小麦冠层尺度

仪器信息网小麦冠层尺度专题为您整合小麦冠层尺度相关的最新文章,在小麦冠层尺度专题,您不仅可以免费浏览小麦冠层尺度的资讯, 同时您还可以浏览小麦冠层尺度的相关资料、解决方案,参与社区小麦冠层尺度话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

小麦冠层尺度相关的耗材

  • 小麦中呕吐毒素检测仪
    呕吐毒素检测仪深圳市芬析仪器制造有限公司生产的CSY-YG701小麦中呕吐毒素检测仪可快速准确测定出玉米、大米大麦、小麦、花生、粮油等食品乳制品、谷物及饲料和饲料原料中的真菌毒素含量(呕吐毒素、黄曲霉、玉米赤霉烯酮等),广泛应用于粮油监测中心、粮油饲料生产加工、食品加工贸易、面粉厂、粮食局、畜禽养殖户自查、工商质监部门用于市场快速筛查等 小麦中呕吐毒素检测仪组成:CSY-YG701检测仪主机、一体化拉杆箱包装、台式电子天平、可调移液器、移液枪头、计时器、离心机、粉粹机、涡旋振荡器、取样勺、采样瓶、离心管、镊子、留样密封袋、标签纸、合格证/保修卡、说明书、定量检测卡等。 产品优势:1.仪器使用寿命长:采用高性能LED光源,金属丝杆设计,非连续工作模式,使用寿命可达10年;2.液晶触摸屏7英寸中文显示,人性化操作界面,读数准确、直观; 3.本仪器具备数据储存功能,接口方式采用USB、RS232等设计,方便数据的存储和相关处理;4.自动保存检测结果,数据存储量大,内置微型打印机,可实时打印检测结果;5.支持网络通信(wifi、网络端口),可以进行数据传输功能(选配定制功能);6.内置六通道试剂温度生化培养装置,解决不同区域温度对数据的影响;7.封闭式检测仓门设计,避免灰尘进入仪器内部,延长仪器使用寿命;8.配置齐全:所需设备、试剂、耗材一站式提供,开箱即检;9.内置标准曲线,通过ID卡导入标准曲线,无需检测时再做标准曲线,既节省了成本,也避免了操作人员与霉菌毒素的接触,保护操作人员的安全;10.整机支持按客户要求定制(ODM加工及OEM项目合作) 技术参数:1、屏幕:7寸触摸屏2、操作系统:嵌入式操作系统3、重复性:CV<3%4、稳定性:CV<3%5、台间差:CV<3%6、检测通道:单通道定量检测结果 7、前处理:≤15分钟(根据项目而定)8、检测时间:<10s可对样本进行定性、半定量检测9、检测结果报告:可准确报告出检测项目、被测物质的浓度、检测单位、被检查单位、检验员、检测时间、检测限等信息可在触摸屏上显示,可通过仪器内置打印机输出10、连接方式:USB接口,串口,网口11、数据传输:USB 以及网口(升级wifi)12、检测器:光电源 , 波长:365nm/610nm13、一体化拉杆箱包装(详见配置清单) 呕吐毒素快速检测仪配置清单:序号名称型号规格单位数量1主机CSY-YG701台12电源适配器线15V5A条13说明书本14合格证/保修卡本14台式电子天平200g/0.01g台15样品称量架个16可调移液器1000-5000ul把17可调移液器20-200ul把18移液枪头20-200ul96/盒19移液枪头1000-5000ul20只/袋110计时器个111标签纸张2 12采样瓶50ml个1013离心机7000转台114离心管50ml个2015离心管1.5ml个5016粉粹机台117涡旋振荡器台118毛刷个119镊子个120取样勺个121留样密封袋张5022检测卡40次/盒1 以上是CSY-YG701呕吐毒素快速检测仪技术参数,如果您想了解有关于CSY-YG701呕吐毒素快速检测仪操作说明书以及其他问题,请致电深圳市芬析仪器制造有限公司夏经理
  • 元素分析仪配件 LECO 力可 502-274小麦粉
    元素分析仪配件 LECO 力可 502-274小麦粉Wheat flour, CHNS
  • 玉米赤霉烯酮定量检测仪
    玉米赤霉烯酮定量检测仪根据江苏省粮食和物资储备局要求,小麦玉米赤霉烯酮检测也将纳入小麦入库必检项目,由此可见小麦真菌毒素检测重点项目不仅仅只有呕吐毒素,玉米赤霉烯酮的检测也是非常有必要的,在检测呕吐毒素的同时,快速、准确、定量的检测小麦中玉米赤霉烯酮,是小麦安全入库的重要保障。 深圳市芬析仪器制造有限公司生产的玉米赤霉烯酮快速定量检测仪可快速准确测定出玉米、大米大麦、小麦、花生、粮油等食品乳制品、谷物及饲料和饲料原料中的真菌毒素含量,广泛应用于粮油监测中心、粮油饲料生产加工、食品加工贸易、面粉厂、粮食局、畜禽养殖户自查、工商质监部门用于市场快速筛查等 深芬仪器玉米赤霉烯酮快速定量检测仪应用时间分辨荧光竞争抑制免疫层析的原理,当将样品滴加在加样区时,样品中的待测物与结合垫中的荧光微球标记抗体结合并通过毛细作用向前层析,当达到检测区后,检测线 T 线上固定的抗原与剩余的部分荧光微球标记抗体结合,检测线 T 线上结合的荧光微球标记抗体的量与样品中待测物的量成反比,质控线 C 线结合的荧光标记物样品中待测物的量无关,其它荧光标记物继续层析达到吸收区。