相位结构

仪器信息网相位结构专题为您整合相位结构相关的最新文章,在相位结构专题,您不仅可以免费浏览相位结构的资讯, 同时您还可以浏览相位结构的相关资料、解决方案,参与社区相位结构话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

相位结构相关的耗材

  • 涡旋相位板
    涡旋相位板是一种光学厚度与旋转方位角成正比的纯相位衍射光学元件,入射平面波通过涡旋相位板的出射光束具有涡旋相位波前。涡旋相位板作为一种新型的衍射光学元件,已在光信息处理,光学微操作,生物医学,形貌测量,天文观测等诸多领域得到实际应用。目前,对涡旋相位板的研究已经发展为现代光学的一个重要领域。
  • THz宽带相位变换器
    THz宽带相位变换器众所周知,宽带相位变换器的计算方法在一般情况下不适用于高分辨率的测量系统,我们的仪器充分考虑到了干涉效应。 l 带相位变换器中包括特殊的定向石英镜片。l 这些镜片组合在一起并固定在支架上,构成太赫兹宽带相位变换器,可等效为两个部件“retarder” 和“rotator”: retarder提供相移,rotator能够在偏振面内转动ω的角度。l 太赫兹宽带相位变换器依赖于ω值存在两种类型: 1)ω值不为零,它取决波长,我们称为:消色差偏振转换器。 2)ω值大约为零,在相应的波长范围内为常数,我们称为:消色差波片。 主要参数:类型THz Achromatic Polarization Converter太赫兹消色差偏振转换器THz Achromatic Wave Plate太赫兹消色差波片延迟L/4L/4操作波长范围60-300 um ,或用户指定60-95 um ,或用户指定椭圆率公差+/- 3%,或用户指定+/- 10 %,或用户指定通光孔径,25 mm (标准) ,或25mm (用户指定)支架传统光学底座或旋转器
  • 紫外-远红外相位延迟可调谐波片
    (Zhuan利申请中)ALPHALAS可调谐真零级相位延迟波片是一款新型的相位延迟波片,实现了光偏振测量的全新突破,现已上市。对于从150nm(真空紫外)到6000nm(远红外)的任意波长,UVIR型号可以调节到1 / 4或半波相位延迟,而FIR型波片可以调节到1µm到21µm。因此,新型的相位延迟波片取代了几十块普通的相位延迟波片,以覆盖这些超宽的光谱范围。 将两个光学接触的薄波片以相对于光轴适当的角度进行切割,形成一个真零级相位延迟波片,在设计上与萨瓦尔波片相似。所需的相位延迟可以通过将波片倾斜8-15°来实现。这种设计旨在避免光线反射回激光系统,这在许多情况下会导致复杂性。在染料激光器、光学参量发生器和飞秒激光器等宽带可调谐或宽带激光源的研究中,新款相位延迟波片是不可或缺的。 这款波片有独特的新功能,且价格非常有竞争力,通常低于普通波片的价格安全事项:本产品含有硒化镉 (CdSe)晶体。在一些国家,通过粉末或蒸气形式摄入和吸入超过一定程度的镉被认定为危险行为。详细信息和注意事项请参考当地的安全法规。本产品应避免接触皮肤,小心轻放,并储存在安全的地方。仅允许收到相关指示的人员进入。避免产品掉落或断裂。禁止与可能蒸发或烧蚀该材料的高功率激光器一起使用。 技术参数产品应用:偏振测量和控制、激光研究、光谱学、非线性光学、OPO、飞秒激光器 专用波片固定器的对准过程1. 使入射光束的偏振面平行于矩形板固定器的任一边缘,以这种方式对固定器进行定向。在图中,显示了一种可能的偏振方向E;另一种是旋转90度的偏振。 2.旋转螺钉,直到延迟板与固定器平面平行。然后对准整个装置,使板和支架垂直于入射光束。然后,光束将从波片准确地向后反射。3.旋转螺钉,直到达到要求的延迟。所需的延迟是通过围绕轴倾斜8°- 15°(取决于光谱区域)来实现的,这个轴在一个平面上与光的偏振成45°(见图)。当板置于两个平行偏振器之间时,实现了半波延迟的对准,并且通过倾斜板,透射光完全熄灭。为了将偏振面旋转任意角度,请使用带度数的拨号旋转按钮。当透射光达到最大强度的一半时,四分之一波片的对准是正确的,并且它在第二个偏振器任意旋转时保持恒定。延迟器设计允许产生左或右圆偏振。偏振态的改变(右/左)通过将板旋转90°来实现。对准过程非常简单,在获得经验后,可以很容易地调整所需的偏振态。这种新型设计的主要优点是延迟器相对于激光束是倾斜的,从而避免了背反射和标准具效应。这一特性特别适合于模型锁定激光器的应用。另外,我们提供倾斜角对波长具有依赖的调谐曲线。请注意,当该板不倾斜时,不像普通相位延迟板那样有任何确定的光轴。 波片型号波片描述PO-TWP-L4-12-UVIR可调谐真零阶四分之一波(λ/ 4)相位延迟波片,范围150 - 6000 nm,孔径Ø11mm,厚度2.0 mmPO-TWP-L4-25-UVIR可调谐真零级四分之一波(λ/ 4)相位延迟波片,范围150 - 6000 nm,孔径Ø24mm,厚度2.0 mmPO-TWP-L4-25-IR可调谐真零阶四分之一波(λ/ 4)相位延迟波片,范围500 - 6500 nm,孔径Ø24mm,厚度5.0 mmPO-TWP-L2-12-UVIR可调谐真零级半波(λ/ 2)相位延迟波片,范围150 - 6000 nm,孔径Ø11mm,厚度2.5 mm PO-TWP-L2-25-UVIR可调谐真零级半波(λ/ 2)相位延迟波片,范围150 - 6000 nm ,孔径Ø24mm,厚度2.5 mmPO-TWP-L2-12-IR可调谐真零级半波(λ/ 2)相位延迟波片,优化范围为2000 - 6500 nm,孔径Ø11mm,厚度2.5 mmPO-TWP-L2-25-IR可调谐真零级半波(λ/ 2)相位延迟波片,优化范围为500 - 6500 nm,孔径Ø24mm,厚度5 mmPO-TWP-L4-25-FIR可调谐真零阶四分之一波(λ/ 4)相位延迟波片,范围1 - 19μm,孔径Ø24mm,厚度5 mmPO-TWP-L2-25-FIR可调谐真零级半波(λ/ 2)相位延迟波片,范围1 - 19μm,孔径Ø24mm,厚度5 mm

