生物蛋白

仪器信息网生物蛋白专题为您整合生物蛋白相关的最新文章,在生物蛋白专题,您不仅可以免费浏览生物蛋白的资讯, 同时您还可以浏览生物蛋白的相关资料、解决方案,参与社区生物蛋白话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

生物蛋白相关的耗材

  • 白蛋白、IgG、IgA、转铁蛋白、触珠蛋 白、抗胰蛋白酶和纤维蛋白原去除色谱柱
    安捷伦蛋白质分级分离系统和蛋白质组学试剂 生物样品的LC/MS 分析 电泳分析的准备 生物标志物研究的样品制备 仪器和工作流程验证 经济实惠的免疫去除 样品脱盐、浓缩和分馏为了更方便地对生物样品(如血清、血浆和脑脊液(CSF))中的蛋白质进行分离和鉴定,安捷伦的多重亲和去除系统(MARS)用色谱方法去除生物样品中存在的干扰性高丰度蛋白。这些高丰度蛋白的去除,改善了后续对样品进行的液/质分析和电泳分析,有效地扩展了动态范围。针对样品的馏分和脱盐,安捷伦设计了mRP-C18 高回收率蛋白柱,可以用一个简单的步骤同时完成脱盐、浓缩和分馏,极高的样品回收率可以与常规RP HPLC 柱媲美,后者与LC/MS 分析完全兼容。另外,安捷伦还提供生物标志物研究中样品制备和其它蛋白质组学应用的验证试剂,包括复杂标准品和蛋白质组学级胰蛋白酶。为便于使用,这些试剂均与安捷伦LC/MS 方法完全兼容,无需任何额外的样品预处理。我们的定制配置还可以满足您的大体积进样需求和定制其他色谱柱规格。多重亲和去除系统用安捷伦的多重亲和去除系统可以对血清、血浆和其它体液中高价值的低丰度蛋白和生物标志物进行鉴定和表征。多重亲和去除系统能够可重现地、特异地去除人的生理体液中多达14 种高丰度蛋白,和小鼠生理体液中3 种高丰度蛋白。多重亲和去除系统可以使用各种液相柱规格和离心小柱。安捷伦多重亲和去除系统与安捷伦优化的缓冲液、方便的离心过滤膜和浓缩器结合在一起,形成了一个自动化的一体式蛋白去除解决方案,可以与大多数液相色谱仪(色谱柱)和台式离心机(离心小柱)兼容。用多重亲和去除系统净化的样品适用于下游的各种分析,如二维凝胶电泳、LC/MS 和其它分析技术。订货信息:
  • 美正生物牛免疫球蛋白G亲和柱 QC0137
    牛免疫球蛋白G(Bovine Immunoglobulin G,IgG)是一类具有多种生物活性的免疫因子,主要来源于牛血清中, 在牛乳中也存在大量的免疫球蛋白,具有抗感染,中和毒素的功能,是一种重要的防御蛋白。注意事项牛免疫球蛋白 G 高效液相法参考条件 : (1)色谱柱信息:C4 C4 250mm×4.6mm×5μm,300&angst (2)系统前期准备工作 以最开始洗脱时 AB 流动相配比为准,最后基线平稳后 开始进样; (3)牛免疫球蛋白 G 样本洗脱程序,梯度洗脱方法为: 流动相 A :0.1% TFA;流动相 B :乙腈 时间 流动相 A % 流动相 B % 0.01min 60 40 10min 60 40 (4)牛免疫球蛋白 G 检测条件 检测波长:紫外 280nm 柱温:40℃ 进样体积:20μL 流速:0.8mL/min (5)维护方法 使用后进空针,运行梯度洗脱程序,确认色谱柱无牛免疫 球蛋白 G 洗出,再用甲醇水清洗色谱柱。
  • 蛋白质组学级胰蛋白酶
    用于LC/MS 分析的蛋白质组学试剂安捷伦复杂的蛋白质组学标准品是含有1500 种蛋白的Pfu 蛋白提取物。与我们的TPCK-处理的蛋白质组学级胰蛋白酶一起使用,为LC/MS 生物标志物发现和其它蛋白质组学研究提供了理想的工作流程验证组合。订货信息:

