水稻植株

仪器信息网水稻植株专题为您整合水稻植株相关的最新文章,在水稻植株专题,您不仅可以免费浏览水稻植株的资讯, 同时您还可以浏览水稻植株的相关资料、解决方案,参与社区水稻植株话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

水稻植株相关的耗材

  • 谷物湿度检测器 5982310
    仪器操作简便,配有内置的用于不同谷物的修正因子,如大麦、咖啡、玉米、亚麻、干草、燕麦、油菜籽、水稻、高粱、大豆、小麦、以及黑麦。仪器有一个可编程偏移量来匹配谷物仓库,配有一个内置的校准检测,以便保证精度和重复性。 液晶显示屏可显示平均值和最高值读数、标准偏差、和存储数据的分歧因子。当达到预设的湿度百分比时,一个声音报警器会提示你。 如需测量谷物包或干草堆的湿气,可使用一个长的针式测试棒,针式测试棒和手柄需另购。技术参数:5982310 谷物湿度检测器 基于微处理器的电路,可实现更高的精度和重复性|最多可存储150个按用户定义的累积谷物数据 台式 湿度:依据所测的谷物种类6至40% 环境温度:32至160华氏度 存储:最多可存储150个累积数据 电源:一节九伏电池(包括) 尺寸:6英寸宽x 5-1/2英寸高 x 7-1/4英寸厚 可测定高湿度区域、谷物成熟度、通风问题、烘干时间、和贮藏准备
  • 谷物湿度检测器 5982310
    仪器操作简便,配有内置的用于不同谷物的修正因子,如大麦、咖啡、玉米、亚麻、干草、燕麦、油菜籽、水稻、高粱、大豆、小麦、以及黑麦。仪器有一个可编程偏移量来匹配谷物仓库,配有一个内置的校准检测,以便保证精度和重复性。 液晶显示屏可显示平均值和最高值读数、标准偏差、和存储数据的分歧因子。当达到预设的湿度百分比时,一个声音报警器会提示你。 如需测量谷物包或干草堆的湿气,可使用一个长的针式测试棒,针式测试棒和手柄需另购。技术参数:5982310 谷物湿度检测器 基于微处理器的电路,可实现更高的精度和重复性|最多可存储150个按用户定义的累积谷物数据 台式 湿度:依据所测的谷物种类6至40% 环境温度:32至160华氏度 存储:最多可存储150个累积数据 电源:一节九伏电池(包括) 尺寸:6英寸宽x 5-1/2英寸高 x 7-1/4英寸厚 可测定高湿度区域、谷物成熟度、通风问题、烘干时间、和贮藏准备
  • 岛津Shim-Pack VP-ODS液相色谱柱/岛津VP-ODS柱/228-34937-91 原装进口
    原装进口日本岛津Shim-pack VP-ODS柱(CLC-ODS柱)系列色谱柱采用了独特的填装工艺,严格的质量控制贯穿整个生产过程。此外附有质量认证证书,满足更加严格的质量要求。每支柱子在出厂前均经过严格的测试,以确保在某一区域内和全球范围内均能达到相关的要求。Shim-pack VP-ODS 色谱柱既是药学分析方法发展的最好辅助工具,也是岛津新的VP系列HPLC 系统的完美补充。成为在药物分析中应用最为广泛的反相C-18柱之一。 产品货号 产品名称 产品规格 优惠价 228-34937-91 岛津Shim-Pack VP-ODS液相色谱柱 150× 4.6mm,5um 4200 228-34937-92 岛津Shim-Pack VP-ODS液相色谱柱 250× 4.6mm,5um 4800 228-34938-92 岛津Shim-Pack VP-ODS保护柱套 10*4.6mm 2200 228-34938-91 岛津Shim-Pack VP-ODS保护柱芯 10*4.6mm,2只/包 2100

