108116955_1942_981_3.png!w220x193.jpg[/img]3 10 mM Ca2+浓度下CaM的力-拉伸距离(蓝色)和力-收缩距离(红色)。拉伸与收缩的速度为100 nm/s。微球直径为1.0 μm,光阱的刚度为0.284 pN/nm。[img=,500,161]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021108223351_3734_981_3.png!w638x206.jpg[/img]4 10 mM Ca2+浓度下CaM的多个状态下的动态平衡。图为50 kHz(灰色)和200 kHz(红色)下记录的数据。在右侧直方图中可以看到两个清晰的峰即表现为蛋白最常处于的两个状态。第一个实验,在10 mM Ca2+条件下对CaM的机械拉伸与收缩行为进行了记录。首先对100 nm/s的速度下的拉伸与收缩的相关数据进行了记录(图3)。随着施加的力增加,可观察到两个去折叠的阶段,表现为力的突然下降,与两个螺旋-环-螺旋结构域的去折叠相符合。由此可以得出结论,基于C-Trap设备的力和距离的高分辨率(100 Hz时误差在0.2 pN以下和0.5nm以下),去折叠的发生可以用力谱的力-距离曲线来确定。这种测量非常适合用于比较正常蛋白与发生了改变或损伤的蛋白的折叠的相关数据。接下来研究光阱位置固定时CaM的折叠、去折叠的动态平衡,对蛋白长度的变化进行测量并确定中间态的转变(图4)。对CaM分子施加7.5 pN的力,可以观察到三种状态之间的波动,反映了螺旋-环-螺旋亚结构域的折叠和去折叠,波动的数据图像与之前的研究1,2相符(图4)。仪器所获得的稳定的高质量数据为蛋白的折叠和去折叠之间的动态转变的检测提供了大量有效的信息。通过这种方法可以对不同状态的驻留时间和转变动力学进行测量。这些信息使得我们对特定蛋白的折叠、去折叠过程产生进一步的了解。对折叠和去折叠的动力学以及构象改变的研究表现了一种突破性的生物学和生物物理学研究方法。使用C-Trap光镊-荧光技术可以观察到折叠和去折叠现象还有动态平衡,使得科研人员可以研究去折叠的中间态并获得蛋白的结构与功能信息。对蛋白折叠和构象的进一步研究仰仗于C-Trap的高敏感度和多通道荧光单分子FRET功能,通过检测FRET效率信号与力的波动的变化来进一步检测蛋白构象,可以得到蛋白的机械性质与结构之间的关系。[b][/b]

  • 【原创大赛】分子伴侣与蛋白质折叠

    【原创大赛】分子伴侣与蛋白质折叠

    摘要:本文介绍了分子伴侣的基本概念,以及分子伴侣的几种主要类型;简要说明了蛋白质折叠的概念及特点;在此基础上,进一步阐述了分子伴侣的功能,并以GroEL和GroES为例简述了分子伴侣在蛋白质折叠过程中的作用机理。最后介绍了分子伴侣概念的延伸,及其研究意义和展望。关键词:分子伴侣 蛋白质折叠 折叠病 20世纪60年代,人们就发现了由于组成蛋白质的氨基酸错误可以导致分子病,后来人们发现,即使一级结构正常,蛋白质的二级结构乃至立体结构异常也可导致疾病,即蛋白质折叠病,如疯牛病、老年性痴呆、囊性纤维性炎等。蛋白质折叠病的发现激励人们去寻找蛋白质折叠的分子机理,近年来研究中发现,分子伴侣在在蛋白质折叠中起重要作用。1分子伴侣简介1.1分子伴侣的基本概念分子伴侣(Molecular Chaperone),也有人翻译为“分子伴娘”。1978年,Laskey等首先用“分子伴侣”描述核质素(nucleoplasmin)在核小体组装过程中的作用。1987年,Ellis将凡能促进蛋白质折叠和组装的蛋白质统称为分子伴侣。随后,Ellis等又提出了分子伴侣的基本概念:在蛋白质折叠和组装过程中,分子伴侣防止多肽链内或链间因疏水键等相互作用表面瞬间暴露而形成错误结构,并且还可以破坏已经形成的错误结构。分子伴侣本身不是折叠或组装产物的一部分。1.2分子伴侣的几个例子Nucleoplasmins:体内的一系列过程,如DNA复制,RNA转录与剪接,核小体或核糖体的装配,都涉及到带正电的蛋白质与带负电的核酸之间较强的离子键的相互作用。