水吸附研究

仪器信息网水吸附研究专题为您整合水吸附研究相关的最新文章,在水吸附研究专题,您不仅可以免费浏览水吸附研究的资讯, 同时您还可以浏览水吸附研究的相关资料、解决方案,参与社区水吸附研究话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

水吸附研究相关的耗材

  • HiSorb吸附采样棒
    HiSorb™ 快速分析液体和固体中的挥发性有机物HiSorb™ 是具有创新性的采样系统,操作简便,可通过 TD-GC-MS 分析饮料和食品中的挥发性及半挥发性有机物(VOCs 和 SVOCs)。HiSorb 扩展了热脱附(热解析)的应用范围,其探头和附件非常适用于多种应用中痕量化合物识别,香气分析,质量控制和学术研究。HiSorb 适用范围HiSorb 可为使用热脱附的食品分析师扩大从液体中提取物质的能力。同时,可为顶空用户,SPME 或液体萃取用户所用,以加增样品识别能力。产品特点省时省力,降低成本 – PDMS(有机硅)探针性能可靠、可重复使用,能用于无人值守的样品制备,同时最大限度地减少每个样品的成本。样品制备更简便 – HiSorb 比溶剂萃取更方便快捷,还消除了溶剂消耗和废品处置的成本。提高化合物灵敏度 – 由于 PDMS 吸附剂的容量更大,HiSorb 的检测限比 SPME 更低,同时在 GC-MS 自动分析之前,产品可通过热脱附的电子制冷的预浓缩来提高灵敏度。运行样品多样 – HiSorb 可用于液体和固体样品的浸入式或顶空采样。易于集成 – HiSorb 与所有主流的、使用行业标准吸附管的 TD-GC-MS 分析兼容。主要应用饮料 – 包括茶,咖啡,果汁,葡萄酒,烈酒和牛奶的气味分析。水 – 包括检测饮用水中的臭味和水道污染物。食品 – 包括乳制品,水果、蔬菜,干货等。更多信息请参考:https://markes.com.cn/玛珂思仪器(上海)有限公司上海市徐汇区桂箐路7号1号楼联系电话:+86 21 5465 1216
  • 汞分析仪MI 吸附棒
    操作原理和特性 使用Sorb-Star的PBSE(聚合物棒吸附萃取)基于从不同样品基质中吸附半挥发性有机化合物 专为痕量分析开发 允许各种采样技术 物质类别:杀虫剂、多环芳烃、烷烃(C10至C24)、有机污染物、药物... 对具有高对数KOW值、高吸附体积的物质具有非常好的吸附/回收性能 Sorb-Star由非极性和高纯度聚合物固体材料组成 (L= 20毫米,D= 2毫米)具有非常高的吸附能力。吸附适用于非极性物质的任何样品基质。应用领域水的分析、味道和气味(饮用水、地表水、污水....) 饮料行业(软饮料和酒精饮料) 食品工业 风味和parfume分析(顶空富集)包装工业,纸板,... 药物筛选 辩论术
  • 大孔吸附树脂、三菱大孔吸附树脂介绍
    大孔吸附树脂、三菱大孔吸附树脂介绍 大孔吸附树脂介绍:主要包括大孔吸附螯合树脂、大孔吸附树脂HP20、大孔吸附树脂HP20SS、大孔吸附DIAION树脂。 其中 DIAION 和 SEPABEADS 品牌大孔吸附树脂享誉全球。它以吸附量高,颗粒均匀,机械强度好,不易破碎,残留物少,预处理方便而闻名世界,主要包括 HP , SP 系列(以聚苯乙烯-二乙烯基苯为基体)和 HP2MG 系列(以甲基丙烯酸酯为基体)。 1、芳香族系:DIAION HP20,HP21 因为具有比较大的孔径,适于大分子的吸附。解吸性良好,吸附物的溶离较容易,所以适用范围很广泛,可应用于各种工业领域。 2、芳香族系:SEPABEADS SP825L,SP850,SP700 与HP20相比,大幅度提高了比表面积,并且孔径的大小比HP20更小且均一,因此能把较小的分子大量吸附,吸附物的解析也容易。 3、芳香族系:SEPABEADS SP70 符合美国FDA标准(CFR§ 173.65)的芳香族系大孔吸附树脂,具有中等的细孔径。 4、芳香族系衍生型:SEPABEADS SP207 SP207是在芳香族系的骨架上结合了溴,从而强化了疏水吸附力。另外,其比重是其他大孔吸附树脂的1.2倍,所以适于由下向上流动的反向处理。 5、甲基丙烯系:DIAION HP2MGL 与芳香族系不同,HP2MGL采用聚甲基丙烯酸酯为原料,中等极性,可吸附极性较高的物质。 大孔吸附树脂的应用: 大孔吸附树脂的预处理 三菱化学的大孔树脂在试验中使用时间较长,必须保证不受霉菌污染。新购树脂一般用氯化钠及硫酸钠处理过,但树脂内部存在未聚合的单体残存的致孔剂、引发剂、分散剂等,使用前必须除掉。 预处理程序简述如下: (1) 采用0.5BV的乙醇浸泡树脂24h;(1BV为1个树脂床体积) (2) 采用2BV的乙醇以2BV/h流速通过树脂柱,并浸泡树脂4-5 h; (3) 用乙醇2BV/h 的流速洗涤树脂至流出液的加水不呈白色混浊为止。再用水以同样流速洗净; (4) 采用2BV的5%HCL溶液以4-6 BV/h 的流速通过树脂层,并浸泡树脂2-4h 。而后用水以同样流速洗涤树脂,至出水pH为中性; (5) 采用2BV的2%NaOH 溶液以4-6 BV/h 的流速通过树脂层并浸泡树脂2-4h。而后用水以同样流速洗涤树脂,至出水pH为中性。 (6) 在洁净的分离柱内,放入已去除外来杂质,体积恒定的。 DIAION 树脂 基填料 三菱化学填料面世已有40多年历史,其中Diaion和Sepabeads品牌大孔吸附树脂享誉全球,它以吸附量高、颗粒均匀、机械强度好、不易破碎、残留物少、预处理方便而闻名世界,主要包括HP、SP系列(以聚苯乙烯基苯为基体)和HP2MG系列(以甲基丙烯酸酯为基体)。 如果您还有什么疑问对大孔吸附树脂、三菱大孔吸附树脂,请登录北京绿百草科技发展有限公司的官方网站进行咨询。