水稻植株相关的仪器

  • 水稻表型检测仪 400-860-5168转6008
    水稻表型检测仪HT-DB-I水稻育种研究中,水稻表型参数至关重要,水稻表型检测仪可用于水稻株高、夹角、基粗、水稻亩穗数、理论产量、穗长、总粒数和千粒重以及水稻茎秆分析等指标的测量,可多点快速取样数据可批量分析并获取平均值。这些表型参数在水稻品种筛选、水稻产量预测、稻穗动态发育、基因定位、功能解析和水稻遗传育种中发挥着至关重要的作用。软件集合多方面功能为一体,一站式解决水稻的表型参数测量问题。广泛适用于各农科院、高校、育种公司、种子站的水稻研究。测量范围和误差:1、水稻亩穗数测量误差: ≤±5%2、稻穗形态测量范围: 5~20cm穗长误差: ±2%小穗数误差: ≤ 3个水稻夹角测量范围: 0-180°作物茎粗: 0-5.2cm夹角测量误差: +5%4、作物茎粗测量误差: ±1mm5、千粒重测量误差: ±2%6、株高测量范围: 0.1-1.5m测量误差: ±1mm水稻亩穗数测量仪水稻亩穗数测量仪也称水稻亩穗数测量系统,采用图像识别技术、深度学习的方法获取数据,可多点快速取样,数据批量分析,且数据互联互通。可以测量水稻的亩穗数、理论产量、种子数量和千粒重指标,为水稻的品种筛选、水稻产量预测、产量基因定位和功能解析发挥着至关重要的作用。水稻产量是由单位面积上的穗数、每穗数(每颖花数)和粒重三个基本因素构成,穗数是水稻产量重要构成要素之一,快速、准确地获取水稻穗数和千粒重对智能测产意义重大。2.1.2外形尺寸水稻亩穗数740mm*740*(620~1500)mm 2、标定杆可上下伸缩调节高度3、背光板尺寸: 47cm*35cm*0.8cm4、图像分辨率:1600*7205、摄像头:1300W像素2.1.3测量误差1、水稻亩穗数误差±5%。2、千粒重误差±2%,修正后可达100%。2.1.4适用范围1、稻穗检测合适时期:水稻灌浆期至成熟前期的水稻2、千粒重可测量水稻种子的数量和千粒重水稻株高测量仪2.2.1简介水稻株高测量仪用于测量水稻的株高。在水稻不同时期测量株高的标准不同。水稻株高一般是指植株基部至主茎顶部即主茎生长点之间的距离。测量杆高度:1500mm测量精度: ±1mm测量范围: 10~1500mm外壳材质: 铝合金软件系统: Android2.2.3功能特点1、仪器带有数据管理云平台和APP,可通过电脑网页或手机查看数据。由测量杆,手机,识别APP软件组成。2、手机对准测量杆上的刻度,拍照自动识别刻度数据实时传输到手机。3、测量杆带有水平仪,使测量过程更规范,更准确。4、完善识别内容:自动识别结果中显示识别的高度数据,手动录入作物数据(如:品种、生育期等)完善作物信息。首页界面上可显示所有测量结果。5、可根据检测日期,种类,测量人,区组名称进行测量结果查询。 6、数据分析管理:分析结果可查看,可将图片和数据excel导出。7、数据上传:自动在wifi/4G网络链接正常下上传至云平台,实现管理、查看、分析数据。平台数据可下载、分析、打印。水稻夹角茎粗测量仪2.3.1仪器简介水稻夹角茎粗测量仪可快速测定和分析水稻夹角、茎粗等作物性状参数,方便开展科学研究和育种分析。也适用于水稻、油菜等作物品种。