实验发现,这些过程都与Nucleoplasmin相类似的蛋白质的参与。Charperonin(Cpn):是指在细菌、线粒体、质体中发现的一类序列同源的Charperonins,该家族具有独特的双层7-9元环状结构的寡聚蛋白(Hemminngwen;cheng 1998),它们的作用是促进体内正常条件以及应急反应下的蛋白质折叠,这一过程需要ATP提供能量。Cpns包括细菌的GroEL、叶绿体的Rubisco亚基结合蛋白(RuSBP)与线粒体的热休克蛋白Hsp60。Stress-70家族:该家族首先在热休克反应中发现,并研究多年,近些年来,发现Stress-70也在蛋白质的折叠与装配过程中起作用,因而受到广泛关注。参与这些作用的Stress-70的成员有:E. coli的DnaK、酵母细胞质的Ssa1p和Ssa2p、内质网的Kar2p和线粒体的Ssc1p。哺乳动物细胞质的Hsp70蛋白和Prp73多肽识别蛋白、内质网的Bip。这些蛋白可被细胞内未折叠蛋白质的增多而诱导并识别靶分子,在其他热休克蛋白或细胞因子的参与下,水解ATP调节蛋白的构象或折叠状态。Stress-90家族:分子量在90ku左右,包括大肠杆菌胞

折叠过程相关的资料

折叠过程相关的资讯

  • 实时SEM折叠观察 百万次折叠测试!同济大学吴庆生/吴彤《Matter》:仿生导电超级可折叠材料
    随着柔性电子产品的蓬勃发展对便携性、耐用性提出了更高的要去,因此折叠特性越来越受到关注。然而,这些产品的可折叠性取决于它们的旋转轴而不是电子材料,这极大地限制了它们的折叠方向和任意尺寸变化。为了满足未来柔性电子产品的各种折叠需求,能够实现任意重复真实折叠的导电材料是必要的,但很难获得。要实现上述折叠特性,首先要明确折叠(真折叠和伪折叠)的相关概念。真折是指压下折痕,使弯曲的两部分完全贴合。而伪折叠通常在折痕处打开。真折叠的最大应力可能比伪折叠大几个数量级。近年来,尽管研究人员已经付出了巨大努力来研究各种导电材料(如石墨烯、碳纳米管和MXene等)的组装和灵活性,但目前所有组装的导电材料仍然无法承受多次真实折叠而且折叠次数也通常以结构损坏为代价。鉴于此,同济大学吴庆生教授、吴彤研究员和上海师范大学万颖教授首次使用改进的静电纺丝/碳化技术成功设计并制备了一种超级可折叠导电碳材料(SFCM)。它可显着承受1,000,000次重复真折叠而无结构损坏和导电性波动。通过实时SEM折叠观察和机械模拟揭示了这种性能突破的根源。其具有适当孔隙、非交联连接、可滑动纳米纤维、可分离层和可压缩网络的结构可以协同作用在真折叠下的折痕处产生ε状折叠结构,通过凸起的层、分散的弧线完全分散应力,以及ε中的可滑动凹槽。因此,当整个材料真正折叠时,每根纳米纤维都避免直接面对180°折叠。这项工作体现了结构创新、性能突破和机制揭示,具有重大的科学意义和应用前景。相关工作以“A biomimetic conductive super-foldable material”为题发表在国际顶级期刊《Matter》上。SFCMs的制备和表征作者采用仿生定向场控静电纺丝技术制备生茧状聚合物结构,同时协同控制静电纺丝的参数。原位梯度-温度反应-保持技术与卷取过程一样,通过控制多级聚合物热解同时完成造孔、解结和层膨化,从而成功制备了SFCMs(图1)。SFCM的SEM图像显示其结构是由碳纳米纤维编织的多层网络。纳米纤维是直的、光滑的、多孔的,直径为200 nm,长度为毫米级,纵横比超过10,000。纳米纤维是逐层堆叠的但彼此之间没有粘连(图2)。非交联的编织层网络可以形成一个完整的应力传递和分散系统。这些微观结构特征与超柔韧的切茧高度相似。此外,SFCMs具有良好的导电性,在-1~ 0 V范围内具有稳定的电化学窗口,这对于超级可折叠的储能设备很有希望。图1 SFCMs的仿生合成图2 SFCM的结构表征超级折叠属性和机制作者设计并安装了一个设备对各种材料进行了大量折叠测试(图3)。平行实验表明,在整个折叠周期从1到1,000,000次,SFCMs的纳米纤维都完好无损,电导率没有明显波动,内侧只出现两个微槽,这是由于纳米纤维滑动造成的。