水吸附研究相关的仪器

  • VSTARTM全自动蒸汽吸附分析仪概览 VSTARTM全自动蒸汽吸附分析仪是安东帕康塔精密吸附分析仪产品线中的一颗新星!超越水吸附应用,VSTARTM可以使用多种有机蒸汽,在很宽的温度范围内提供全自动蒸汽吸附分析。从汽源到样品的大范围歧管温度精细控制,排除了被吸附物质局部冷凝的可能性,最大限度地保证了最准确的分析进程.独有特点1、 真空体积法原理:典型分析时间仅为重量法的1/2。2、 广泛的蒸汽通用性:被吸附物质可以是极性或非极性有机物(饱和的,不饱和的和芳香族)、醇、胺、水等等。3、 温度均一:歧管和蒸汽源舱室为单一的恒温控制。4、 宽范围的温度:歧管和蒸汽源温度可从 40°C 到 110°C.范围选择。5、 灵活的模块式通量组合:你可以选择 1 个分析站,对高通量需求的实验室也可以最多选择 4 站独立分析。6、 独立的样品温度:每个样品站可保持不同的温度(需要多个循环浴恒温器)或在同一温度下运行(共用一个循环浴恒温器)。7、具有高灵敏度的宽温度范围:从–20°C 到 100° C 为标准循环温度控制,稳定性±0.01°C;可选扩展温度范围:–40°C 到 100°C,和/或,温度稳定性±0.005°C。8、 热梯度小:样品管夹套体积小,因此热梯度较小,即使四个站共用一个循 环浴恒温器时也是这样。9、 死体积小,同时平衡:每个样品分析站都有独立压力传感器以减少死体积, 并且所有分析站可以同时达成吸附平衡。10、 高真空操作:若选配涡轮分子泵,为增加高真空测量精度,可选配 1torr 或 10torr 压力传感器以进行低压测量。11、 节省空间的设计:外观设计简洁,节约宝贵的实验台空间。12、 真空泵保护:在仪器右侧集成的保护冷阱可防止蒸汽进入真空泵,降低抽空效率。13、 敏感样品的保护:提供隔离阀。当样 品从脱气站转移到分析站时,它可以保护敏 感的或吸水的样品。14、 灵活的软件接口: 基于 Windows平台的强大软件提供了一个灵活的以太网接 口,用于实验设置,控制仪器功能,并显示 数据。包括用于数据处理和显示的经典的和 现代的模型。15、 易于安装:该系统提供完整的配置和 运行准备,包括真空泵、循环浴恒温器、连 接管路、样品管等等所有附件。应用 材料对于水蒸汽吸附的研究可对材料科学、药物以及食品加工等领域提供非常有价值的信息。VSTARTM能够为各种 材料提供一种快速、准确并且可靠的获取水吸附等温线的方法。但不仅限于此,VSTARTM也可以测量多种有机物蒸 汽的吸附等温线,可使研究者洞察材料对有机物蒸汽的耐受性、作为存储或吸收有机物蒸汽吸附剂的活力、以及材 料化学性质的信息。 材料科学使用VSTARTM 蒸汽吸附分析仪能够快速并准确地确定材料的疏水性和对其他蒸汽的亲和性。 重量分析方法是目前比较流行的方法,但因为重量法需要载气,所以被吸附物质的扩散受到 了载气存在的限制,需要至少几天甚至是几周才能得到结果。与重量法不同,VSTAR™ 能够 在很短的时间内完成平衡过程,获取结果只需几小时。再加上同时分析四个样品的能力,这不仅为材料科学家提供 了无与伦比的分析通量,也为在同一条件下比较材料与参考样品之间的差别提供了分析环境和手段。食品开发加工食品的优化配方意味着一个成功产品和一个不成功产品的差异:成功的产品口味好,上架周 期长;不成功的产品则会有异味,很快变质。出厂产品和原材料的蒸汽吸附测量可以在各种配方 的有效性方面提供宝贵的见解。药物活性药物原料和赋形剂在各种相对湿度条件下的评估是用重量分析方法模拟实际存储和使用条 件进行的常规测量。采用真空-体积分析方法的VSTARTM能够在非常短的时间内得到同样的结果。建筑材料建筑材料的发展已经远远超出了在不同的粘土或水泥配方中的简单试验和误差。现代的建筑 材料,无论是砌体还是复合材料,都是为特定的优化而开发和应用的。VSTARTM可以提供用于评估的耐水性和耐溶剂和其他有机材料的各种配方的信息。VSTARTM可以为极性和非极性有机 材料如涂料和密封剂等的疏水性及对建筑材料表面化学的影响提供评估各种配方的信息。
    留言咨询
  • 鑫佰利公司采用纯物理吸附法去除COD类物质的分离技术,是通过多种具有吸附能力的物质如特种树脂、活性炭等的组合使用,吸附脱除高浓度废水的COD,尤其是含有生物毒性的化学类物质,如氯仿,苯酚,甲苯,硝基苯等。从而实现高浓废水的物理法处理或作为生化工艺的预处理。所使用的吸附剂可通过再生恢复后重复使用。该技术成功应用于有机合成化工行业废水处理、焦化废水处理,以及煤化工行业RO浓水处理。使用该技术:● 可将工业生产过程产生的高盐高浓废水的COD和盐进行分离,实现COD物质和盐类物质分别处理● 可用于膜法中水回用的浓水处理● 可对含有生物毒性的化学物质废水进行生化前的降毒预处理● 可将生化后COD仍然不能达标的出水进行深度处理使其达标排放● 可将抗生素发酵工业中抗生素结晶母液中的产品回收,从而提高了平均总收率,同时,回收的产品具有纯度高的特点