生物蛋白相关的仪器

  • 蛋白质和核酸是生命个体的基本组成单位,也是当前基因组学、蛋白质组学主要的研究对象。而紫外可见定量测定方法则是蛋白质和核酸浓度定量研究中最常用、最基本的分析方法。我公司新研发出的超微量核酸蛋白测定仪,是专用于测定核酸和蛋白质的仪器。它可以进行核酸的定性和定量测量,蛋白质的直接测量和比色法测定,细菌细胞的密度测定,在此基础上,本仪器还具有全波长扫描功能,可进行单波长、多波长、动力学测定和标准曲线法四种测量模式。所有的这些测试方法和测试参数都以测定程序的方式汇编在仪器的软件中,用户只需选择相应的程序并设置相关的参数后就可以直接得到测试的结果。同时,本仪器兼容超微量比色皿Traycell,使测量的样品用量降至0.7-5ul,克服核酸样品量少而测量不准确的特性,大大提高了生物分光光度计在生物领域的应用。
    留言咨询
  • 一、viscofan 公司介绍Viscofan BioEngineering 是 Viscofan DE GmbH 的一个业务部门,Viscofan DE GmbH 是 Viscofan 集团旗下的胶原蛋白卓越中心,Viscofan 集团是胶原蛋白生产领域的领导,现代化的生产设施,包括医疗级生产工厂,位于德国魏因海姆,涵盖了从新型胶原蛋白产品的研发和销售的整个价值链。Viscofan DE 也是 COLLinstant 胶原蛋白水解物的生产基地,该胶原蛋白水解物在健康食品行业用作营养保健品,并由 Viscofan 在全球范围内销售。用于细胞和组织的胶原蛋白生物材料是我们的业务,基于90年为食品市场生产工业规模牛胶原蛋白的经验,我们利用这些广泛的专业知识为生物医学领域开发先进的解决方案。为了促进细胞生物学研究并实现再生医学新疗法的开发,我们建立了独特的胶原蛋白产品组合,用于各种细胞和组织的体外和体内培养。优势是超纯牛胶原蛋白 I 型,它保留了天然的复杂蛋白质结构,从而实现了真实的细胞性能并具有出色的生物相容性。Viscofan BioEngineering 代表生物相容性、安全和可靠的胶原蛋白产品。我们对内部制造过程的质量管理确保了我们的研究级或医用级胶原蛋白生物材料在批次之间具有的纯度、结构和生物安全性。二、viscofan 生物医用胶原蛋白制品Viscofan 生物医用胶原蛋白制品包括胶原蛋白生物墨水,胶原蛋白细胞载体,胶原蛋白生物管,可溶性胶原蛋白,胶原蛋白水凝胶,胶原蛋白海绵,胶原蛋白悬浮液,胶原蛋白膜。Viscofan胶原蛋白生物材料具有广泛的应用,先进的胶原蛋白支架有助于从实验室到临床的转移,处于再生医学的前沿。1. FIBERCOLL-FLEX® 生物墨水用于组织模型打印的纤维状胶原生物墨水作为市场上的纤维胶原生物墨水, Fibercoll-Flex® 产品由纯 I 型胶原纤维组成,具有高机械强度,无需甲基丙烯酸固化步骤即可轻松打印。稳定的3D模型具有高度的生物相容性,代表了用于细胞粘附和重塑的体内支架,广泛应用于组织工程或再生医学的研究和开发。Fibercoll-Flex® 生物墨水以 3 mL 单位的形式交付,装在单独包装的注射器中。平均纤维长度 200 – 800 μm,直径 ~20 μm,根据 ISO 9001 质量管理生产。Fibercoll-Flex-N,3 mL 水凝胶,注射器,用于封装细胞的3D 模型;Fibercoll-Flex-A,3® mL 水凝胶,注射器,用于组织/细胞支架的3D 模型。优势:ü 天然I型胶原纤维ü 无需固化步骤ü 易于调节刚度ü 高打印保真度和出色的生物力学性能ü 高生物相容性和真实的细胞性能ü 在再生医学和组织工程中的广泛应用Fibercoll-Flex 生物墨水的技术规格和易用性为3D模型的生物打印提供了新颖灵活的解决方案,用于复杂组织;3D肿瘤模型;替代动物模型;用于筛选的基于细胞的检测和生物医学研究的 3D 支架。
    留言咨询
  • 品牌:Thmorgan型号:GFP一、产品特点: 1.检测绿色荧光蛋白(GFP); 2.便于野外作业; 3.检测效率高: 夜间在田间寻找阳性目标,一目了然;4.操作方便:小巧、灵活、便于携带,开机后不需热机,直接检测;5.系统稳定:可长时间持续作业;6.安全:无需化学底物显色,直接进行观测,不损坏被检测对象的细胞。二、产品用途:1.检测转绿色荧光蛋白(GFP)基因植物:水稻、小麦、玉米、大豆、棉花、拟南芥等;2.检测转GFP基因动物:小鼠、兔子、猴子等;3.检测转GFP基因微生物:细菌、真菌、酵母等;4.检测GFP基因组织特异性表达。 三、产品原理: 蓝色光源照射绿色荧光蛋白(GFP),会激发出绿色荧光;滤光镜挡住所有反射光,只允许相应荧光通过。 四、技术参数:1.激发光源:蓝色激发光;2.滤光系统:滤光镜挡住所有反射光,只允许荧光通过;3.LED 寿命: 10,000 h;4.光源类型: 2个高强度 3W LED;5.持续时间: 4 h;6.体 积: 12.7 cm(l)x7.6 cm(d);7.电 源: 4.5V。五、配置:蓝色激发光源:一台滤光镜: 一台
    留言咨询