相位结构相关的仪器

  • 明眸科技是国内以计算相位显微成像为核心技术的机器视觉公司,目前针对光学元件无色、透明、透光无法成像的问题,研发了集光学、控制、计算成像、图像处理等多学科为一体的大视场相位显微镜(图1),突破了透明样本中气泡、裂纹等缺陷无法成像的技术难题,填补光学显微成像领域在毫米级成像视场、亚微米级分辨率的定量相位显微成像领域的空白。公司掌握了光学设计、集成制造、算法软件等核心技术,实现了光学镜片、镜头表面缺陷检测、胶合透镜、手机玻璃背板和镜头模组的分层检测,解决了光学元件“透、厚、微”缺陷快速精密检测的难题。图1大视场相位显微镜完整设备图显微成像技术的发展达到了一定高度,其成像系统虽然能够达到亚微米级分辨率,但由于光学元件具有高透明、高透光的特征,使得划痕、麻点等缺陷成像对比度极低,缺陷成像难以定量。此外,分辨率越大,视场越小,导致检测扫描时间长,检测效率低。从成像技术角度讲,可归纳为存在相位信息无法定量成像、大视场与高分辨无法兼顾2个痛点。(1)相位信息丢失导致对无色透明样本成像无能为力。现有的大多数光电采集只能感应到光场强度或入射波长的改变,而无法直接响应其相位变化,导致物体的相位信息在数据采集过程中被丢失,无法进行清晰有效的高对比度成像。表现为对无色透明样本的定量相位成像困难,对于其中的气泡等缺陷无能为力。(2)大视场与高分辨无法调和导致检测效率低。当前的光学显微镜,受到物镜数值孔径比例法则的制约:使用低倍镜观察,视场大但分辨率较低;使用高倍镜观察,分辨率高但视场小。如不能解决大视场与高分辨兼顾问题,会导致检测效率极低。为解决上述问题,本产品基于昆虫复眼的仿生原理,使用 LED 光源阵列仿生昆虫复眼结构,通过点亮不同位置处的 LED,从不同照射角度对目标样本进行照明,采集一组不同角度含有不同频域信息的低分辨率强度图像。再使用计算成像中的相位恢复算法,在频域中对采集图像的频谱值进行融合,进而重构出兼顾大视场,高分辨率的相位图像。产品光路图如图2所示。得益于仿生计算光学成像算法,本产品有如下的优势:(1) 常见的缺陷如划痕、裂纹、突起等,会引入光程差从而导致成像模糊。本产品具备的定量相位图成像功能则规避了这一干扰,使得缺陷图像清晰呈现。(2) 本产品可以进行焦面选择,保证成像在具体某一层,从而降低其他面对成像面(缺陷检测面)的干扰。(3) 本产品在采用低倍物镜的条件下,保证大视场的同时还能兼顾高分辨成像,能加快透镜检测效率,为工厂提升效益。(4) 无色透明的气泡缺陷成像对比度低,难以区分,而本产品的仿生结构能实现定量相位成像,折射率不同的气泡将导致入射光的光程差,相位图能敏锐地捕捉这种差异,清晰检测气泡缺陷。产品在不同倍率物镜下所能达到的成像参数如表1所示,由于采用了计算成像算法及自适应照明LED阵列,系统合成孔径得到明显增大,在同等放大倍率的物镜下,成像分辨率得到大幅提升。以2倍镜为例,2倍镜的数值孔径NA为0.055,在蓝光(波长465nm)下,分辨率为5.157μm;在2/3″靶面大小的CCD下,视场大小为4.40mm。通过孔径融合计算成像算法,本系统有效照明孔径可达0.4,故能将成像数值孔径NA提高到0.455,在蓝光(波长465nm)下,分辨率为0.623μm,对应传统显微物镜50倍镜的效果(视场大小0.18mm),视场大小提高了24倍,视场面积提高了576倍,在保证微小缺陷检出分辨率的情况下大幅增大视场,提高检测效率。表1 系统在不同放大倍率物镜下的成像参数