    留言咨询
  • ASAP 2020 PLUS 系列快速比表面与孔隙度分析仪设计精密、操作直观、研究级分析结果ASAP 2020 PLUS HD88系列功能强大,应用广泛,能够提供高质量的比表面、孔隙度和化学吸附等温线数据以满足材料分析实验室不断增加的分析需求。随着ASAP系列产品全球使用量的增长,ASAP系列产品已成为世界各国研究人员获取高精度、高质量气体吸附数据的首选仪器,是在物理吸附研究领域发表论文中被引用最多的仪器。应用笔记、文献和参考书目 ASTM测试方法产品应用• 仪器与配件报价 • 联系我们 • 收费测样 • 产品培训通过多种可选配置以获取更高级的功能 ASAP 2020 Plus交互式手册提供多种选配件以便于日后根据用户分析需求的变化升级仪器,最大限度地利用仪器和用户投资。可选择蒸汽吸附、微孔测试。 可添加低温循环浴、外部检测器或抗化学腐蚀系统。当仪器可在腐蚀性蒸汽下工作时,这台ASAP 2020 PLUS 系列几乎可以满足实验室任何表面表征的需求。独特的、创新的等温夹套冷却区域控制等温夹套保证了仪器的使用寿命,确保样品管和 (P0) 管上下温度保持一致。多功能设计两套独立的真空系统:可以同时进行两个样品的制备和一个样品的分析,实现劳动生产率的最大化和最大程度地节省时间。连续的饱和压力 (P0) 检测盒独特的等温夹具冷却区域控制给饱和压力与吸附测量提供了稳定的温度环境。使用户更专注于检测结果,无需耗费时间在控温上。ASAP 2020 PLUS 系列具有多种选配件,可满足用户特定的分析需求。研究级仪器,用户可自行配置以满足对介孔、微孔和低比表面积等各种材料分析的不同应用ASAP 2020 PLUS 系列-物理吸附可编程全自动SOP样品制备双站脱气系统独立的P0传感器能够在与吸附测试相同的条件下更快速地分析和提供P0值包含六个进气口、单独的蒸汽站和自由空间氦气进气口,提供了更大的灵活性和对预处理、回填和分析气体的全自动选择成熟的等温夹套冷却区域控制提供精确的、可重复的温度控制长效和可复填充的杜瓦瓶使分析时间几乎无限制标准的两套独立真空系统(一个用于分析,另一个用于样品制备),同时提供无油真空泵选件独立的传感器设计,提供无与伦比的稳定性、超快的响应速度、超低的滞后现象,从而提高了精度,改善了信噪比带涂层和温控的不锈钢歧管提供无污染的惰性表面ASAP 2020 PLUS 系列的MicroActive软件美国麦克仪器创新的交互式数据软件MicroActive使用户能够以交互方式评估等温线数据。利用交互式、可移动的计算条,可快速地选择/排除实验数据,你和所需范围的实验数据点。还可实时查看在每个模型的线性和对数刻度等温线。物理吸附报告等温线BET 比表面积Langmuir 比表面积t-Plot曲线Alpha-S 方法BJH 吸附和脱附Dollimore-Heal 吸附和脱附Temkin 和 Freundlich方程Horvath-Kawazoe理论MP方法DFT 孔径和表面能 Dubinin-Radushkevich理论Dubinin-Astakhov理论用户自定义报告能够快速进行计算和调节,可通过选择条简单快速地选择数据范围数据处理特点交互式软件,可直接获取吸附数据,通过简单地移动计算条,可立即更新文本属性。一键即可访问重要参数。交互式数据操作模式,尽量减少使用对话框和到达指定参数的路径更强的数据叠加对比能力,最多可叠加25个文件,包含与压汞仪数据和其他同类产品数据地添加和删除。可通过图形界面直接在BET、t-plot、Langmuir、DFT等模型中选择数据范围。MicroActive包含NLDFT模型计算孔径分布报告选项编辑器使用户能够自定义报告,并可在屏幕上预览。每一份报告都有总结、表格和图像等信息ASAP 2020 PLUS HD88系列的MicroActive软件包含Python编程语言,这种强大的脚本语言允许用户在仪器的应用中扩展标准报告库 Gifford-McMahon制冷循环单级低温循环浴。它利用从氦气压缩机出来的氦气提供各种分析温度,稳定性可达0.1%K。伙伴关系和支持网络只需拨打一个电话即可得到专业的应用支持。每一位麦克仪器用户都可以得到经验丰富的专家支持响应快速的全球服务和技术支持,使用户使用更安全和安心,确保您的样品和产品开发途径不断进步在权威期刊发表的文章被广泛引用,ASAP 2020将带你进入一个庞大并不断增长的用户群配置参数:压力范围:0到950mmHg分辨率:高达1x10-7 torr(0.1 mmHg传感器)精度:0.15% 读数范围脱气系统:环境温度到450 °C, 1 °C 温度步长系统配置:1个分析站,2个脱气站低温系统:3L, 72 h杜瓦瓶,可复填加制冷剂,无分析时间限制等温夹套技术:连续P0监测
    留言咨询