层析结束后,用检测仪读取 T 线和 C 线的荧光强度并计算 T/C 值,通过仪器内置的标准曲线即可计算出样品中待测物的含量。 产品优势:1.仪器使用寿命长:采用高性能LED光源,金属丝杆设计,非连续工作模式,使用寿命可达10年;2.液晶触摸屏7英寸中文显示,人性化操作界面,读数准确、直观;3.本仪器具备数据储存功能,接口方式采用USB、RS232等设计,方便数据的存储和相关处理;4.自动保存检测结果,数据存储量大,内置微型打印机,可实时打印检测结果;5.支持网络通信(wifi、网络端口),可以进行数据传输功能(选配定制功能);6.内置六通道试剂温度生化培养装置,解决不同区域温度对数据的影响; 7.封闭式检测仓门设计,避免灰尘进入仪器内部,延长仪器使用寿命;8.配置齐全:所需设备、试剂、耗材一站式提供,开箱即检;9.内置标准曲线,通过ID卡导入标准曲线,无需检测时再做标准曲线,既节省了成本,也避免了操作人员与霉菌毒素的接触,保护操作人员的安全;10.整机支持按客户要求定制(ODM加工及OEM项目合作) 技术参数:1.激发光谱中心波长:365nm2.接收光谱中心波长:610nm 3.准确度:CV值≤1% 4.吸光度重复性:±0.0055.通 讯 接 口: USB、RS232、网口/wifi(选配)6.电 源:电源适配器(输入120~240VAC,频率: 50~60HZ;输出DC15V5A)7.仪器工作环境: 7.1温度: 5~40℃。7.2湿度: 5%-80%,无凝结。7.3大气压力:86.0Kpa-106.0Kpa。 7.4仪器放置于平整操作台上周围无强磁场、电场干扰。8.检测结果报告:可准确报告出检测项目、被测物质的浓度、检测单位、被检查单位、检验员、检测时间、检测限等信息可在触摸屏上显示,可通过仪器内置打印机输出 以上是玉米赤霉烯酮定量检测仪的产品信息,如果您想了解更多有关于真菌毒素检测仪产品资料;请致电深圳市芬析仪器制造有限公司

小麦冠层尺度相关的仪器

  • 一、产品简介: HD-YG300型真菌毒素快速检测仪是一款荧光定量检测粮食真菌毒素的仪器设备,主要检测粮食中黄曲霉毒素B1、玉米赤霉烯酮、赭曲霉呕吐毒素、伏马毒素、T-2毒素等等,检测样品涵盖粮食谷物(大米、玉米、小麦、大麦、高粱等)及其制品、饲料及其原料、油脂、牛奶及其制品等;样品前处理简单,整个检测过程检测12min,产品适用于各类畜牧养殖企业、谷物生产企业、面粉厂、方便面厂、第三方检测机构及各级政府监管部门。二、性能指标 1、一体化设计,集成孵育和检测功能同时进行,孵育完成直接检测;2、全中文 7英寸高清液晶显示,触摸屏操作;3、 Android 系统,支持在线升级,可WIFI联网;4、检测原理:荧光定量免疫层析法;5、6通道设计,可同时进行一种或多种指标的检测,6个独立检测单元,检测效率高,并且互不干扰;6、具有二维码自动识别系统,可直接识别检测项目、检测流程等信息;7、仪器自带热敏打印机,检测结果可实时打印;8、具有检测数据存储(存储数量不少于 10000 条)、查询、批量数据处理和打印功能;9、仪器≥2 个USB 接口,可拷贝结果及原始数据,具有 wifi 接入模块,可通过无线连接网 络实现数据上传;10、 分钟内达到工作状态(37℃),封闭系统,不受外界环境(光、热)干扰,工作环境温度:0-30℃;11、相对极差≤10%;12、重复性 CV≤1%;13、批间变异≤3%;14、尺寸310x210x93mm三、检测项目指标 项目名称定量范围适用样品类型黄曲霉素B12-30ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、米糠粕、玉米蛋白粉.玉米胚芽粕、膨化玉米、DDGS和喷浆玉米皮及成品饲料5-80ug/kg(饲料)玉米赤霉烯酮25-400ug/kg(谷物)50-1000ug/kg(饲料)呕吐毒素200-3000ug/kg(谷物)200-8000ug/kg(饲料)伏马毒素100-6000ug/kg玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮、浓缩料及犊牛颗粒料及成品饲料赭曲霉毒素A2-20ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮及成品饲料50-500ug/ka(饲料)T-2毒素50-800ug/kg玉米、小麦、大米、麦麸、豆粕、花生粕、玉米胚芽粕.DDGS、喷浆玉米皮及膨化玉米及成品饲料