外侧几乎没有结构变化。此外,进行不同形式的折叠,所有 SFCM 都可以保持结构完整性,甚至在展开后自动迅速反弹,这为超级可折叠性提供进一步支持。当 SFCM 完全折叠时会形成光滑的ε状结构。局部结构的放大观察表明所有纳米纤维都是无损伤的,这可能与它们在折叠过程中的上述结构调整密切相关。当SFCMs的厚度达到100 mm时,它们仍然可以通过形成ε折叠结构来保持超折叠性能。图3 SFCM 的超折叠特性以及与典型对照样品的比较除了弯曲(折叠),柔性指标还包括滚动、扭曲、拉伸和压缩,它们可能对超折叠性起到辅助作用(图4)。扭转和滚动测试表明SFCM没有纳米纤维损坏。在拉伸性能方面,SFCMs的应力-应变曲线表现出显着特征。在压缩测试中,SFCM 厚度的99.3%恢复可以在将压力逐渐增加到10 MPa后保持,结果反映了它们的高强度和弹性,这也有助于柔韧性。这些力学性能为并为超级可折叠性提供强有力的支持。图4 SFCM 折叠以外的灵活性特征SFCM的超折叠机制源于折痕处的ε折叠结构,其中包含三个典型区域:(1) 由层间分离和纳米纤维滑动引起的凸起层可以减少沿层的应力。(2) 由折痕正中层的凸起和凸起两侧的层的压缩所带来的两条分散弧,避免形成应力集中的0内角。(3) 由纳米纤维滑动引起的两个折叠微槽,垂直对应于两个分散弧的内部,可以分散厚度方向的应力。这三种协同的微观结构变化有效地分散了各个层次和方向的应力,实现了超折叠性(图5)。此外,对一些微观结构不满足超折叠性的要求的材料(如rGO膜、碳布以及织物等)折叠特性的研究间接支持了该原理。图5 折叠与相关材料对比小结:作者通过改进的静电纺丝/碳化技术制备了具有层状纳米纤维网络结构的超级可折叠导电碳材料。在折叠机上多次真实折叠过程中观察它们的结构变化和电导率波动来研究它们的超级折叠特性,并通过实时SEM折叠观察和机械模拟揭示了超级折叠机制。更重要的是,还根据这些结果总结了超折叠材料的构建原理,对制备其他超折叠材料具有重要的指导意义。全文链接:https://www.sciencedirect.com/science/article/abs/pii/S2590238521003921
  • 沃特世公司:走在蛋白折叠和大分子复合物的研究前沿
    使用沃特世公司SYNAPT High Definition质谱系统, 利兹大学就所获得的结果发表文章 沃特世(Waters® )公司(股票代码NYSE: WAT) 2007年12月3日宣布利兹大学爱斯布理Astbury结构分子生物学中心使用最近购买的沃特世公司SYNAPT High Definition MS™ (HDMS) 质谱系统,在Journal of the American Society of Mass Spectrometry (JASMS) 美国质谱协会杂志上发表了蛋白研究的成果。 Ashcroft实验室正在使用SYNAPT® HDMS质谱系统研究生物分子功能。在2007年12月刊的一篇文章中,利兹的研究人员描述了对几种蛋白,如细胞色素C和贝塔-2-微球蛋白,的成功分离和分析,Ashcroft希望该成就可以通向对某些生物过程的完全了解,如淀粉纤维形成,细菌纤毛集结以及病毒衣壳的装配,这些过程都与衰老症有关。 蛋白质被人体小心地折叠,经三维长链分子装配而成。当正确地被折叠时,蛋白调节正常身体功能。当某些蛋白被折叠成特殊形状而变成错误折叠时,引起一系列反应,可导致自身聚集和淀粉纤维形成,因此一些高发疾病可能发生,包括老年痴呆症,疯牛病和帕金森氏综合症。在利兹大学,Alison Ashcroft艾利森艾斯克劳福特博士和她的同事Sheena Radford诗娜拉德福德教授就是研究这样一种蛋白,贝塔-2-微球蛋白,试图探索它是如何形成纤维,在透析病人的关节聚集,并与透析相关的淀粉样变性病有关。对这些过程在分子水平的完全了解将有助于治疗方法的设计。 新型质谱为生物学研究带来新领域 作为工具,常规质谱是区分不同质量蛋白质的优秀方法。然而,一个特定蛋白的不同构象或不同的折叠形式具有同一质量数,使用常规的方法是无法区分开来的。