水吸附研究相关的试剂

水吸附研究相关的方案

水吸附研究相关的论坛

  • 美国研究发现香菜可吸附重金属

    食品伙伴网讯 据台视新闻网消息,据美国时代杂志报导,一项研究显示,香菜能够去除水中的汞、铅等重金属,有效净化水质。 一直以来,香菜在餐饮上用来提味,然而美国最新研究发现,香菜竟然还能够吸附水中重金属。 研究人员把两三株香菜,放入重金属过锰化钾水溶液,两分钟后,原本紫色的水溶液竟然变成绿色的水。有医学案例发现,有人连续吃一个月的香菜后,体内血液的汞浓度,从30微克降到12微克。医师解释,因为香菜能结合重金属螯合物,让它顺利吸附水中有毒物质,但香菜吃多了是否会有副作用,目前还不能确定,建议民众吃食物,适量加入香菜,有助排毒。 来源:食品伙伴网

  • 【资料】脱硫用煤基吸附剂的试验研究

    摘要 进行了以煤为原料制备脱硫用吸附剂的实验研究.其中应用炭化与活化的方法,以对SO2吸附能力为衡量标准,系统地考察了样品在制备过程中不同温度、不同温升速率及时间对SO2吸附分离能力的影响,力求找出相应的最佳处理过程,并对机理进行探讨.实验表明以对SO2吸附能力为标准所得的结果同其它方法相比,除炭化过程中部分结论外,总体相似.即炭化温度在400—600℃之间,炭化时间为2.8h左右,温升速率较低的条件下无氧炭化后所得的样品,再经过870℃环境下在CO2中活化3.0h,可得内孔发达、对SO2吸附能力很强的吸附剂.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=103013]脱硫用煤基吸附剂的试验研究[/url]

  • 【分享】重量分析技术在吸附研究中的应用

    英国Hiden公司设计的智能重量法吸附分析仪IGA是目前重量分析仪中功能最全的商业化仪器。在全世界的吸附研究领域有着广泛的用户。他们利用IGA对自己的研究实验进行分析表征,取得了辉煌成绩。在Nature和Science上均有多偏文章发表.ps :重量分析技术是新东西吗?什么时候出来的,期待回答!!