生物蛋白相关的方案

生物蛋白相关的论坛

  • 生物素蛋白标记常见问题及注意事项

    [font=宋体][font=宋体]生物素[/font][font=Calibri]-[/font][font=宋体]亲和素系统 [/font][font=Calibri](biotin-avidin system[/font][font=宋体],[/font][font=Calibri]BAS)[/font][font=宋体],是[/font][font=Calibri]70[/font][font=宋体]年代后期应用于免疫学,并得到迅速发展的一种常用的生物反应放大系统。它具有高度特异性、敏感性、稳定性的特点,两者的亲和常数([/font][font=Calibri]K=1015 mol/L[/font][font=宋体])比抗原[/font][font=Calibri]-[/font][font=宋体]抗体([/font][font=Calibri]K=105[/font][font=宋体]~[/font][font=Calibri]1011 mol/L[/font][font=宋体])至少高[/font][font=Calibri]1[/font][font=宋体]万倍,是目前已知强度最高的非共价作用,这使得生物素标记的蛋白成为研究蛋白质相互作用和筛选抗体或小分子潜力药物的强大工具。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州开发了丰富的生物素标记蛋白产品,拥有[/font][font=Calibri]Avi-tag[/font][font=宋体]定点标记和化学标记两种类型的生物素标记蛋白,覆盖细胞治疗、抗体药、疫苗等热门靶点。产品具有高批间一致性、高活性等优势,适用于[/font][font=Calibri]ELISA[/font][font=宋体]、[/font][font=Calibri]Biopanning[/font][font=宋体]、[/font][font=Calibri]SPR / BLI[/font][font=宋体]等实验。下面为大家提供生物素蛋白标记常见问题及注意事项:[/font][/font][font=宋体] [/font][font=宋体][b]生物素蛋白标记常见问题:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、什么是生物素标记蛋白[/font][font=Calibri]?[/font][/font][font=宋体][font=宋体]在生物化学中,生物素化蛋白质就是生物素与蛋白质等大分子物质共价结合的产物。生物素[/font][font=Calibri]-[/font][font=宋体]亲和素亲和常数至少比抗原[/font][font=Calibri]-[/font][font=宋体]抗体高一万倍[/font][font=Calibri],[/font][font=宋体]是目前发现的自然界中具有最强亲和力的物质。因此,生物素[/font][font=Calibri]-[/font][font=宋体]亲和素系统已被广泛地应用于免疫诊断技术。生物素化蛋白的出现,也为类似于[/font][font=Calibri]WB[/font][font=宋体]实验简化了流程,提高了效率。此外,由于生物素的小尺寸([/font][font=Calibri]MW = 244.31g / mol[/font][font=宋体]),不太影响蛋白质本身的天然功能。所以它同时具备了高亲和力、高特异性、高灵敏度的优点。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、生物素标记蛋白有哪些应用?[/font][/font][font=宋体][font=宋体]生物素标记蛋白广泛的应用在生物技术的众多领域。如透析,将具有特殊结构的亲和分子制成固相吸附剂放置在层析柱中,当要被分离的蛋白混合液通过层析柱时,与吸附剂具有亲和能力的蛋白质就会被吸附而滞留在层析柱中。那些没有亲和力的蛋白质由于不被吸附,直接流出,从而与被分离的蛋白质分开,然后选用适当的洗脱液,[/font] [font=宋体]改变结合条件将被结合的蛋白质洗脱下来。怎么释放所需蛋白呢?这需要非常严苛的条件(例如,[/font][font=Calibri]pH=1.5[/font][font=宋体]的 [/font][font=Calibri]GuHCl[/font][font=宋体]),这种极端条件下的蛋白是会变性的。