1、支撑材料:不锈钢2、支架材料:黑色塑料3、背景材质:白色树脂4、测量范围:作物夹角:0~180°;作物茎粗:0~5.2cm5、测量误差:作物夹角±5°;作物茎粗:±1mm2.3.3功能特点超轻便手持式设计,方便田间和室内测量使用;大屏幕彩色手触摸屏,安卓系统,1300万像素+200万像素双摄;测量速度快,拍照3秒即出结果,可先拍照后批量处理;手动修正功能强大,手动触摸屏幕进行修正,使结果更准;手机和作物之间可以进行自由距离设置,适合多种植物的测量,适应性强;压板和转轴柄连接,方便固定作物茎部,减少风吹草动对作物角度拍摄的影响;环境适应性广,无需做遮光处理,可以在离体或活体情况下测量作物夹角和茎粗数据;自动调节白平衡,不受天气、光照等环境条件的影响;数据查看多样化:拍照分析后即可查看测量结果,可在历史记录中查看数据报表,可导成Excel格式,并可分享至微信、QQ和钉钉;自动生成数据列表:测量时间,图片,作物夹角、作物茎粗等信息,节约数据整理时间;作物夹角适用的作物:水稻、水稻、油菜;作物茎粗对各种作物的茎粗都能测量。稻穗形态测量仪2.4.1仪器简介稻穗形态测量仪也叫稻穗形态测定仪,基于机器视觉技术,利用手机摄像头获取稻穗的图像,利用图像处理算法现场分析,获取稻穗形态参数,AI智能识别利用透视变化矫正图像、光照补偿算法、距离变化等技术,自动计算出水稻的穗长。稻穗形态测量仪一次测定,可同时获得稻穗穗长等多项指标,主要应用于应用于水稻育种、水稻遗传研究等领域,2.4.2技术参数外形尺寸: 460*320*10mmEVA背板尺寸: 420*295*2mm底板材料: 黑色双面细磨砂亚克力测量范围: 5~20cm测量误差: ±2%图像分辨率: 1600*7202.4.3功能特点1、超轻便手持式设计: 方便室内和室外测量使用 2、大屏幕彩色手触摸屏: 安卓系统,1300万像素 3、多穗同时测量: 稻形态测量仪一次可以测量10个稻穗长度:4、测量速度快: 拍照3秒即出结果,可先拍照后批量处理 5、比例尺自动标定: 对倾斜拍照的图片可自动进行图片矫正,提高测量的精确度。6、适应性广: 无需做遮光处理,可以在离体或活体情况下测量稻穗形态。7、自动调节白平衡: 不受天气、光照等环境条件的影响 8、存储容量大: 50G存储数据,可看历史记录,相对生长速率等。9、数据查看多样化: 拍照分析后即可滑动查看结果,也可在历史记录中查看数据报表,可导成Excel格式10、自动生成数据列表: 测量时间,图片,GPS位置信息,穗长等信息,节约数据整理时间。
    留言咨询
  • 水稻表型检测系统 400-860-5168转6008
    水稻表型检测系统HT-DB-I水稻育种研究中,水稻表型参数至关重要,水稻表型检测仪可用于水稻株高、夹角、基粗、水稻亩穗数、理论产量、穗长、总粒数和千粒重以及水稻茎秆分析等指标的测量,可多点快速取样数据可批量分析并获取平均值。这些表型参数在水稻品种筛选、水稻产量预测、稻穗动态发育、基因定位、功能解析和水稻遗传育种中发挥着至关重要的作用。软件集合多方面功能为一体,一站式解决水稻的表型参数测量问题。广泛适用于各农科院、高校、育种公司、种子站的水稻研究。测量范围和误差:1、水稻亩穗数测量误差: ≤±5%2、稻穗形态测量范围: 5~20cm穗长误差: ±2%小穗数误差: ≤ 3个水稻夹角测量范围: 0-180°作物茎粗: 0-5.2cm夹角测量误差: +5%4、作物茎粗测量误差: ±1mm5、千粒重测量误差: ±2%6、株高测量范围: 0.1-1.5m测量误差: ±1mm水稻表型检测系统水稻亩穗数测量仪也称水稻亩穗数测量系统,采用图像识别技术、深度学习的方法获取数据,可多点快速取样,数据批量分析,且数据互联互通。可以测量水稻的亩穗数、理论产量、种子数量和千粒重指标,为水稻的品种筛选、水稻产量预测、产量基因定位和功能解析发挥着至关重要的作用。