水吸附研究相关的资料

水吸附研究相关的资讯

  • 兵马俑在守护谁?试问水吸附分析仪
    世人称之为“世界第八大奇迹”的秦始皇兵马俑是为“千古一帝”秦始皇陪葬,这本已是众所周知。可是,随着最近《芈月传》的播出,许多民间研究者又提出异议,认为兵马俑是为秦宣太后陪葬的。最近央视一个节目中,建筑学学者陈景元先生就认为兵马俑陪葬的不是秦始皇,而是秦始皇的祖母秦宣太后(芈月)。在电视节目中,陈景元提出了一个又一个论据,被誉为“秦俑之父”的袁仲一先生则进行了针锋相对的批驳,双方你来我往,唇枪舌战,似乎说得都有道理。那么,真相到底如何? 文史圈儿的事儿,按说科技圈儿不好多嘴,毕竟隔行如隔山。只是,正因为隔行如隔山,可能两位学者对于接下来要提到的这款设备,或许也不是那么了解,虽然,它可能对于评判甚至解决这个争议,的确能扮演非常重要的角色。事实上,在2009年,英国曼彻斯特大学和爱丁堡大学的研究者就已经利用这款仪器,开发出了一项新技术,用于对上千年的古代陶瓷和砖瓦进行年代确定——它就是美国康塔仪器公司的全自动双站水吸附分析仪Aquadyne DVS。当然,我们并不是说国外的招儿在国内也一定有用,但他山之石或许可以攻玉,聊作参考也未为不可。 目前,英国这项基于美国康塔仪器公司水吸附分析仪开发的技术已经成为与碳14断代方法的并行方法,这款水吸附分析仪可以通过精确控制温度和湿度的条件,能将样品质量测量至0.1微克。这项技术不仅使对考古学断代和高度仿真的赝品测年成为可能,也可以通过研究已知年代的标本,为调查气候变化提供帮助。这项研究报告- ' Dating fired-clay ceramics using long-term power law rehydration kinetics' - 已经发表在英国皇家协会会刊(Proceedings of the Royal Society A) 这项断代技术的关键是基于以下事实:烧制粘土类终生都自始至终地从大气环境中吸附水汽,其吸附速率与周边平均温度和粘土性质有关。已经确认,少量样品(通常3-5g)被加热到105°C后,其毛细管中的水即被去除,从而得到“初始接收”质量,然后加热到500°C四小时,即可除去样品一生累积吸附的所有水分。这个“初始接收”质量和最终质量的差值代表了样品终生吸附的水汽。 其次,在样品冷却后,对样品质量在所控温度和相对湿度条件下进行吸湿性监测,能够获得样品重新结合水后的动力学增长曲线。相对湿度通常保持在30.0±0.1% RH,而温度设定为在样品发现地的长期平均温度(经验值)。 对水汽的吸附,这里术语叫做再羟基化(rehydroxylation,RHX),符合1/4幂次方规律。质量数据采集由美国康塔仪器公司Aquadyne DVS 全自动双站水吸附分析仪执行,每30秒采集一次质量数据,一个测量周期一般为2到5天。从图上,我们能够推断出“初始接收”质量,因此我们能测定出样品的年代。当伦敦博物馆提供了一个来自于查尔斯二世在格林威治的建筑中的未知样品时,研究者测定出其原始煅烧年代为1691± 22年。事实上,该建筑建造于1664-1669,新的断代技术所确定的年代与十七世纪九十年代的变化是相符的。其他2000年以前的样品也已成功地进行了分析,研究人员相信,该技术对上万年的样品同样有效。 好吧,根据英国这边的实验表明,利用康塔仪器水吸附分析仪这项技术,断代误差在30年以内(上文写的是22年)。那么,秦始皇和秦宣太后差了大概有55年(具体的,以文史专家给出的数字为准)?如果是这样,其实答案就简单了,一测便知真假。当然,或许事情并不只是这么简单。毕竟如上所说隔行如隔山,对于另一个领域,我们应保佑起码的尊敬,真相以专家结论为准。我们所能解决的,终归只是技术层面的问题,下面要讲到的,就是较为纯粹的技术了,兴趣不大的,可以绕行。Aquedyne DVS 非常适合这个应用有多种原因。 显然,长期稳定地测量质量精确到0.1ug的能力是至关重要的,但严格控制样品室的温度和相对湿度也是重要因素。