如果需要分离标记的蛋白质,最好用亚氨基生物素标记的蛋白质。该种生物素在碱性条件下与抗生物素蛋白结合紧密,但是在降低[/font][font=Calibri]pH[/font][font=宋体]以后,亲和力降低。因此亚氨基生物素标记蛋白可以通过降低[/font][font=Calibri]pH([/font][font=宋体]约[/font][font=Calibri]pH=4)[/font][font=宋体]从柱子上释放。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫检测中的应用:在常规[/font][font=Calibri]ELISA[/font][font=宋体]原理的基础上,结合生物素[/font][font=Calibri](B)[/font][font=宋体]与亲和素[/font][font=Calibri](A)[/font][font=宋体]间的高度放大作用,而建立的一种检测系统。生物素很易与蛋白质[/font][font=Calibri]([/font][font=宋体]如抗体等[/font][font=Calibri])[/font][font=宋体]以共价键结合。这样,结合了酶的亲和素分子与结合有特异性抗体的生物素分子产生反应,既起到了多级放大作用,又由于酶在遇到相应底物时的催化作用而呈色,达到检测未知抗原[/font][font=Calibri]([/font][font=宋体]或抗体[/font][font=Calibri])[/font][font=宋体]分子的目的。 这可以用于通过荧光或电子显微镜定位的[/font][font=Calibri]ELISA[/font][font=宋体]测定,[/font][font=Calibri]ELISPOT[/font][font=宋体]测定,[/font][font=Calibri]western[/font][font=宋体]印迹和其他免疫分析方法。[/font][/font][font=宋体] [/font][font=宋体][b]生物素标记注意事项:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、依抗原或抗体分子所带可标记基团的种类(氨基、醛基或巯基)以及分子的酸碱性,选择相应的活化生物素和反应条件;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、标记反应时,活化生物素与待标记抗原或抗体应有适当的比例;生物素:[/font][font=Calibri]IgG [/font][font=宋体]用量比[/font][font=Calibri](mg/mg)[/font][font=宋体]宜为[/font][font=Calibri]2:1, IgG[/font][font=宋体]应用浓度[/font][font=Calibri]0.5~5[/font][font=宋体]μ[/font][font=Calibri]g/ml [/font][font=宋体]生物素[/font][font=Calibri]1~3[/font][font=宋体]个[/font][font=Calibri]/Ag[/font][font=宋体],[/font][font=Calibri]3~5[/font][font=宋体]个[/font][font=Calibri]/Ab[/font][font=宋体];[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、为减少空间位阻影响,可在生物素与被标记物之间加入交联臂样结构;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、生物素与抗原、抗体等蛋白质结合后,不影响后者的免疫活性;标记酶时则结果有不同。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/category/biotinylated-protein-elite][b]生物素标记蛋白[/b][/url]详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/category/biotinylated-protein-elite[/font][/font][font=宋体] [/font]