水稻产量是由单位面积上的穗数、每穗数(每颖花数)和粒重三个基本因素构成,穗数是水稻产量重要构成要素之一,快速、准确地获取水稻穗数和千粒重对智能测产意义重大。2.1.2外形尺寸水稻亩穗数740mm*740*(620~1500)mm 2、标定杆可上下伸缩调节高度3、背光板尺寸: 47cm*35cm*0.8cm4、图像分辨率:1600*7205、摄像头:1300W像素2.1.3测量误差1、水稻亩穗数误差±5%。2、千粒重误差±2%,修正后可达100%。2.1.4适用范围1、稻穗检测合适时期:水稻灌浆期至成熟前期的水稻2、千粒重可测量水稻种子的数量和千粒重水稻株高测量仪2.2.1简介水稻株高测量仪用于测量水稻的株高。在水稻不同时期测量株高的标准不同。水稻株高一般是指植株基部至主茎顶部即主茎生长点之间的距离。测量杆高度:1500mm测量精度: ±1mm测量范围: 10~1500mm外壳材质: 铝合金软件系统: Android2.2.3功能特点1、仪器带有数据管理云平台和APP,可通过电脑网页或手机查看数据。由测量杆,手机,识别APP软件组成。2、手机对准测量杆上的刻度,拍照自动识别刻度数据实时传输到手机。3、测量杆带有水平仪,使测量过程更规范,更准确。4、完善识别内容:自动识别结果中显示识别的高度数据,手动录入作物数据(如:品种、生育期等)完善作物信息。首页界面上可显示所有测量结果。5、可根据检测日期,种类,测量人,区组名称进行测量结果查询。 6、数据分析管理:分析结果可查看,可将图片和数据excel导出。7、数据上传:自动在wifi/4G网络链接正常下上传至云平台,实现管理、查看、分析数据。平台数据可下载、分析、打印。水稻夹角茎粗测量仪2.3.1仪器简介水稻夹角茎粗测量仪可快速测定和分析水稻夹角、茎粗等作物性状参数,方便开展科学研究和育种分析。也适用于水稻、油菜等作物品种。1、支撑材料:不锈钢2、支架材料:黑色塑料3、背景材质:白色树脂4、测量范围:作物夹角:0~180°;作物茎粗:0~5.2cm5、测量误差:作物夹角±5°;作物茎粗:±1mm2.3.3功能特点超轻便手持式设计,方便田间和室内测量使用;大屏幕彩色手触摸屏,安卓系统,1300万像素+200万像素双摄;测量速度快,拍照3秒即出结果,可先拍照后批量处理;手动修正功能强大,手动触摸屏幕进行修正,使结果更准;手机和作物之间可以进行自由距离设置,适合多种植物的测量,适应性强;压板和转轴柄连接,方便固定作物茎部,减少风吹草动对作物角度拍摄的影响;环境适应性广,无需做遮光处理,可以在离体或活体情况下测量作物夹角和茎粗数据;自动调节白平衡,不受天气、光照等环境条件的影响;数据查看多样化:拍照分析后即可查看测量结果,可在历史记录中查看数据报表,可导成Excel格式,并可分享至微信、QQ和钉钉;自动生成数据列表:测量时间,图片,作物夹角、作物茎粗等信息,节约数据整理时间;作物夹角适用的作物:水稻、水稻、油菜;作物茎粗对各种作物的茎粗都能测量。稻穗形态测量仪2.4.1仪器简介稻穗形态测量仪也叫稻穗形态测定仪,基于机器视觉技术,利用手机摄像头获取稻穗的图像,利用图像处理算法现场分析,获取稻穗形态参数,AI智能识别利用透视变化矫正图像、光照补偿算法、距离变化等技术,自动计算出水稻的穗长。