此外,美国康塔仪器公司的完整的微天平具有双称量盘,这意味着可以同时进行两个样品的平行分析,并提高了生产率。曼彻斯特大学机械、航天和土木工程学院的莫伊拉威尔逊博士(Dr Moira Wilson)认为:比起其它技术,Aquadyne DVS产生的数据要好得多。"起初我们想用传统的顶装盘,但结果表现出太多散点。当我们试用Aquadyne DVS的微天平头,所产生的清晰的图形曲线给我们留下深刻印象。” 虽然Aquadyne DVS不是市场上唯一的水吸附分析仪,威尔逊博士还是没有任何犹豫地选择了它:“我的一位同事以前曾经使用过康塔仪器微天平系统,并认为它是非常优秀的。并且,他在英国布里斯托尔大学的同事也对这种微量天平给出一致好评。实验表明,Aquadyne DVS可以满足我们的所有要求,并且具有明显优势。” 此外,当威尔逊博士和她的团队开发新的断代技术时,他们得到制造商的持续服务和支持,为此受到广泛赞赏。人们很早就知道,陶瓷吸收水分,但测量非常小的应变(扩展)结果是极其困难的。改成基于质量的测量方法不仅创造了为古代陶瓷断代的机会,它也使现代陶瓷中与吸湿性有关的问题-- 如釉料开裂--更容易地调查原因。 新的测年技术之所以出色,原因之一是它仅需的装置是一个小型高温炉炉和水吸附分析仪,用于测量“初始接收”质量和再羟基化之前的最终质量。这使得该技术更简单,更快,比现有的陶瓷断代技术花费低,如热释光方法。 威尔逊博士继成功开发烧制粘土的测年技术后,现在准备进一步用Aquadyne DVS开展工作,如测量胶结材料的水化率和碳化率,调查粒径对粉末陶瓷吸附动力学的影响。 技术介绍 再羟基化(RHX)的测年方法完全是在研究烧制粘土砖水分膨胀的可逆性时获得的意外收获。RHX的过程是由粘土烧制陶瓷对大气水分的化学吸附,这个过程是通过超慢的纳米级固态运输(一维扩散,SFD)进入粘土体内的。这项工作导致发现了一个新的动力学定律:水分膨胀的超慢反应动力学(以及质量增加)服从(时间)?幂律[1]。简单地说,对t?的时间依赖性意味着相等的质量将以1,16,81,256等增加(对应14,24,34,44等)。这些时间单位可以是秒,分,天或年。 因为再羟基化的过程是一个化学反应,其进程主要取决于温度。已证明[2],可根据出土样品的地点对“有效寿命温度”(ELT)进行估计,它是从执行分析到所能看到的近乎样品的终生的可靠温度。 在英国曼彻斯特大学的研究已经率先使用的微重量测量,使用Aquadyne DVS重量法水吸附分析仪(康塔仪器)进行RHX测年[3]。它的有效寿命温度(ELT)主要取决于获取样品的地点,在样品的有效生命周期内,提供一个适合的温度环境使其能顺利的分析样品。图1:这个图表显示了原始实验数据m2,证明了RHX测量方法的精确性。它的成功需要维持持续恒温以及空气中的相对湿度。 根据曼彻斯特大学的研究分析,运用全自动双站水吸附分析仪可以做微重量RHX数据分析。 在原理,RHX测年法的核心就是简单明了;然而,想要成功测出一片烧制陶器的年代还是有些困难的,所以我们尝试用RHX测量超慢速度质量的增加,一般地,每3天增加6mg. 在持续恒温和相对湿度的条件下测量样品(大约0.1ug);全自动动态水吸附分析仪可以做到这点,请看图1. 实验方法 Wilson已经详细说明了RHX测年法的过程。首先,m1样品需要在105摄氏度下脱气,直到达到一个恒定的质量。在这点上所有的物理吸附水分用T0表示,化学吸附脱气可能会超出样品能承受的脱气温度。然后把样品放在天平室,温度控制在ELT,(一般8到11摄氏度),相对湿度需要仔细的控制在可以提供水分子表面的层面。在这些条件下,样品可以保持平衡。当样品达到平衡点,会测量出原始样品质量m2. 在这些温度和湿度的条件下,通过RHX测年法测出陶土的原始质量以及水吸附值。 接着,将样品加热至500摄氏度直到脱尽样品中的所有水分,包括物理吸附和化学吸附(T0,T1,T2)的水。