  • 【分享】生物质谱在糖蛋白结构分析中的应用

    【分享】生物质谱在糖蛋白结构分析中的应用

    生物质谱在糖蛋白结构分析中的应用项目完成人:桑志红 蔡 耘项目完成单位:国家生物医学分析中心 随着人们对糖蛋白参与生命活动机理的日益深入了解,对天然糖蛋白及重组糖蛋白类药物的分析越来越受到重视。重组糖蛋白类药物的质量控制更是直接关系到药物的疗效及至人类的健康。九十年代以来,随着带有反射功能的基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF-MS)和纳升电喷雾串联质谱(nano-ESI-Q-TOF)等具有软电离方式的现代质谱 技术的发展,质谱以其高灵敏度和强有力的分析混合物的能力,提供了生物大分子的分子量、序列、一级结构信息以及结构转换、修饰等方面的信息,使糖基化分析有了重要的进展。 通常研究糖蛋白的方法是把蛋白链上的寡糖切下来,分别研究蛋白部分和寡糖部分的结构,因此无法研究与两部分共同相关的结构问题,也不能区分不同糖基化位点上切下来的寡糖。自90年代初,国外有人开始用质谱法研究糖蛋白的结构,同时描述了各个位点的不均一性。我们用建立的现代生物质谱技术研究糖蛋白一级结构的方法,将其应用与基因重组糖蛋白的结构分析。为糖蛋白结构分析及基因重组糖蛋白类药物的质量控制提供新的手段。一、 生物质谱研究糖蛋白结构方法的建立实验所用仪器为:1.德国BRUKER 公司的REFLEXIII型基质辅助激光解吸附电离飞行时间质谱仪,N2激光器,波长337nm,线性飞行距离150cm,加速电压2kv。2.英国Micromass 公司Q-TOF型电喷雾串联质谱仪。源温80°C,气体流速40L/h,枪头电压650V,检测频率2.4S,氩气碰撞池压力6*10-5mbar。1. 基质的选择,在MALDI-TOF-MS分析中,基质起着相当重要的作用。不同的基质对不同类的物质响应不同,a-氰基-4-羟基肉桂酸用于测定糖蛋白核糖核酸酶B效果相对较好。2. 糖蛋白分子量的测定,糖蛋白核糖核酸酶B由124个氨基酸组成,在34位Asn处连有一个高甘露糖型N-糖链。由于糖链的微不均一性,与普通蛋白质及核酸不同,其分子离子峰在MALDI-TOF-MS 质谱图上表现为一簇峰,各峰之间约相差一个糖基。正是由于这种微不均一性,使得其分子离子峰变宽,灵敏度降低。糖链分子量越大,峰越宽,灵敏度越低,所以一般只有糖链较短,蛋白的质量不太大的糖蛋白才能测定其平均分子量。用MALDI-TOF可直接测定糖蛋白核糖核酸酶B的平均分子量为 15208.6Da。