稻穗形态测量仪一次测定,可同时获得稻穗穗长等多项指标,主要应用于应用于水稻育种、水稻遗传研究等领域,2.4.2技术参数外形尺寸: 460*320*10mmEVA背板尺寸: 420*295*2mm底板材料: 黑色双面细磨砂亚克力测量范围: 5~20cm测量误差: ±2%图像分辨率: 1600*7202.4.3功能特点1、超轻便手持式设计: 方便室内和室外测量使用 2、大屏幕彩色手触摸屏: 安卓系统,1300万像素 3、多穗同时测量: 稻形态测量仪一次可以测量10个稻穗长度:4、测量速度快: 拍照3秒即出结果,可先拍照后批量处理 5、比例尺自动标定: 对倾斜拍照的图片可自动进行图片矫正,提高测量的精确度。6、适应性广: 无需做遮光处理,可以在离体或活体情况下测量稻穗形态。7、自动调节白平衡: 不受天气、光照等环境条件的影响 8、存储容量大: 50G存储数据,可看历史记录,相对生长速率等。9、数据查看多样化: 拍照分析后即可滑动查看结果,也可在历史记录中查看数据报表,可导成Excel格式10、自动生成数据列表: 测量时间,图片,GPS位置信息,穗长等信息,节约数据整理时间。
    留言咨询
  • 产品简介水稻植株中穗长决定了其谷子的数量,从而影响着整株水稻的产量,因此获取水稻植株的穗长在水稻产量研究中具有非常重要的意义。该系统利用双相机成像技术自动获取水稻穗长,测量效率可达900穗每小时。 系统配置成像平台:成像暗室,日光灯管,变焦CCD相机计算机工作站:WindowsPC,控制机柜软件:在线控制,图像处理,软件数据分析CCD相机:长焦镜头(35mm),短焦镜头(16mm)CCD相机空间分辨率:长焦镜头(0.12mm),短焦镜头(0.266mm)CCD相机像素尺寸:6.5μm*6.5μm工作效率:5秒/株工作电压:单相 220V交流 系统结构图 Smart-PLsystem (a)the prototype of the system系统样机 (b)the details of the imaging device成像设备细节展示 (c)the sample presentation platform样品准备平台
    留言咨询

水稻植株相关的方案

水稻植株相关的论坛

  • 同样的方法做水稻土和植株可以,做稻壳不可以?是为什么?

    现在在做一种农药在水稻中的农药残留,其中我已经将水稻土和水稻植株的添加做完,回收率均达到80%以上,但做水稻稻壳时,回收率总是只有40-50%,方法过程和土和植株的一样,不知原因是不是因为提取剂的原因?求解答~~新手不懂~还有,看到有帖子说对于干的或低水分含量的植物性样本,如谷物、茶叶等,必须采用含水20%~40%的溶剂,或者是预先向样本中加入等量的水之后,再用适当提取溶剂进行提取。我也加入水试了一下,回收率没有变化。不过是因为我是采用含水10%的做的,会不会效果达不到!很困惑!望高手指导!感激不尽!

水稻植株相关的资料

水稻植株相关的资讯

  • 我科学家揭示控制水稻分蘖新机制
    中国农业科学院作物科学研究所万建民科研团队最新研究发现,一种新的D53核蛋白作为调控植物分蘖的激素——独脚金内酯信号途径的“开关”,参与调控植物分蘖(枝)的生长发育,从而为植物特别是农作物的株型改良提供了重要的理论基础,也为育种家解决水稻籼粳亚种间杂交优势利用技术难题提供了帮助。相关研究成果于12月11日在线发表在《自然》上。这也是万建民科研团队继2012年在该刊上报道TE蛋白调控水稻分蘖形成机理后,在阐述植物分枝(蘖)形成机制领域的又一重大进展。   据万建民介绍,杂交稻的推广应用被誉为第二次绿色革命,但普通籼型杂交稻的单产潜力已十分有限。而籼粳亚种间杂交具有强大的杂种优势,其有效利用可实现水稻单产的再次飞跃。因此,挖掘水稻籼粳亚种间的杂交优势成为作物育种学家的重要课题。