    留言咨询
  • 仪器简介: 产品概述 PLUTO 纯相位调制器基于反射式LCoS微显示屏,分辨率:1920× 1080像素。结构紧凑,便于集成到光路中。有三种选择,分别是可见波段420nm~810nm、近红外波段800nm~1100nm和通讯波段1550nm。 特殊光学特征 纯相位调制 直到1550nm能实现2&pi 的相位调制 像素大小8&mu m 针对三个波段做了最优化处理 高效率/高填充率 显示应用、成像&投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等技术参数:主要参数 显示屏分辨率象素间距填充率寻址速率针频速率信号形式有效面积 15.36mm× 8.64mm 像素数 1920× 1080 调制器光学头类型 反射式 相位变化范围 2&pi 弧度@420-850nm 像素间距 8um 图像帧速率 60 Hz 工作光谱范围 可见光(420-850nm) 填充因子 87% 调制类型 纯相位调制 标准附件 高精度纯相位LCOS显示面板、数模转换驱动、电源、DVI数据线、RS232数据线、用户使用手册、驱动和应用软件、PCI卡,带2个DVI接口 应用领域 显示应用、成像&投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等。主要特点: 应用领域 显示应用、成像&投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等。 标准附件 高精度纯相位LCOS显示面板、数模转换驱动、电源、DVI数据线、RS232数据线、用户使用手册、驱动和应用软件、PCI卡,带2个DVI接口
    留言咨询
  • 仪器简介: 产品概述 PLUTO 纯相位调制器基于反射式LCoS微显示屏,分辨率:1920× 1080像素。结构紧凑,便于集成到光路中。有三种选择,分别是可见波段420nm~810nm、近红外波段800nm~1100nm和通讯波段1550nm。 特殊光学特征 纯相位调制 直到1550nm能实现2&pi 的相位调制 像素大小8&mu m 针对三个波段做了最优化处理 高效率/高填充率 显示应用、成像&投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等技术参数:主要参数 显示屏分辨率象素间距填充率寻址速率针频速率信号形式有效面积 15.36mm× 8.64mm 像素数 1920× 1080 调制器光学头类型 反射式 相位变化范围 2&pi 弧度@420-850nm 像素间距 8um 图像帧速率 60 Hz 工作光谱范围 可见光(420-850nm) 填充因子 87% 调制类型 纯相位调制 标准附件 高精度纯相位LCOS显示面板、数模转换驱动、电源、DVI数据线、RS232数据线、用户使用手册、驱动和应用软件、PCI卡,带2个DVI接口 应用领域 显示应用、成像&投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等。主要特点: 应用领域 显示应用、成像&投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等。 标准附件 高精度纯相位LCOS显示面板、数模转换驱动、电源、DVI数据线、RS232数据线、用户使用手册、驱动和应用软件、PCI卡,带2个DVI接口
    留言咨询