    留言咨询
  • 一、产品简介: HD-YG300型小麦呕吐毒素检测仪是一款荧光定量检测粮食真菌毒素的仪器设备,主要检测粮食中黄曲霉毒素B1、玉米赤霉烯酮、赭曲霉呕吐毒素、伏马毒素、T-2毒素等等,检测样品涵盖粮食谷物(大米、玉米、小麦、大麦、高粱等)及其制品、饲料及其原料、油脂、牛奶及其制品等;样品前处理简单,整个检测过程检测12min,产品适用于各类畜牧养殖企业、谷物生产企业、面粉厂、方便面厂、第三方检测机构及各级政府监管部门。二、小麦呕吐毒素检测仪性能指标: 1、一体化设计,集成孵育和检测功能同时进行,孵育完成直接检测;2、全中文 7英寸高清液晶显示,触摸屏操作;3、 Android 系统,支持在线升级,可WIFI联网;4、检测原理:荧光定量免疫层析法;5、6通道设计,可同时进行一种或多种指标的检测,6个独立检测单元,检测效率高,并且互不干扰;6、具有二维码自动识别系统,可直接识别检测项目、检测流程等信息;7、仪器自带热敏打印机,检测结果可实时打印;8、具有检测数据存储(存储数量不少于 10000 条)、查询、批量数据处理和打印功能;9、仪器≥2 个USB 接口,可拷贝结果及原始数据,具有 wifi 接入模块,可通过无线连接网 络实现数据上传;10、 分钟内达到工作状态(37℃),封闭系统,不受外界环境(光、热)干扰,工作环境温度:0-30℃;11、相对极差≤10%;12、重复性 CV≤1%;13、批间变异≤3%;14、尺寸310x210x93mm三、检测项目指标: 项目名称定量范围适用样品类型黄曲霉素B12-30ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、米糠粕、玉米蛋白粉.玉米胚芽粕、膨化玉米、DDGS和喷浆玉米皮及成品饲料5-80ug/kg(饲料)玉米赤霉烯酮25-400ug/kg(谷物)50-1000ug/kg(饲料)呕吐毒素200-3000ug/kg(谷物)200-8000ug/kg(饲料)伏马毒素100-6000ug/kg玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮、浓缩料及犊牛颗粒料及成品饲料赭曲霉毒素A2-20ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮及成品饲料50-500ug/ka(饲料)T-2毒素50-800ug/kg玉米、小麦、大米、麦麸、豆粕、花生粕、玉米胚芽粕.DDGS、喷浆玉米皮及膨化玉米及成品饲料
    留言咨询
  • 一、产品简介: HD-YG300型真菌毒素快速检测仪是一款荧光定量检测粮食真菌毒素的仪器设备,主要检测粮食中黄曲霉毒素B1、玉米赤霉烯酮、赭曲霉呕吐毒素、伏马毒素、T-2毒素等等,检测样品涵盖粮食谷物(大米、玉米、小麦、大麦、高粱等)及其制品、饲料及其原料、油脂、牛奶及其制品等;样品前处理简单,整个检测过程检测12min,产品适用于各类畜牧养殖企业、谷物生产企业、面粉厂、方便面厂、第三方检测机构及各级政府监管部门。二、性能指标1、一体化设计,集成孵育和检测功能同时进行,孵育完成直接检测;2、全中文 7英寸高清液晶显示,触摸屏操作;3、 Android 系统,支持在线升级,可WIFI联网;4、检测原理:荧光定量免疫层析法;5、6通道设计,可同时进行一种或多种指标的检测,6个独立检测单元,检测效率高,并且互不干扰;6、具有二维码自动识别系统,可直接识别检测项目、检测流程等信息;7、仪器自带热敏打印机,检测结果可实时打印;8、具有检测数据存储(存储数量不少于 10000 条)、查询、批量数据处理和打印功能;9、仪器≥2 个USB 接口,可拷贝结果及原始数据,具有 wifi 接入模块,可通过无线连接网 络实现数据上传;10、 分钟内达到工作状态(37℃),封闭系统,不受外界环境(光、热)干扰,工作环境温度:0-30℃;11、相对极差≤10%;12、重复性 CV≤1%;13、批间变异≤3%;14、尺寸310x210x93mm三、检测项目指标:项目名称定量范围适用样品类型黄曲霉素B12-30ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、米糠粕、玉米蛋白粉.