监测m1的质量损失,直到达到恒定质量m3. 然后把样品放置在与之前相同的温度和湿度条件下,得到数据m2。获得原始质量数据后,重新加热到500摄氏度,Savage等【5】描述了特征性的质量增加时的两个阶段过程。 第I阶段是样品从500℃冷却并在未来的环境条件下的平衡。第II阶段的质量增益,只是由于再羟基化过程(T2)。质量增加的这个部分只是来自于M4,从M4可以推断出M2并用于年代测定。 图2:该图显示了原始实验数据。红色划线部分是用来计算RHX速率常数(阶段II)。在这之前看到的质量增加是因为几个过程同时存在(阶段I)。虚线与Y轴相交点就是m4. [4] 样品的再羟基化所引起的归一化质量改变(ya)与样品寿命时间的1/4幂次方成正比:Yα=α(T)t1/4 比例常数α(T)是在温度T所获得的数据,以质量的线性部分相对t?作图时的斜率,如图2所示。Yα=(m2-m4)/m4样品的年代(tα)计算可用公式:tα=(yα/α)4这些关系示于图3。这里可以清楚地看到的三种不同类型的水的质量贡献。图3:再加热到500摄氏度后,质量增加量对时间?的关系。(a) 特征性的二个阶段的质量增加。这是所有3种类型的水分T0+T1+T2(~27,000数据点) 结合。这些成分的结合所贡献的总质量值也可以被分割成(b)和(c),如图所示。(b) 只有T0+T1会影响质量值,并且当样品与周围的环境达成平衡时,质量值就会停止变化。这个质量值的变化可以用于跟踪环境温度和相对湿度的改变。(c) 因T2再羟基化而产生的质量增加。 结论 Aquadyne DVS全自动双站水吸附分析仪可以精确的控制相对湿度和温度,并且超级灵敏的微天平可以使其测出上百年甚至是几千年前的陶瓷、陶器和粘土文物的年代。 袁仲一先生西北大学、西安交通大学教授,秦始皇兵马俑博物馆馆长。现任中国考古学会理事,陕西考古学会副会长,陕西省司马迁研究会会长,秦始皇兵马俑博物馆名誉馆长,陕西省秦俑学研究会会长和秦文化研究会副会长。1998年10月被陕西省人民政府聘任为省文史研究馆馆员。被尊称为“秦俑之父”。(介绍来自百度百科) 陈景元先生毕业于西安建筑工程学院建筑系,后长期在江苏省国土厅工作的建筑学家陈景元1961年曾参与秦始皇陵的保护规划,1984年他发表文章质疑兵马俑的真正主人是否秦始皇,未得到重视。今年,他又在《中国科学探险》杂志(第2期)发表了《兵马俑的主人根本不是秦始皇》一文,遭到学界反驳。为此,陈景元上月到河北至咸阳的崤函故道进行实地考察,确信殁于河北邢台的秦始皇不可能被运回陕西安葬,因而,非但兵马俑不是秦始皇的陪葬,就连陕西骊山脚下的秦始皇陵也值得质疑……(介绍来自百度)
  • “纳米材料的选择性吸附环境污染物机理及水相分离功能调控”获国家自然科学二等奖
    p   1月8日上午,2018年度国家科技奖励大会在人民大会堂隆重举行。中国科学院生态环境研究中心刘景富研究员主持的“纳米材料的选择性吸附环境污染物机理及水相分离功能调控”项目荣获国家自然科学二等奖。项目的主要完成人有中国科学院生态环境研究中心刘景富研究员、蔡亚岐研究员、刘倩研究员、赵宗山研究员、江桂斌院士。 /p p   该项目属于环境科学与技术领域。水环境中的持久性有毒污染物严重危害生态环境与人体健康,高效分离富集和去除这些微量污染物的方法是研究其环境行为与效应并发展污染防治技术的重要基础,也是我国环境与人体健康保护的重大需求。纳米材料在水中污染物的高效吸附去除等方面具有巨大的潜力,选择性吸附目标污染物和水相分离功能是决定纳米材料吸附去除水中污染物性能的关键因子。该项目以纳米材料的选择性吸附污染物原理和水相分离功能调控等前沿科学问题为核心,系统研究了纳米材料吸附污染物的分子作用机制与调控以及纳米材料的水相分离富集和回收等关键难题,取得了以下重要发现: /p p   1.揭示了纳米材料对不同类型污染物的选择性吸附原理。