相位结构相关的方案

相位结构相关的论坛

  • 相位差显微镜

    相位差显微镜  相位差显微镜的结构: 相位差显微镜,是应用相位差法的显微镜。因此,比通常的显微镜要增加下列附件:   (1) 装有相位板(相位环形板)的物镜,相位差物镜。   (2) 附有相位环(环形缝板)的聚光镜,相位差聚光镜。   (3) 单色滤光镜-(绿)。   各种元件的性能说明   (1) 相位板使直接光的相位移动 90°,并且吸收减弱光的强度,在物镜后焦平面的适当位置装置相位板,相位板必须确保亮度,为使衍射光的影响少一些,相位板做成环形状。   (2) 相位环(环状光圈)是根据每种物镜的倍率,而有大小不同,可用转盘器更换。   (3) 单色滤光镜系用中心波长546nm(毫微米)的绿色滤光镜。通常是用单色滤光镜入观察。相位板用特定的波长,移动90°看直接光的相位。当需要特定波长时,必须选择适当的滤光镜,滤光镜插入后对比度就提高。此外,相位环形缝的中心,必须调整到正确方位后方能操作,对中望远镜就是起这个作用部件。

  • 【求助】手动调节相位

    我想请问个问题,就是做核磁的时候基线总是不平,自动调节相位后还是这样,不知道手动调节可以解决这个问题吗?具体操作如何?还有相位不好是因为什么引起的,是因为匀场和锁场不好的缘故吗?谢谢!

  • 如何理解相位差

    这两天有人问关于相位差的问题,我想了想,也就只有这么几句话:电子束具有波粒二象性,波的性质造成了相位的产生,粒的性质造成了弹性和非弹性的散射,当电子束经过两个不同的晶面时,产生的光程差,而这个光程差进而造成了相位差越想觉得对于这个相位理解越模糊,看来是基础知识学得不扎实造成的后果,不知道大家是怎么理解的,还请指教