玉米胚芽粕、膨化玉米、DDGS和喷浆玉米皮及成品饲料5-80ug/kg(饲料)玉米赤霉烯酮25-400ug/kg(谷物)50-1000ug/kg(饲料)呕吐毒素200-3000ug/kg(谷物)200-8000ug/kg(饲料)伏马毒素100-6000ug/kg玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮、浓缩料及犊牛颗粒料及成品饲料赭曲霉毒素A2-20ug/kg(谷物)玉米、小麦、麦麸、豆粕、花生粕、玉米胚芽粕、膨化玉米、DDGS、喷浆玉米皮及成品饲料50-500ug/ka(饲料)T-2毒素50-800ug/kg玉米、小麦、大米、麦麸、豆粕、花生粕、玉米胚芽粕.DDGS、喷浆玉米皮及膨化玉米及成品饲料
    留言咨询

小麦冠层尺度相关的试剂

小麦冠层尺度相关的方案

小麦冠层尺度相关的论坛

  • 北京纳米跃升工程在宏观尺度超润滑领域取得突破

    塑料问答:近日,在北京市科委支持下,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果发表在国际纳米领域权威学术期刊《自然—纳米技术》上。  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。  碳纳米管从结构上看是由石墨烯卷曲而成,理论研究表明,当碳纳米管存在哪怕只有一个原子级别的缺陷时,其管壁间摩擦力就会急剧增大。经过近十年的努力,魏飞教授团队在制备长达数厘米且无缺陷的碳纳米管的制备方面取得了一系列突破,发展了单根碳纳米管的纳米颗粒标记技术,这些工作为宏观尺度超润滑工作奠定基础。在上述基础上,魏飞团队首先在光学显微镜下通过用微弱气流吹动碳纳米管的方法观察到了碳纳米管管壁之间快速相对运动的奇妙现象,进而利用扫描电镜下的微纳米操纵平台进行双壁碳纳米管内层的可控抽出,并测量了管壁间的超低摩擦力。研究发现,双壁碳纳米管的管壁之间存在着超低的摩擦力,并且这种摩擦力与碳纳米管的长度没有关系,即无论多长的碳纳米管,其内层都可以被轻易地抽出来。  这项工作被《自然—纳米技术》杂志审稿人评价为里程碑式原创性工作,对于研究和控制摩擦力做出了重大的、创造性的贡献,为下一代全碳电子器件构筑、超润滑机械开发以及超高速微纳米机械、电子器件制备提供了基础。转自塑料问答

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

小麦冠层尺度相关的资料

小麦冠层尺度相关的资讯

  • 小麦赤霉病监测有了“看家神器”
    胡小平与赤霉病预报器小麦远程预测预报物联网监测系统 7月20日下午7点多,在中国农业硅谷的杨凌,一天前的那场雷阵大雨过后,气温是一点未降,反而使人感到周身湿气热浪袭人难耐,记者随西北农林科技大学植物保护学院教授安德荣等一行在杨凌高新农业示范区的临近周至县、眉县猕猴桃果园调研、采访一天,此刻身体感觉是又累又热,不想讲话 而头脑中的意识流是自然灾害、病虫害使农民生产生活不易,他们渴望能够解决实际难题的科技成果̷̷  记者不由感叹具有对农业生产提质增效明显的科技创新成果还是不够多,推广转化为生产力的少!  “据说我们学院胡小平教授的一项成果不错,了解一下?”安德荣建议。  “那就看看,了解一下。反正距返回西安的车次还有些时间。”记者回答。  严重的小麦赤霉病,出色的创新成果  农作物病虫害的预测预报基本都是农业科技人员在一个区域,选择不同的田块,再划样方进行观察、记录、统计及一级一级上报,省市植物保护总站汇总、分析并与以往年代资料比对等,作出预测预报方案和措施,再一级一级向下通报、执行̷̷  而一些农作物、果蔬的病虫害已成为影响我国农业提质增效的最主要限制性因素。如,小麦赤霉病已成为影响我国小麦高产稳产的首要病害,发生流行年份损失产量10%~30%,严重时达80%~90%。特别是小麦赤霉病菌产生的脱氧雪腐镰刀菌烯醇(DON)和玉米赤霉烯酮(ZEN)等多种毒素,也是常称的呕吐毒素,不仅会影响小麦品质安全,还会严重威胁人畜的生命健康,严重威胁着我国小麦生产和粮食安全。  据资料,2012~2015年全国黄淮海麦区连续暴发流行赤霉病,造成了巨大的损失。  我国科研工作者针对小麦赤霉病已开展了大量的研究工作,但直至目前,我国小麦赤霉病的流行规律、预测预报技术、毒素产生机理、抗病育种等方面仍然存在很多问题和诸多误区,缺乏有效的病害监测预警技术体系和全国统一协作攻关能力。特别是与发达国家相比较,在高新技术和设备的建设与应用、预测预报技术研究、基层专业测报人员队伍的人员数量及其稳定性等方面尚存在较大差距。同样,美国、加拿大等工业信息化发达又是世界小麦主产国,也未实现基于互联网的物联网远程预测预报。  