http://ng1.17img.cn/bbsfiles/images/2011/03/201103211511_284179_1604317_3.jpg3. 糖含量的测定,采用O聚糖酶及内糖苷键酶F分别作用于核糖核酸酶 B,只有内糖苷键酶F能够是其分子量发生变化,表明核糖核酸酶B分子中不存在O-连接糖链存在着N-连接糖链。内糖苷键酶F切断N-糖链五糖核心最内侧的GlcNAc-GlcNAc糖苷键,得到含一个GlcNAc的肽链,减去GlcNAc,可以计算出准确的肽链分子量T=13695.6,与糖蛋白平均分子量之差为糖链的平均分子量G=1513.4,平均糖含量为:(糖链大小/糖蛋白分子量)×100%=9.95%。4. 糖基化位点的确定,研究糖基化类型及糖基化位点的策略:采用蛋白酶酶解与糖苷内切酶酶解相结合的方法,通过酶切前后含糖肽片的位移,结合网上数据库检索,可以确定糖基化类型和糖基化位点。以不同类型的糖苷内切酶作用于糖蛋白(N-糖苷键酶或O-糖苷键酶),在MALDITOF-MS 上观察其质量的变化,可以直接确定糖蛋白中是否含有响应类型的糖链,这是我们确定糖蛋白中糖苷键类型的基础。我们采用先将核糖核酸酶B还原烷基化,加Glu-C酶切,产物再用内糖苷肩酶F酶切,可观察到含糖肽段出现位移,将核糖核酸酶B的肽质量指纹图进行数据库检索,证实发生位移的肽段中含有N-糖链特异连接位点,由此确定34位Asn为糖基化位点。另外我们采用内糖苷键酶F及肽-N-聚糖酶F两种酶进行差位酶切法对含糖肽段进行验证,两种酶酶切后分子离子峰的差值除以GlcNAc的质量,结果就是N-糖基化位点的个数5. 质谱测定氨基酸序列, 我们对核糖核酸酶B肽质量指纹谱中的含糖肽段进行了串联质谱测定,首先在一级质谱图中选择离子4972.23,在串联质谱的碰撞活化室以氩气与其碰撞产生碎片,从碎片的质荷比推算出此肽片中的一段氨基酸序列,检索结果为核糖核酸酶B,从而判断其理论序列是否一致。6. 糖链结构的研究,凝集素对糖肽的亲和提取,进一步分析糖肽序列及糖链结构的关键是含糖肽段的提取。核糖核酸酶B中糖链为高甘露糖型,我们选用对其有特异性吸附的伴刀豆球蛋白对其进行提取利用这种简捷的亲和质谱的方法,对糖肽段进行了分析。建立了亲和质谱分析糖肽类物质的方法,为今后糖肽序列分析及糖链结构分析奠定了基础。二、基因重组糖蛋白人促红细胞生成素(rhEPO)的结构分析。 利用以上建立的方法,我们对样品重组人促红细胞生成素进行了分析,断定此样品为非完全糖基化,样品中只存在N-连接的糖链,无O-糖链。应用酶切法用肽-N-聚糖酶处理后,得到两个含糖肽段,进行数据库检索,测得38位及83位为N-糖基化位点,与文献报道相符,结果可靠。因此,该项课