相位结构相关的资料

相位结构相关的资讯

  • 纯相位空间光调制器在PSF工程中的应用
    纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成像方式包括:螺旋相位成像、暗场成像、相位对比成像、微分干涉对比成像和扩展景深成像。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其高分辨率、高刷新率、高填充因子的特点适用于PSF工程应用中。图1. Meadowlark 2022年蕞新推出 1024 x 1024 1K刷新率SLM二、空间光调制器在PSF工程中的技术介绍在单分子定位显微镜(SMLM)中,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Meadowlark空间光调制器实现了高精度的波前控制。原理证明和实验显示,在1微米的轴向范围内,在x、y和λ的精度低于10纳米,在z的精度低于20纳米。对这篇文献感兴趣的话可以联系我们查阅文献原文《High precision wavefront control in point spread function engineering for single emitter localization 》下面我们来具体看看是如何应用的,以及应用效果如何。图2. A)SLM校准分支和通过光路的偏振传输示意图。额外的线性偏振滤波器没有被画出来,因为它们与偏振分光器对齐。B)相机上的强度响应作为λ/2-板不同方向α的SLM的相位延迟的函数。C) 光学装置的示意图。一个带有SLM的中继系统被添加到显微镜的发射路径中(红色),一个单独的SLM校准路径(绿色)被纳入发射中继系统中。这允许在实验之间进行SLM校准。BE:扩束器,DM:分色镜,L:镜头,LPF:线性偏振滤镜,M:镜子。OL:物镜,PBS:偏振分光镜,TL:管镜。光路如上图2所示,包括一台尼康Ti-E显微镜,带有TIRF APO物镜(NA = 1.49,M = 100),一个200毫米的管状镜头,一个带有SLM的中继系统被建立在显微镜的一个出口端口。中继系统包括两个消色差透镜,一个向列型液晶空间光调制器(LCOS)SLM(Meadowlark,XY系列,512x512像素,像素大小=15微米,设计波长=532纳米)和一个偏振分光器,用于过滤未被SLM调制的X偏振光。di一个消色差透镜在SLM上转发光束。第二个中继镜头确保在EMCCD上对荧光物体进行奈奎斯特采样。显微镜配备了一套波长为405nm、488nm、561nm和642nm的合束激光器。 这个配置增加了一个用于校准SLM的第二个光路。这个空降光调制器校准光路是为测量入射到SLM上的X和Y偏振光之间的延迟差而设计的,为了测量某个SLM像素的调制,需要将SLM映射到校准路径的相机上。这种映射是通过在SLM上施加一个电压增加的棋盘图案来获得的。平均捕获的图像和没有施加电压时的图像之间的差异被用作角落检测算法(来自Matlab - Mathworks的findcheckerboard)的输入,以找到角落点。对这些点进行仿生变换,并用于找到对应于每个SLM像素的CMOS像素。图3. SLM校准程序。A) 单个SLM像素的测量强度响应作为应用电压的函数。每一个极值都对应于等于π的整数倍的相位变化,并拟合一个二阶多项式以提高寻找极值的精度。强度被分割成四个部分,它们被缩放为[0 1]。这个归一化的强度(B)被转换为相位(C),并反转以创建该特定电压段和像素的LUT(D)。E)20个随机选择的SLM像素的归一化强度响应,显示像素间的变化。F) 测量的波前均方根误差是校准后立即使用校准LUT的相位的函数,45分钟后,以及制造商提供的LUT。G) 在不同的恒定相位下,用于成像光路的SLM部分的LUTs。暗点表示没有3个蕞大值的像素。H) 测量的平均相位和预定相位之间的差异作为预定相位的函数。 图3解释了SLM像素的校准程序。首先,以256步测量作为应用电压函数的强度响应,产生一连串的蕞小值和蕞大值,它们对应于π或2π的迟滞。在被照亮的SLM平面内的所有像素似乎有三个蕞大值,这意味着总的相位调制为4π或1094纳米。这些极值出现的电压是通过对极值附近的三个点进行拟合抛物线来找到的,这增加了精度,并充分利用了SLM的16位控制。然后,强度被分为四段,用公式(11)的逆值对这些段进行缩放并转换为相位。相位响应被用来为每个SLM像素构建一个单独的查找表(LUT),以补偿SLM的非均匀性。LUT参数在SLM上平滑变化,并与肉眼可见的法布里-珀罗条纹大致对应,表明相位响应的差异是由于液晶层厚度的变化造成的。