可以说,小麦赤霉病的预测预报一直是一个世界性难题,虽然国内外有很多学者作了大量研究,但是能够准确预测且应用于实践的并不多见。  当胡小平教授在电脑上搜到www.cebaowang.com/wheatmonitor界面时,记者、安德荣等感到惊奇。因界面上实时显示出全国小麦赤霉病各个实时监测点仪器布置、运行、数据收集、分析处理、预测结果及实时远程传输和发布情况。  这是世界首台依靠太阳能解决田间动能问题,基于物联网的作物主要病害自动监测预警设备和平台系统,它解决了植物保护界亟需解决的难题,且所有硬件设备、数据分析及系统软件及模型参数等均是西北农林科技大学胡小平教授团队承前启后、历时多年自主创新发明的。该成果相关技术已获批国家专利多项和登记计算机软件著作权1项。另外,相关成果的部分内容以《多模型较单个模型预测效果更好》为题的论文,也在学界权威期刊《美国植物病理学报》发表,得到国际认同。该篇论文以小麦和燕麦赤霉病为例,从理论上分析比较了多模型和单个模型预测效果,证明多模型联合具有更好的预测效果。  其间,胡小平研究团队先后得到多项国家自然科学基金项目的支持。  艰难的转化之路  据悉,西藏自治区的农业部门就在当日早上与胡小平联系,希望将这套作物病害自动监测预警设备和平台系统销售推广给他们区域应用。  据了解,该系统与设备在2013~2016年对陕西关中的眉县、杨凌、兴平、临渭区、华县、华阴、周至等县小麦赤霉病作的监测与预测结果,按照肖悦岩教授的评测方法,其准确度均在80%以上,与当地小麦赤霉病实际发生情况相符。  “该系统已通过三年的田间试验,经不断完善系统解决方案,调整模型参数和优化产品结构,目前已生产出第六代型号样机,进一步提高了小麦赤霉病远程监测预警系统的稳定性和预测准确度,更有利于农户、农业技术人员及政府部门进行病害的防治决策和科学防控。”胡小平说。  当问及一台设备的成本和如何与一个企业合作,实现成果转化问题,以发挥成果作用时,这位刚才还侃侃而谈的教授,显得有点无奈。  “一套设备仅器件成本约需5万元人民币,目前测试、推广样品20台套都是用自己和团队发表高影响因子论文奖金、工作津贴等,委托一家电器生产企业生产的,有些费用还未付清。”胡小平低声说。  的确也难为这位博士生导师、教育部新世纪优秀人才支持计划入选者,现任西北农林科技大学植物病理学系主任,去做闯市场搞成果转化之类的事。  但谈到成果前景或项目进展时,胡小平激动地说,在国家自然科学基金、国家基础性研究“973”、农业部公益性行业专项、陕西省科技攻关等项目的支持下,课题组在利用大数据挖掘技术建立了小麦赤霉病预测模型,利用物联网技术研发成果作物病害自动监测预警平台系统的基础上,目前已经扩展完成对小麦条锈病、小麦白粉病的自动监测预警系统的研发,田间试验与示范也取得了预期的效果。其应用监测预警病虫害的种类范围将会不断扩大。  7月22日,记者写稿联系胡小平时,得知他正在深圳与一企业洽谈该项成果的转移转化事宜。
  • 李振声:小麦育种专家——2006年度获奖人
    李振声,1931年2月25日出生,山东淄博人。遗传学家。1951年毕业于山东农学院(现山东农业大学)农学系。中国科学院遗传研究所研究员。育成小偃麦8倍体、异附加系、异代换系和异位系等杂种新类型 将偃麦草的耐旱、耐干热风、抗多种小麦病害的优良基因转移到小麦中,育成了小偃麦新品种四、五、六号,小偃六号到1988年累计推广面积5400万亩,增产小麦32亿斤 建立了小麦染色体工程育种新体系,利用偃麦草蓝色胚乳基因作为遗传标记性状,首次创制蓝粒单体小麦系统,解决了小麦利用过程中长期存在的“单价染色体漂移”和“染色体数目鉴定工作量过大”两个难题 育成自花结实的缺体小麦,并利用其缺体小麦开创了快速选育小麦异代换系的新方法-缺体回交法,为小麦染色体工程育种奠定了基础。1991年当选为中国科学院院士(学部委员)。2006年获得国家最高科学技术奖。   一粒种子,包含着多少生命的信息和秘密,或长成饱满的谷穗,或出落成娇嫩的花草,或成长为参天的大树。而一粒麦种,日后就是一捧粮食,是生存的希望。   57年前,李振声就是带着这份希望,开始了自己的育种生涯。为了让麦子更强壮,打出更多的粮食,他创造性地把牧草和小麦杂交,经过多年试验获得了抗病、耐热、高产的良种 他还曾带队去治理中低产田,带动了黄淮海农业综合开发……他的执著、智慧和坚韧,帮助亿万农民尝到了丰收的喜悦。   1942年,山东大旱,庄稼颗粒无收,那年李振声11岁,挨饿的感觉令他至今难忘,“野菜、榆树叶都是充饥的好东西,尤其是榆树皮,因为它是黏的,和糠混合起来,能做成窝窝头。”   