  • 蛋白胨和胰蛋白胨

    本文引用自cheney《蛋白胨和胰蛋白胨简介》蛋白胨是将肉、酪素或明胶用酸或蛋白酶水解后干燥而成的外观呈淡黄色的粉剂,具有肉香的特殊气息。蛋白质经酸、碱或蛋白酶分解后也可形成蛋白胨。蛋白胨富含有机氮化合物,也含有一些维生素和糖类。它可以作为微生物培养基的主要原料,在抗生素、医药工业、发酵工业、生化制品及微生物学科研等领域中的用量均很大。不同的生物体需要特定的氨基酸和多肽,因此存在着各种蛋白胨,一般来说,用于蛋白胨生产的蛋白包括动物蛋白(酪蛋白、肉类)和植物蛋白(豆类)等两种。能为微生物提供C源、N源、生长因子等营养物质。因此,蛋白胨从来源上可分为动物性蛋白胨和植物性蛋白胨。胰胨、肉胨、骨胨等都是动物性蛋白胨,而大豆蛋白胨等则是植物性蛋白胨。动物性来源的蛋白胨还有:蚕蛹蛋白胨、血液蛋白胨等。   不同来源的蛋白质和不同的水解条件,其水解物中组成可千差万别。所以胨往往是一个复杂的多肽混合物。可溶于水,过热不凝固,在饱和硫酸铵中不发生沉淀但可为蛋白质沉淀剂所沉淀。可用作微生物和动物细胞培养基、特种功能性食品和化妆品的配料,也有用作啤酒等产品的稳定剂。胰蛋白胨,又称胰酪蛋白胨(Casein Tryptone)、胰酶消化酪蛋白胨(Pancreatic digest of casein),是一种优质蛋白胨,是以新鲜牛肉和牛骨经胰酶消化,浓缩干燥而成的浅黄色粉末。具有色浅、易溶、透明、无沉淀等良好的物理性状。含有丰富的氮源、氨基酸等,可配制各种微生物培养基,用于细菌的培养、分离、增殖、鉴定,以及无菌试验培养基、厌氧菌培养基等细菌生化特性试验用培养基的配置。胰蛋白胨还广泛应用于高品质的抗生素、维生素、医药工业,氨基酸、有机酸、酶制剂、黄原胶等发酵工业,生化制品及微生物学科研等领域中的用量均很大,临床用于抗炎消肿,工业上用于皮革制造,生丝处理,食品加工。在国际市场上,胰蛋白胨也属于货紧价昂的短线品种之一。   胰酪蛋白胨质量标准及其检验标准:   常规各项理化指标:   1. 澄清度(磷酸盐、碱性沉淀):无沉淀、澄清   2. 2%水溶液:透明   3. 酸碱度:6-7   4. 氨基氮:≥3%   5. 色氨酸:≥0.8%   6. 胨含量:≥80%   7. 总氮:≥13%   8. 水份:≤5%   9. 灰份:≤6%   10. 氯化钠:≤0.2%胰蛋白胨特指用胰蛋白酶酶解酪蛋白生成的蛋白胨产物,与一般蛋白胨的区别在于酶解工艺处理上,属于水解度更高、胨分子量更小更均衡的蛋白胨。