构建了具有不同表面电荷、络合能力和疏水性等表面特性的纳米吸附剂,发现这些吸附剂的表面结构和官能团性质决定了其对不同金属离子和不同类型有机污染物的吸附性能,揭示了纳米材料对污染物的选择性吸附作用机制,为设计制备选择性吸附目标污染物的纳米材料提供了理论依据。 /p p   2.阐明了磁性纳米材料的水相分离性能及选择性吸附功能的调控机制,构建了兼具选择性吸附和水相分离功能的系列磁性纳米材料。发现Fe3O4纳米材料可在重复使用中保持优异的选择性吸附和磁性分离功能 通过改性或表面修饰增加磁性纳米材料选择性吸附目标物的表面官能团,可显著提高其选择性吸附目标污染物的能力,消除水环境中大量共存物质的干扰。构建了选择性吸附去除砷、氟、全氟化合物、烷基酚类内分泌干扰物等典型污染物的系列磁性纳米材料,突破了纳米材料高效选择性吸附水环境中微量污染物和水相分离的难题。 /p p   3.发现了基于浊点萃取调控纳米材料水相分离功能的新原理,创建了基于该原理分离回收纳米材料的新方法。发现了利用浊点萃取调控纳米材料水相分离功能的新途径,并揭示了其通过形成非离子表面活性剂-纳米材料胶团复合结构而实现水相分离的作用原理。基于该原理创建的萃取痕量纳米材料的新方法,可富集不同粒径、化学组成和表面修饰的纳米材料并保持其原有形貌和尺寸特征,为纳米材料的分离回收及环境行为与效应研究提供了关键技术。 /p p   研究成果发表在 Environ. Sci. Technol. 等本领域著名 SCI 期刊,得到国际同行广泛引用,丰富了纳米材料功能化修饰和水相分离调控理论,在国际上引领了磁性纳米材料选择性吸附污染物及纳米材料浊点萃取分离等研究方向,创建的纳米材料浊点萃取分离富集方法在国内外得到广泛应用并取得重要学术成果,推动了环境科学与技术等基础学科的发展。8篇代表性论文被 SCI 他引1552次,其中4篇的单篇 SCI 他引超过200次(单篇最高 SCI 他引428次),6篇入选 ESI 高被引论文,1篇获 J. Chromatogr. A 高引用论文奖。项目获授权发明专利3件。项目完成人获得全国百篇优秀博士学位论文(3人)、国家杰出青年科学基金(2人)、国家优秀青年科学基金(1人),受聘 Environ. Sci. Technol. , Nanolmpact 等4个 SCI 期刊主编和副主编,入选 Elsevier 高引用论文作者榜单(2人)。 /p
  • “一种用于选择吸附六价铬的吸附剂”获国家发明专利授权
    中国科学院兰州化学物理研究所发明了一种用于选择吸附六价铬的吸附剂,近日获得国家发明专利授权(一种用于选择吸附六价铬的吸附剂,专利号:ZL 201110212531.3,发明人:郑易安 王爱勤)。   铬及其化合物广泛应用于工业生产的各个领域,是冶金工业、金属加工、电镀、制革、油漆、印染、颜料等行业中必不可少的原料。铬在水中的存在形式有两种:铬(VI)和 铬(III)。毒性大的铬(VI) 是重金属中有毒有害污染物的代表,常用的处理方法有沉淀法、氧化还原法、电解法、吸附法、离子交换法等。每种方法各有优劣,其中吸附法因操作简单、见效快、吸附剂可以设计及循环使用等优点在含铬废水处理中得以广泛应用。然而,目前国内常用的吸附法均存在一定缺陷,如材料价格昂贵、再生困难 吸附容量小,容易造成二次污染 选择吸附性有待提高等。   该发明以洋车前子壳粉和苯胺为原料,经过氧化聚合制备了用于选择吸附六价铬的吸附剂。吸附剂可在保持聚苯胺原有吸附性能基础上,进一步降低制备成本,赋予环境友好性,用于工业含铬废水的处理。   与现有技术相比,该发明中吸附剂合成原料廉价易得 吸附剂的制备过程简单,反应条件温和 吸附剂对水中的六价铬具有高的选择吸附性 在不降低聚苯胺原有吸附性能基础上,引入洋车前子壳粉,从理论上讲赋予吸附剂良好的生物可降解性,同时可拓展洋车前子壳粉的应用领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制