额外的像素与像素之间的变化可能来自底层硅开关电路的像素与像素之间的变化。完整的校准需要大约5分钟(在四核3.3GHz i7处理器上的3分钟扫描和2分钟计算时间),但原则上可以优化到运行更快。实验结果:图4 测量的PSF与矢量PSF模型拟合之间的PSF比较。G-I)平均测量的PSF是由大约108个光子携带的信号通过上采样(3×)和覆盖所有获得的斑点编制而成。比例尺表示1μm。 图4显示PSF模型的预测结果。通过这种方式,实验的PSF是由∼108个光子的累积信号建立起来的。实验和理论上的矢量PSF之间的一致性通常是非常好的,甚至在蕞大的离焦值的边缘结构也是非常匹配的。剩下的差异,主要是光斑的轻微变宽,是由于入射到相机上的光的非零光谱宽度,由于发射光谱的宽度和四带分色器的带通区域的宽度。边缘结构中也有一个小的不对称性,这可能是由光学系统中残留的高阶球差造成的。 所有工程PSF的一个共同特点是,与简单的二维聚焦斑点相比,它们的复杂性必须在PSF模型中得到体现,该模型被用于估计三维位置(可能还有发射颜色或分子方向)的参数拟合算法。简化的PSF模型,如高斯模型、基于标量衍射的Airy模型、Gibson-Lanni模型,或基于Hermite函数的有效模型都不能满足这一要求。一个解决方案是使用实验参考PSF,或用花样拟合这样的PSF作为模型PSF,或者使用一个或多个查找表(LUTs)来估计Z-位置。矢量PSF模型也可以用于复杂的3D和3D+λ工程PSF。众所周知,矢量PSF模型是高NA荧光成像系统中图像形成的物理正确模型。复杂的工程PSF的另一个共同特点是对扰乱设计的PSF形状的像差的敏感性,并以这种方式对精度和准确性产生负面影响。为了实现精确到Cramér-Rao下限(CRLB),即无偏估计器的蕞佳精度,光学系统的像差水平应该被控制在衍射极限(0.072λ均方根波前像差),这个条件在实践中往往无法满足。因此,需要使用可变形镜或为产生工程PSF而存在的SLM对像差进行校正。自适应光学元件的控制参数可以使用基于图像的指标或通过测量待校正的像差来设置。后者可以通过基于引入相位多样性的相位检索算法来完成,通常采用通焦珠扫描的形式。这已经在高数值孔径显微镜系统、定位显微镜中实现,并用于提高STED激光聚焦的质量。三、PSF应用对液晶空间光调制器的要求1.光利用率 对于这个应用来说,SLM将光学损失降到蕞低是很重要的。PSF工程使用SLM来操纵显微镜发射路径上的波前。在不增加损失的情况下,荧光成像中缺乏信号。使用具有高填充系数的SLM可以蕞大限度地减少衍射的损失。 Meadowlark公司能提供标速版95.6%的空间光调制器,分辨率达1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。镀介电膜版本的SLM反射率可以做到100%,一级衍射效率可以做到98%。高分辨率能在满足创建复杂相位函数的同时,能够提升系统的光利用率。2.刷新率(蕞高可达1K Hz)高速度可以实现实时的深层组织超分辨率成像。可见光波段蕞高可达1K Hz刷新速度(@532nm)。3.分辨率(1920x1200) 高分辨率的SLM是创建三维定位所需的复杂相位函数的理想选择,如此能够对每个小像元区域的光场进行自由调控。上海昊量光电作为Medowlark在中国大陆地区总代理商,为您提供专业的选型以及技术服务。对于Meadowlark SLM有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 新疆理化所创制全波段相位匹配晶体
    短波紫外全固态相干光源具有光子能量强、可实用化与精密化、光谱分辨率高等特点,在激光精密加工、信息通讯、前沿科学和航空航天领域颇具应用价值。获得全固态短波紫外激光的核心部件是非线性光学晶体。在非线性光学过程中,若使基频光的能量源源不断地转换到倍频光,需要保持基频光激发的二次极化谐波和倍频光在晶体中位置时刻相同,但由于晶体的本征色散导致基频光和倍频光的折射率不同,进而导致两束光在晶体中群速度不同,无法实现倍频光的持续增长,此为相位失配。因此,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,如晶体各向异性的双折射相位匹配技术、晶体内部自发畴结构的随机准相位匹配技术和人工微结构准相位匹配技术等。其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该技术利用各向异性晶体的双折射特性,使一定偏振的基频光沿晶体的特定方向入射,或者改变晶体的温度,实现角度或者温度相位匹配,即使基频光和倍频光在晶体中特定方向传播时的折射率相同。