这就是沃特世公司SYNAPT HDMS质谱系统和镶嵌其中的离子淌度技术帮助利兹大学的方式。 “一个蛋白可以折叠成紧密的三维结构,或者在某些条件下,蛋白可以打开成伸展的结构。即使这些三维结构拥有相同的质量和质荷比(m/z),SYNAPT HDMS的离子淌度功能可以分离这些蛋白,并告诉您多少蛋白在折叠的形式而多少在非折叠的形式。而且,由于两种蛋白构象的横截面积不同,因为能够基于形状分离,SYNAPT HDMS质谱系统使我们能够区分各种不同的蛋白形状。 ”结果确实令人惊奇。”Alison Ashcroft艾利森艾斯克劳福特博士说,她是生物分子质谱研究员,质谱室主任。 来自沃特世公司的SYNAPT 质谱系统为实验室带来研究聚集过程的新的洞察力。“它为我们的研究提供新一维的空间。我们现在可以对原始状态的蛋白质定量,也可对非折叠或部分折叠的蛋白进行定量。我们也可以监测某种特定的蛋白构象在聚集过程被消耗。这为生物分子在分子水平如何工作提供了重要的新层面。”艾斯克劳福特博士补充道。 沃特世公司于2006年6月在美国西雅图美国质谱年会上推出SYNAPT HDMS质谱系统。它是第一台商业化的,在质量之外,基于尺寸,形状和电荷数分析离子的质谱。 一个管理万亿字节科学数据的决策 在生物技术和生物科学院(BBSRC) 和维尔康姆信托的资助下,艾斯克劳福特实验室拥有五台不同形式的质谱仪器,而管理其产生的数据是一个巨大的挑战。为了更有效地管理数据文件,该实验室选择沃特世公司NuGenesis Scientific Data Management System (SDMS)科学数据管理系统。 “每天在DVD上备份数据已经不需要了。科学数据管理系统SDMS 每天一次从五台质谱仪上将数据自动备份,我们的研究生和博士后可以直接从他们办公室的计算机上看到数据。存档文件对我们很重要,因为政府资助部门要求我们自建成之日起存储五或十年的数据。研究生花四年的时间拿到博士学位,所以他们需要四年或更长时间查看数据,特别是如果在拿到博士学位后要写文章” 艾斯克劳福特博士评论道。 “非分析化学背景的人们认为一台质谱就是一个复杂的称重机器。通常他们没有意识到使用这台仪器可以看到蛋白功能和行为。但是当他们发现了之后,会感到无比惊奇。”艾斯克劳福特博士说。 艾斯克劳福特博士在美国质谱协会杂志的文章全文参考: Monitoring co-populated conformational states during protein folding events using ESI-IMS-MS, D. P. Smith, K. Giles, R. H. Bateman, S. E. Radford,A. E Ashcroft, J. Am. Soc. Mass Spectrom., 2007 Dec 18 (12): 2180 – 90, DOI:10.1016/j.jasms.2007.09.017 文章再版要求请寄至A. E. Ashcroft 博士, Astbury Centre for Structural Molecular Biology, Astbury Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT UK,或发电子邮件email: a.e.ashcroft@leeds.ac.uk 关于利兹大学生物科学系,请浏览(http://www.fbs.leeds.ac.uk/) 利兹大学的生物科学系是英国最大的生命科学研究团体之一,拥有将近一百五十名学者和四百多名博士后和研究生。该系目前活跃的研究基金约六千万英镑,资助者包括慈善,研究院,欧盟和企业。该系拥有杰出的研究成果,在上一期政府研究评价检查(HEFCE)中,所有主要评估项目均获得第五级。 关于利兹大学爱斯布理Astbury中心, 请浏览(http://www.astbury.leeds.ac.uk/) 爱斯布理Astbury结构分子生物学中心是利兹大学一个跨学科研究中心。成立该中心的目的是在结构分子生物学的各个领域从事国际水平的研究课题。