李振声的童年是艰苦的,生在农家的他13岁时父亲去世,留下母亲一人抚养4个孩子。李振声高二时辍学到济南找工作,那时济南刚刚解放,一个偶然的机会,他在街上看到山东农学院在招生,并且可以提供学生上学期间的食宿。这对李振声来说真是巨大的吸引。   “哪有这样好的事情?管吃管住,还可以读书,这在过去想都不敢想。”提起当年的经历,李振声依然激动,就是那个决定把他带到了育种研究这个领域,让他得以在广袤的黄土地上施展才智。   后来他参加了考试,被农学系录取。小时候挨饿的经历让李振声懂得粮食的珍贵,这也成为了他学习农业、从事农业研究的原动力。   虽然已时隔半个多世纪,李振声对他的大学生活依然记忆犹新,系主任是原来燕京大学的沈寿铨教授,他上的小麦育种课很好听,从小麦的进化、分类、育种的理论与技术,深入浅出,很有吸引力。余松烈教授讲的遗传课,也很生动。   就这样,李振声研究育种的兴趣被激发出来了,并且很快看到了成果:李振声大二那年,放假时他把学校农场繁殖的几个优良品种(齐大195、扁穗小麦、鱼鳞白)带回了农村老家,在自家的地里先种了起来,来年收麦时,竟比当地的老品种增产了许多,于是乡亲们纷纷来换种。   “听到乡亲们的赞扬声,心里自豪极了!让我认识到科学技术确实对提高粮食产量有重要作用。”从那时起,李振声萌发了从事小麦育种研究的想法,这个决定影响了他的一生。   大学毕业以后,李振声被分配到北京,跟随导师土壤学家冯兆林先生从事种植牧草改良土壤的研究。1956年,李振声响应中央支援西北建设的号召,与课题组13位同志一起,调到陕西杨陵中国科学院西北农业生物研究所工作,一干就是31年。说起这段经历,李振声总是一语带过,只有说起他心爱的麦子,他才滔滔不绝,神采飞扬。   刚到西北,李振声就遇到小麦条锈病大流行,这意味着小麦会大幅减产。李振声为此吃不下、睡不香,“当时我就想,可不可以赶紧育新品种来解决这个问题,但是病菌变异的速度很快,而育种的速度慢,8年才能育成一个小麦新品种,而条锈病平均5.5年就能产生一个新的生理小种。”如果通过正常途径来育种,解决不了小麦病害的根本,于是李振声结合学过的牧草知识,开始尝试通过远缘杂交,将偃麦草的抗病基因转移给小麦,选育持久性抗病小麦品种。在这之后的几十年里,他的小麦和牧草杂交育种取得成功,也创建了蓝粒单体小麦和染色体工程育种新系统。   这些成就说出来只有几句话,但是实现起来却是个令人难以想象的艰难过程。   远缘杂交是个长周期而且风险大的尝试,“当时下决心时,就知道很可能失败,但是比起农民对好收成的渴望,这压力就不算什么了。”   远缘杂交的难题有3个:杂交不容易成功、产生的品种容易不育、后代性状“疯狂分离”。对小麦与长穗偃麦草的杂交来说,最困难的是第3个问题,草的性状遗传能力太强,要用小麦对草及其杂种进行杂交、回交好几代,才能使双亲的遗传能力达到平衡,有时一个杂种单株看着很好,而下一代则面目全非了。   1964年初,远缘杂交已进行了8年,但是还没有育成品种,在当时的社会环境下,李振声被认为研究工作脱离实际。幸运的是,他搞远缘杂交研究的同时开展了常规的小麦品种间杂交育种工作,他选育的“生选5号、6号”已开始在生产上推广应用,增收明显。工作队最后的结论是,毕竟他已有两个品种在生产上发挥作用了。这样,李振声才算过了关。   1964年的6月14日,对李振声来说是意义非凡的一天。小麦成熟前连续40天阴雨,结果那天突然放晴,一天的工夫,几乎所有的小麦都青干了。本来是一场天灾,但是李振声突然发现,有一个小偃麦杂种株系(小偃55)保持正常生长,穗叶茎呈金黄色,它的亲本长穗偃麦草也未青干,顿时他欣喜若狂。之后用它们做母本经过两次杂交,历时15年,终于育成了一个具有相对持久的抗病性、高产、稳产、优质的小麦新品种———小偃6号。现在小偃6号已成为我国小麦育种的重要骨干亲本,是我国北方麦区的两个主要优质源之一,其衍生品种已达数十个,累计推广3亿多亩。为此,他获得了2006年国家最高科技奖,成为继袁隆平之后第二个获此殊荣的农学家。   李振声曾说,“和小麦打了半个多世纪交道,真正给我打分的是农民,我最开心的事是看到农民丰收时的高兴劲儿。”   在李振声看来,和农民打交道是很快乐的事。1969年,他被下放到宝鸡县联合大队去蹲点,一蹲就蹲了4年。本来是去接受农民再教育的,却和农民打成了一片,居然最后还被树为典型。这都是源于他的农业技术给农民带来了真正的实惠。   那年,大队里的红薯烂得很厉害,李振声检查了红薯窖,很快发现,4队的温度太低(6摄氏度),软腐病很重 5队的温度太高(16摄氏度),湿度太大,发了芽。采取措施后,很快问题得到缓解,因此被县上通报,广为宣传推广。   