然而,籼粳交杂种普遍存在植株偏高、易倒伏等问题,使得籼粳亚种间的杂种优势利用受到了极大的限制。为攻克这一难题,科研团队从控制水稻分蘖的角度开展了探索性研究。   独脚金内酯是一类新的调控植物分蘖的激素,但该激素如何调控植物分蘖的分子机理尚不清楚。万建民科研团队利用一个部分显性水稻矮化多分蘖突变体d53,通过外源激素处理和内源激素测定进行了独脚金内酯调控植物分蘖的机理研究。   结果表明,d53是一个独脚金内酯不敏感突变体。通过精细定位和图位克隆,他们获得了位于水稻第11号染色体短臂末端的DWARF 53(D53)基因,该基因编码一个新的在结构上与I类Clp ATPase类似的核蛋白——D53蛋白。后续的功能分析发现,在独脚金内酯存在的条件下,D53蛋白可与两个已知的独脚金内酯信号分子D14、D3互作形成蛋白复合体,使得D53蛋白更易被蛋白酶体系统降解,从而诱导独脚金内酯信号的响应,对植物分蘖发挥调控作用。这一结果为通过调控D53基因的表达量,影响独脚金内酯的信号转导,从而对植物分蘖发挥调控作用提供了重要依据。
  • 稻田中浮萍(Lemna minor L.)生长对水稻产量及其潜在原因的影响
    菱透浮萍绿锦池,夏莺千啭弄蔷薇透过浮萍,诗人的眼里看到的是其和水中菱叶相映成趣的景象,是夏日池塘的勃勃生机。而在科研学者的眼中,看到的是天南星目浮萍科的水生植物,是潜藏在水稻种植中的双刃剑。营养物质的争夺?自然光照的遮挡?生存空间的占据?在一片生机之下,浮萍和水稻之间塑造着另一番景象..由于气候变暖/或灌溉水富营养化的影响,稻田中的浮萍(DGP)大幅增加。本研究考虑到生态因素、光合能力、光谱变化和植物生长等因素,对三个代表性水稻品种进行了田间试验,以确定DGP对水稻产量的影响。结果表明,DGP显著降低pH值0.6,日水温降低0.6℃,水稻抽穗期提前1.6天,并平均增加了叶片的SPAD和光合速率分别为10.8%和14.4%。DGP还显着提高了RARSc、MTCI、GCI、NDVI705、CI、CIrededge、mND705、SR705、GM等多种植被指数的数值,并且水稻冠层反射光谱的一阶导数曲线在DGP处理后呈现出“红移”现象。上述因素的改变可导致株高平均增加4.7%,干物质重量平均增加15.0%,每平方米穗数平均增加10.6%,千粒重平均增加2.3%,最终籽粒产量增加10.2%。 DGP诱导的籽粒增产可以通过降低稻田水的pH值和温度来实现,从而提高SPAD值和叶片的光合作用,刺激水稻植株生长。这些成果可以通过水稻和浮萍之间的生物协同作用,为未来农业和环境的可持续发展提供有价值的理论支持。图形概要图1. 实验地点((a),用红点标记)和浙江省(b)和江苏省(c)的样地。 (d,e)分别显示了浙江省和江苏省的样地水稻生育期的温度变化。浙江地块整个生育期水稻抽穗前和抽穗后的平均气温分别为29.3℃和24.1℃(蓝色),而江苏地块的平均气温为27.8℃和22.3℃(蓝色)。水稻冠层的光谱数据是在预灌浆、灌浆中期和成熟期的 10:00 至 14:00 晴朗无风的天气条件下使用ASD FieldSpec 4 便携式地物光谱仪收集。波段范围为350~2500 nm,其中350~1350 nm光谱分辨率为3 nm,1001~2500 nm范围为8 nm,光谱数据采集间隔为1 nm。测量每个地块中的五个代表性区域,每次进行六次测量。然后将平均值用作绘图的光谱反射率曲线,并在每次测量之前进行白板校准。为避免光强干扰,尽可能在短时间内采集同批次样品。图 2. 稻田浮萍 (DGP) 对水稻冠层光谱特征的影响。 