Astbury中心汇集了五十多位来自利兹大学各学科的学者,拥有共同的学术兴趣。该中心以 W.T.Astbury 的名字命名,他是生物物理学家,在利兹大学长期从事科学研究(1928-1961),工作期间在该领域成立了多个基金会。 艾利森艾斯克劳福特博士,(http://www.astbury.leeds.ac.uk/facil/mass.htm) 是生物分子质谱研究员,利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心质谱室主任。她的研究着重于开发和使用质谱方法探索生物分子功能。 诗娜拉德福德教授,(http://bmbsgi10.leeds.ac.uk/),是利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心结构分子生物学教授。她的研究着重于蛋白质折叠,非折叠和聚集机理。 生物技术和生物科学研究院(BBSRC) (www.bbsrc.ac.uk)是英国生命科学资助机构。 政府投资的生物技术和生物科学研究院BBSRC 每年在很大范围的研究领域投资三亿八千万英镑,为英国国民的生活质量做出突出贡献。 维尔康姆信托(www.wellcome.ac.uk)是英国最大的慈善机构。它资助英国国内和国际创新生物医学研究,每年投资额在五亿英镑左右。 (Waters, SYNAPT, High Definition MS, High Definition Mass Spectrometry, NuGenesis 和 HDMS 是沃特世公司商标。)
  • 西工大垂直管射折叠翼无人机研究取得重大突破
    “嘭!”“发射正常!”“机翼尾翼展开正常!”“螺旋桨最大功率推进!”“姿态改平正常!”“开始巡航!”“到达目标上空发现目标!”“目标锁定成功!”“完成打击!”。伴随着这一连串的指令,西北工业大学无人系统技术研究院副研究员昌敏负责的大仰角弹射长航时“游隼”管射折叠翼无人机(以下简称“游隼”长航时折叠翼无人机)捷联图像末制导闭环试验成功。管射折叠翼无人机是近年来兴起的新型巡飞与精确制导装备。由于考虑便携性和灵巧性,管射折叠翼无人机采用储存、运输、发射一体,发射管的有限空间约束极大限制了无人机机翼尺寸,从而影响了折叠翼无人机气动性能,是一门“螺蛳壳里做道场”的艺术。昌敏说:“单次折叠的串列翼布局是国际上主流的折叠翼无人机布局形式。”经过长期研究,昌敏团队发现串列翼布局对于有限尺寸的发射管来说,机翼面积更大些。但是受发射管长度限制,机翼展弦比不高。而且随着攻角的增加,串列翼布局的前后翼远距气动耦合诱导阻力增加得很快,串列布局的折叠翼无人机最佳升力系数不高,升阻比也较低,并且很难再有所提高,这意味着飞行器平台的飞行性能被这个天花板牢牢压制,因此这就成为了折叠翼无人机技术发展的瓶颈。在日以继夜的分析试飞数据和反推动力学模型后,团队发现多次折叠方案中“Z型折叠”总体上能够满足设计要求,但是其技术资料极少,其核心是高动态变体结构的气动、结构和动力学精确建模与预报技术。终于在团队不断攻关下,成功提出了“气动-结构协同的大展弦比折叠翼无人机设计技术”,首次将我国“由陆到空”“由海到空”折叠翼无人机升阻比大幅提升,将我国巡飞平台的气动性能提上了一个新的平台。在成功完成大展弦比折叠翼无人机设计后,昌敏团队又将目光投向了海空跨域飞行。由陆到空、由海到空是折叠翼无人机的主要跨域路径,而基于海面、陆地的高仰角发射飞行是约束折叠翼无人机使用范围的技术瓶颈。研究团队通过探明折叠翼面瞬时变体中的力系生成机制,揭示了变体几何布局-动力拓扑-气动力系架构-高仰角起飞瞬时转弯等时变耦合机理,突破了水面摇晃态垂直发射气动力系拓扑结构变体重构技术,实现“游隼”长航时折叠翼无人机国内首次深水释放、水面漂浮垂直冷发射无人机自主飞行验证与首次电动后推螺旋桨陆地垂直冷发射折叠翼无人机自主飞行验证。“游隼”长航时折叠翼无人机在陆地大仰角发射过程与末制导过程(西北工业大学供图)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制