还有一次,他帮助生产队考察了小麦苗情,统计了各队一、二、三类苗的比例,并分别提出了相应的管理措施。有两个队麦田三类苗较多,其中一个队按李振声的建议,加强了管理措施,第二年获得了丰收 另一个队没有采取措施,减了产。有了这个对比,小麦丰产栽培措施得到了全面推广,第二年大队小麦平均亩产,从原来的180公斤提高到250公斤以上,公社亩产200公斤以上,过了“纲要”。李振声研究育种的几十年里,随着品种改良和栽培技术的改善,小麦的产量明显提高,但“粮食满仓”的景象并没有阻止他在育种行业里不断探索的脚步。他的论文集首页写着白居易的诗:“千里始足下,高山起微尘。吾道亦如此,行之贵日新。”   吃过大旱的苦,所以今年的小麦旱情,成了李振声最牵挂的事情。“麦子还没有足够高产、足够抗旱。育种事业还有很长的路要走。”已经78岁的李振声语气平缓而坚定。78岁高龄,他仍坚持到实验室搞研究,他希望在有生之年能多出点成果,能为粮食增产和安全多做一点贡献。   “虽然高产的品种在实验田里亩产可以达到700公斤,但我国粮食平均亩产才300公斤。小面积上的产量突破只展示了一种前景,但要解决大面积粮食增产问题还要靠土、肥、水、种等综合措施的改善,而不是单靠品种改良能解决的。”李振声说,小偃6号的育成和大面积推广,证明远缘杂交确实是改良小麦品种的一条重要途径。但是,育种过程耗费的时间长达20多年,这不利于多出成果。   于是李振声另寻捷径,运用从偃麦草中得来的蓝粒基因创造了一套蓝粒单体小麦。“蓝粒单体小麦在一个麦穗上可以长出4种颜色的种子,深蓝、中蓝、浅蓝和白粒,不需要用显微镜,只根据种子颜色就可以知道它的染色体数目,深蓝的42条,中蓝和浅蓝的41条,白粒的40条。40条染色体的小麦叫缺体,用它与某些远缘亲本植物杂交,比较容易将外源染色体转移到小麦中,更方便染色体工程育种。”李振声指着办公室墙上的图,兴奋地比画着。   1995年,一本莱斯特布朗的《谁来养活中国?》在当时引起了不少人关注,李振声对其中的观点感到吃惊————中国人将养活不了自己。在此后的几年里,他在一直调查论证,汇集我国近15年的有关数据,与作者预测的情况进行对比,结果发现他的预测结果没有兑现。“对比的结果是,布朗的3个推论都不正确,都不符合中国实际。第一,人口增长速度比他预计的慢了1/3 第二,人均耕地减少的速度不像布朗预计的那样严重 第三,我国粮食15年合计进出口基本持平,净进口量只有439.7亿公斤,相当于总消费量的0.6%,微不足道。”于是,在2005年的博鳌亚洲论坛上,经过精确的统计和大量的论证,李振声发表讲话,认为中国人自己能养活自己,有力地回应了有关对中国粮食不能自给的质疑。他自信地表达了自己的研究成果:中国完全可以养活自己。“现在如此,将来我们相信凭着中国正确的政策和科技、经济的发展,也必然能够自己养活自己。”   在今天丰富的面食背后,就是以李振声为代表的这样一群科研人员,与亿万农民一起,同甘共苦,忘我耕耘,在努力维护着小麦的质量、粮食的安全和国家的尊严。   “以兴趣始,以毅力终”是对李振声育种生涯的写照。对他的采访,是一堂愉快的生物课,但不是一堂丰富的人生课。记者一直试图将话题引到科研以外的领域,但每次他都一语带过,然后再度谈起小麦、育种、粮食增产、节约型农业这些他关心一辈子的话题。谈到高兴处眼睛里会流露出兴奋的光芒,让人不忍打断。每每涉及专业知识或重要数据,他都会立刻起身,去拿几支麦穗,或从书架上取下几本大部头的著作,一定要给记者讲个清楚。   “记住一个人的故事,远没有明白一个科学道理更有意义。”他开导记者。他给自己提了个要求,就是一定要让记者明白育种是怎么回事,然后才会有更多的读者明白。   走在人生道路上,李振声朝思暮想的,就是小麦育种这一件事。即便在梦里,他常见的仍是一片麦田的金黄。他常挂在嘴边的一句话就是,野生植物是个非常大的基因库,而且它们本身也在不断变化、优胜劣汰的。听得出来,他为人生没有更多的时间来解开这基因之谜而感到遗憾。所以,他加倍努力地带学生。   “先生对我们最大的教育,是他的科研精神,他对待工作严肃认真、一丝不苟,十分敬业。”李振声最得意的学生童依平说,“往往在田间工作大半天,我们年轻人都感到很累,他仍然不知疲倦地调查、记录。”   一个好老师的启发,能改变一个人的一生。在李振声的科研生涯中,有过3个人,对他影响最大。“华罗庚先生讲怎样学习?概括起来有4句话:天才在于积累,聪明在于勤奋 别人起床时,我已学习4个小时了 我研究数学是从小学教科书的数学一、二、三、四、五、六册开始的 要学会读书,要能将一本厚书读薄。”虽然是几十年前听过的课,李振声依然记得清晰。   在李振声的印象里,钱三强先生讲怎样做研究,艾斯奇先生讲唯物论和辩证法,都是相当宝贵的课。“虽然和他们从事的不是一个行业,但是他们思想的精华和有效的工作方法,给了我很大的鼓舞和帮助。”   尽管李振声身体不太好,但他还是不断地寻找机会,去各地的小麦试验田走走,回到他奋斗过的西北看看,他是如此热爱那片土地和他倾注了一生心血的育种事业。和李振声一起翻看他从前的照片,就会发现:笑得很灿烂的,多半是在麦田里拍摄的,那金色的麦田和饱满的麦穗,让他幸福无比。