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相片匹配波长的差值表征(λcutoff-λPM)。中国科学院新疆理化技术研究所晶体材料研究中心致力于新型紫外、深紫外非线性光学晶体的设计与合成。该团队前期基于领域前沿进展的研究和对非线性光学晶体双折射相位匹配现状的剖析,在特邀综述中首次提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?若该假设在晶体中得以实现,将为晶体在整个透过范围内均实现双折射相位匹配提供新途径和新思路。近期,该团队创制一类新非线性光学晶体即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,从折射率的微观表达及双折射色散曲线、折射率色散曲线和相位匹配等光学条件等角度出发,给出两种独立的全波段相位匹配晶体的评价参数,并将此评价参数应用于一些经典的非线性光学晶体材料,讨论以此参数评估晶体相位匹配波长损失的可行性和普适性。基于此,研究获得一例非线性光学晶体(GFB)。实验通过多级变频的方案或光参量技术方案,研究晶体在整个透过范围内的直接倍频输出能力,并基于相位匹配器件已经实现193.2-266 nm紫外/深紫外可调谐激光输出,验证其该晶体全波段相位匹配能力,使该晶体成为目前首例且唯一一例实现了全波段双折射相位匹配的紫外/深紫外倍频晶体材料。该材料193.2 nm处晶体透过率deff = 1.42 pm/V)、短相位匹配波长(~194 nm)和高抗激光损伤阈值(BBO@ 266/532 nm, 8 ns, 10 Hz)等,是颇具应用前景的266 nm激光用非线性光学晶体材料。相关研究成果以全文形式发表在《自然光子学》(Nature Photonics)上。研究工作得到科技部,国家自然科学基金委员会和中国科学院等的支持。GFB晶体结构、微观性能分析及晶体照片
  • 上海高研院在相位显微成像方面获进展
    近日,中国科学院上海高等研究院王中阳团队提出基于相位恢复算法的单次曝光定量相位显微技术。相关研究成果以Phase microscopy using band-limited image and its Fourier transform constraints为题,发表在Optics Letters上。相位恢复技术作为非干涉的定量相位重构技术,为透明细胞结构和三维表面形貌等提供了无标记、无接触、无损伤的重要测量手段。然而,以迭代投影算法为核心的相位恢复技术,其有效性依赖于解的唯一性和算法的收敛性。在现有同类技术中,X射线相干衍射成像技术(CDI)需要成像物体的先验信息(如准确的成像物体尺寸)来施加“紧”约束条件使算法收敛到正确的相位信息。进一步发展的叠层成像技术和傅里叶叠层显微技术通过物面或傅里叶面的多帧冗余测量来提高算法的收敛性。然而,在实际的生物成像中,准确的物体尺寸通常难以获得,且多帧冗余测量降低了成像的时间分辨率。上述问题限制了它在无标记生物动态成像中的应用。基于此,王中阳团队提出了新型的单次曝光定量相位显微技术,称为BIFT(Bandlimited Image and its Fourier Transform)显微镜。科研人员在传统光学显微镜上引入分束器和傅里叶透镜,同时采集显微物体的像以及透镜变换后的傅里叶像。BIFT显微装置如图a所示。研究通过利用显微系统中固有的视场、频谱受限以及有限照明等作为约束条件,从而避免了成像物体的先验约束,去除了CDI技术中常见的三类模糊解(即无法区分原始物体的平移、共轭旋转以及全局相移),提升了解的唯一性和算法的收敛性。同时,该技术的空间带宽积(SBP,衡量显微系统成像信息容量的不变量)仅受显微物镜参数限制,打破了CDI技术成像系统SBP依赖于采样率,会因其过采样需求而SBP降低至少一半的限制。由于采集了像的幅度信息,该技术的采样率相比CDI技术降低了一半,同时改进的算法提升了算法收敛速度和相位重构精度。此外,该工作还讨论了采样率、像素响应、噪声等因素对相位恢复的影响。实验演示了光栅和血红细胞的单次曝光相位成像。在血红细胞的定量相位恢复的实验研究中显示,该技术单次曝光的条件下即达到了数字全息显微中10帧图像才能达到的效果。重构的红细胞光学高度如图b所示。因此,该技术单次曝光相位成像的能力有望在无标记生物动态成像中得到广泛应用。研究工作得到上海市科学技术委员会的支持。相关技术已得到国内专利授权,并申请国际PCT专利。显微系统装置示意图与血红细胞重构结果文章链接:https://doi.org/10.1364/OL.487626
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制