Control-R,控制中的反射光谱数据; DGP-R,稻田浮萍的反射光谱数据; Control-D,对照中的导数光谱数据; DGP-D,稻田中浮萍的导数光谱数据。 NJ5055和YY1540在预填充阶段的光谱特性分别由(a)和(b)表示; NJ5055、YY1540、JFY2在充填中期的光谱特性分别用(c)、(d)、(g)表示。 NJ5055和YY1540成熟期的光谱特征分别用(e)和(f)表示。DGP显著增加了干物质重量、植株高度(见图3)和谷物产量(见表5),分别增加了15.0%、4.7%和10.2%。对粳稻NJ5055的产量影响较大(增加了12.3%),而对其他两个杂交水稻品种的影响较小(平均增加了9.1%)。无论是粳稻还是杂交品种,均未检测到对收获指数的显著影响。在DGP处理下,三个品种的抽穗期平均提前1.6天,其中粳稻的影响更大(提前了2.4天),而杂交品种的影响较小(平均提前了1.2天)。籽粒产量的增加主要是由每平方米穗数的增加(增加了10.6%)引起的,其次是千粒重的增加(2.3%)。 然而,DGP对每穗的小穗数或结实率影响不大。除结实率外,这些指数均未检测到显著的交互作用效应。表 1 稻田种植浮萍(DGP)对水稻产量及其构成的影响图3. 稻田中生长的浮萍(DGP)对水稻植株生长的影响。(a)每株的干物质重量(克);(b)收获指数;(c)植株高度(厘米);(d)抽穗天数(天);浙江,浙江省;江苏,江苏省;** p ≤ 0.01,* p ≤ 0.05,+ p ≤ 0.1,ns,不具有统计学意义,p 0.1,由 t 检验确定。本研究对三个代表性水稻品种进行的稻田浮萍(DGP)种植试验表明,DGP 显着提高了籽粒产量,这解释了 DGP 导致水稻植株生长的增加,特别是在植株高度、每平方米穗数和干物质重量方面。DGP 导致稻田水的 pH 值和温度降低,同时提高了叶片的 SPAD 值和光合速率。 此外,它还优化了冠层结构,提前了水稻抽穗期,最终促进了水稻的生长。这些发现为实施可持续的水稻生产提供了实用的基础。然而,在广泛的时空背景下全面理解DGP对水稻生长和谷物品质的影响模式尚不清楚。因此,未来应进行跨数年的研究,以探讨DGP影响水稻的机制。
  • 托普云农自动定氮仪检测每天水稻氮的吸收和积累
    水稻是稻田生态系统中主要生产作物,氮素是影响水稻生长的一个重要营养元素,磷和钾是除氮素外对水稻生长具有同等重要作用的营养元素。植物体内碳几乎全部是由植株自身光合作用同化 CO2 形成碳水化合物,而光合碳代谢与氮素的投入、植株氮素同化之间关系非常密切。因此,研究稻田生态系统碳氮循环耦合关系具有一定的理论意义。本研究以稻田生态系统长期定位试验为对象,分析等氮投入不同氮源、不同氮磷钾施肥配比二种施肥方式下水稻植株体内碳、氮的积累与分配特征,探讨不同施肥水平下水稻植株碳氮累积关系,为稻田生态系统中碳氮循环耦合机制提供一定的理论依据。使用定氮仪检测得到如下主要结果:   (1)基于等氮投入、不同氮源施肥长期定位试验,分析水稻植株碳、氮积累与分配。结果表明,水稻各器官的碳含量在不同处理之间没有明显差异(P0.05),但氮含量有明显的差异。有机–无机配施处理的茎叶、籽实中氮含量分别为 8.9 ~ 10.2 g.kg-1 和 11.9 ~ 14.8 g.kg-1,比施用化肥处理的高 13% ~ 53%和 9% ~ 19%,比对照(不施肥)高 12% ~ 77%和 23% ~ 32%。