  • Resonon | Resonon Pika L在估算冬小麦动态收获指数上的应用
    作物收获指数(HI)是评价作物产量和栽培效果的重要生物学参数,是进一步提高作物产量的重要决定因素。对作物育种、作物生长模拟、精准农业作物管理、作物产量估算及其它方面的应用研究具有重要意义。近年来,遥感凭借其在速度、精度和覆盖范围等方面的优势已逐渐成为获取大尺度作物HI的有效技术手段。而无人机(UAV)遥感技术也迅速发展,成为农业遥感监测的新手段。目前,UAV遥感传感器主要包括数码相机、多光谱相机和高光谱相机。其中,高光谱相机具有较多的波段,可以获取与作物生长状况密切相关的波段信息,可以为作物动态生长监测提供丰富的信息源,并可靠收集作物HI动态变化信息。然而,目前利用UAV高光谱遥感估算作物HI并无相关报道。基于此,在所附文章中,来自中国农业科学研究院的一组研究团队以冬小麦为研究对象,充分考虑其开花期至成熟期生物量和灌浆过程的变化以获取作物动态HI(D-HI)的空间信息。动态fG(D-fG)参数估算为开花期至成熟期期间不同生长期累积的地上生物量与对应时期地上生物量的比值。作者基于无人机高光谱遥感(DJI M600 Pro UAV+ Resonon Pika L 高光谱成像)数据进行了D-fG参数估算,提出了一种获取冬小麦D-HI空间信息的技术方法,并验证了所提出方法的精度。通过UAV高光谱数据计算的归一化差异光谱指数(NDSI)和D-fG测量值之间的相关关系筛选出D‑fG估算的敏感波段中心和最佳波段组合,从而实现D‑fG的准确估算。最后,基于D-fG遥感参数和D-HI估算模型,准确获取冬小麦D-HI空间信息。Pika L 高光谱成像仪研究区域中国河北省衡水市深州县(37.71°~38.16°N,115.36°~ 115.80°E)。图1 研究区位置和UAV飞行样地分布。图2 本研究应用方法概述结果表1 D-fG和NDSI之间关系及其精度验证图3 基于敏感波段中心λ(724 nm,784 nm)的D-HI估算结果(2021年5月25日)。图4 基于敏感波段中心λ(724 nm,784 nm)的D-HI估算结果(2021年6月4日)。结论通过将静态fG参数转化为动态D-fG参数,提出了一种基于UAV高光谱数据的D-fG遥感参数获取冬小麦D-HI空间信息的方法并进行验证。最后,准确估算了冬小麦D-HI的空间信息。其中,选取5对敏感遥感波段中心以估算D-fG参数:λ(476 nm,508 nm),λ(444 nm,644 nm),λ(608 nm,788 nm),λ(724 nm,784 nm)和λ(816 nm,908 nm)。验证了基于遥感的D-fG估算值,RMSE为0.0436-0.0604,NRMSE为10.31%- 14.27%,MRE为8.28%-12.55%。同时,5对敏感高光谱波段中心的D-HI空间信息估算精度较高,RMSE为0.0429-0.0546,NRMSE为9.87%-12.57%,MRE为8.33%-10.90%。基于高光谱敏感波段中心λ(724 nm,784 nm)的D-HI估算结果精度最高,RMSE、NRMSE和MRE值分别为0.0429、9.87%和8.33%。本研究中D-fG和D-HI的估算结果具有较高的准确性,证明了所提出的基于UAV高光谱数据估算冬小麦D-HI空间信息的方法的可行性。这对未来利用卫星遥感进行大尺度作物D-HI估算具有一定的参考意义。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311697&idx=1&sn=4d80ee946dd13c8de0696546b9c40941&chksm=bee1a0ee899629f8f3cb273e4a62f4d8ee9c0401ce1a9fddd5448755c2ae8e66b0654c58b3fc&token=1416149618&lang=zh_CN#rd
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制