水稻碳、氮储量大部分积累在植株的地上部分,其中,有机–无机施肥处理的籽实中碳、氮储量较大,分别为 3467.8 ~ 4323.9 kg.hm-2和 120.3 ~ 135.2 kg.hm-2,比施用化肥处理分别高 13% ~ 23%和 26% ~ 45%。茎叶和籽实中碳储量占整个植株中储量的 34% ~ 38%和 51% ~ 60%;氮储量占总氮储量的 28% ~ 34%和 61% ~ 68%。结果表明,籽实是水稻植株主要的碳、氮汇,有机–无机肥料配施有利于水稻氮的吸收和积累,对于水稻碳氮固定和累积有一定的促进作用。   (2)基于我国南方双季稻田区 20 a 施肥处理长期定位试验,分析不同氮磷钾施肥水平对水稻碳、氮积累与分配。结果表明,水稻籽实和茎叶中的碳含量普遍高于根部碳含量;籽实碳含量在 N 处理下最高,为 432.79 g.kg-1,其余施肥处理下籽实碳含量的差异不显著。而氮含量在不同施肥处理下差异较大,以 N 处理下最高,为 18.90 g.kg-1,其次是 NPK 处理,为 17.93 g.kg-1。水稻碳、氮储量大部分积累在植株地上部分的籽实和茎叶中,分别是地下储量的 6.8~9.2 和 9.8~14.1 倍。随着施氮水平的增加,水稻籽实中的碳储量也相应增加,而在相同的施氮水平下,偏施氮肥处理水稻籽实中的碳氮储量明显低于 NPK 处理,NC 处理的籽实碳氮含量低于 NPKC。因此,与偏施氮肥相比,氮磷钾三大元素的综合施用更有利于水稻生长过程中碳氮的累积和分配。   (3)利用等氮投入不同氮源和不同氮磷钾投入两种施肥方式对不同生育期水稻植株生长过程中碳氮的积累与分配分析表明,在水稻分蘖期和孕穗期,相对于其它施肥处理单施化肥处理显著增加水稻植株体内氮含量,如孕穗期时,宁乡点根部和地上部分水稻氮含量在NPK处理下最高,分别为11.87 g.kg-1和20.06 g.kg-1;从抽穗期至成熟期时,有机-无机结合的施肥方式有效促进了水稻植株对氮素的吸收和碳氮的积累,如宁乡点晚稻成熟期籽实氮含量在 LOM 和 HOM 处理下显著最高,分别为 20.36 g.kg-1和 21.22 g.kg-1。研究表明,合理的施肥能在水稻不同生长时期有效促进植株内碳氮的吸收和累积。   (4)在等氮投入不同氮源的条件下,有机-无机结合配施显著降低了成熟期籽实碳氮比,其比值为 28.0~35.0,是 NPK 处理的 84%左右;不同氮磷钾配施下,除CK 处理外,籽实碳氮比在其余施肥处理下没有显著性差异,茎叶 C/N 以 N 处理下显著最高,为 67.6。在水稻各个生育期,有机肥-无机结合配施均降低了植株中碳氮比,不同氮磷钾投入下,添加有机物循环的处理(NPC 和 NPKC)下水稻植株碳氮比均低于无循环处理(NP 和 NPK),主要是因为配施有机肥增加了水稻植株体内氮素的含量。   在介绍了以上的介绍后,我们了解到稻植株地上部分是主要的碳氮汇,其中籽实碳氮储量较高。随着施氮水平的增加,水稻籽实中的碳储量也相应增加,在相同的施氮水平下,氮磷钾综合施用比偏施氮肥处理更有利于水稻生长过程中碳氮的累积。在等氮投入不同氮源下,有机-无机肥配施显著提高了水稻植株体内氮素的含量;在不同氮磷钾投入下,添加有机物循环处理下水稻植株体内碳氮含量及储量均普遍高于无有机物循环处理,可见添加有机养分能促进了生长过程中水稻碳氮的同化与吸收。研究表明,合理的施肥能有效促进水稻植株碳氮的固定和累积,有机–无机肥料配施有利于水稻氮的吸收和积累,对于促进水稻植株碳氮的固定和累积还具有一定的潜力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制