生物蛋白相关的资料

生物蛋白相关的资讯

  • 全球首发!景杰生物全息空间蛋白质组学“透视”微观蛋白世界
    在世界经济论坛发布的《2023年十大新兴技术报告》中,空间组学被评选为未来最有潜力对世界产生积极影响的十大新兴技术之一。这标志着空间组学不仅在科研领域取得了显著成果,更有望为医学、农业等多个领域带来革命性的突破。在这一技术浪潮中,景杰生物以其卓越的科研实力和前瞻性的战略布局,成为空间蛋白质组学领域的佼佼者。自2021年6月首次推出空间蛋白质组以来,景杰生物不断对技术与体系进行全面优化,一次次刷新着空间蛋白质组学的研究边界。如今,景杰生物再次重磅推出“全息空间蛋白质组学”,为空间蛋白质组学研究提供了更为强大的工具。全息空间蛋白质组学依托于景杰生物创新的10X Proteomics平台,该技术能够支持组织微环境的全覆盖高深度蛋白质组空间检测。在实验中,景杰生物研发团队选择了癌症石蜡样本,运用全流程的先进仪器设施,如徕卡冷冻切片机、数字玻片扫描系统和蔡司激光捕获显微切割仪,进行一站式操作。经过烤片、脱蜡、复水、HE染色等一系列步骤后,成像技术精准定位目标区域,并进行无间隔地切割取样。酶解后使用Orbitrap Astral / timsTOF 最新款高性能质谱平台进行蛋白质组学检测,从而得到与组织微环境图像匹配的全覆盖空间蛋白质组学数据。通过对目标区域进行全覆盖检测,得到了带有空间位置信息的100份蛋白质组学数据,每份数据对应精细组织,无间隔地构成了“全息”的空间蛋白质组学数据集。这些数据集共检测到5500多个蛋白,平均每个样本可检测到4100多个蛋白,是目前最大最全面的全息空间蛋白质组学数据集之一。对于全息空间蛋白质组学得到的庞大数据集而言,如何有效地利用生信分析手段进行挖掘和展示是大家的重要关注点。为此,景杰生物生信和人工智能团队借鉴空间转录组的分析经验,针对全息空间蛋白质组学开发了一系列工具,帮助我们“看得见、挖得深、画得漂亮、画得清晰”。通过以上数据分析方案,可实现与空间转录组学类似的:全息空间样本点无监督聚类分析、类间差异分析/差异蛋白功能注释、单个差异蛋白空间可视化、基于清晰的组织病理特征注释和指定病理分组差异分析、基于反卷积等算法注释细胞类型得分/比例等等个性化分析。相信这样一套分析的组合拳,一方面可以将蛋白信息清晰还原到组织空间微环境中,另一方面也可以与临床病理信息精准结合,定会成为空间蛋白质组学研究的标杆,加速精准医学和基础研究。随着本次全息空间蛋白质组学发布,景杰生物已搭建成全球首个结合空间蛋白质组学、空间磷酸化修饰组学以及全息空间蛋白质组学的一站式空间组学平台。包含了既可以满足个性化选取不规则点位进行蛋白质组精准检测的空间蛋白质组学,又可以进行个性化选取不规则形状点位进行磷酸化修饰精准检测的空间磷酸化修饰组学,本次又实现对组织微环境进行高分辨率全覆盖式蛋白质组精准检测的全息空间蛋白质组学,满足蛋白质组研究的多项需求,为空间蛋白质组学研究提供更多选择。展望未来,全息空间蛋白质组学将在癌症研究、神经科学、免疫学等多个领域发挥重要作用。而景杰生物作为空间蛋白质组学的先驱和引领者,将不遗余力全面推进空间蛋白质组学的技术进步,为前沿研究保驾护航!
  • 张锋《自然》重磅:首次在真核生物中找到类Cas蛋白
    近日,《自然》杂志刊登张锋团队新研究成果,研究者首次在真核生物中找到受RNA引导的核酸内切酶Fanzor(Fz),并可组装能对人类基因组进行编辑的类CRISPR/Cas系统,经初步改造编辑活性可达18.4%。该蛋白的真核起源和较小体积,都预示着它可能具有比目前CRISPR/Cas更广阔的应用场景。论文题图毫不夸张地说,CRISPR/Cas的出现为生物学发展带来了巨大的变革,起源于原核生物的CRISPR也让人好奇,是否在真核生物中也存在类似的系统。2021年,张锋团队在《科学》发文,他们发现了一种类CRISPR系统OMEGA(obligate mobile element–guided activity)。OMEGA系统由转座子末端转录的非编码RNA(ωRNA)和内切酶组成,其中3种转座子编码蛋白IscB、IsrB、TnpB是天然存在的RNA引导的核酸酶,且IscB和TnpB分别为Cas9和Cas12的可能祖先。而早在2013年,Fanzor蛋白就被报道为一种真核TnpB-IS200/IS605样蛋白,这不由得让人怀疑,Fanzor就是那个我们还未知的真核生物中的Cas。经公开遗传数据库搜索,研究者发现Fanzor蛋白广泛存在于真菌、原生生物、节肢动物、软体动物、巨病毒等物种,可分为Fz1和Fz2两种不同的独立起源,并发现了细菌TnpB向真核生物水平转移并进化为Fanzor的痕迹。与TnpB和Cas12的结构对比可以看出,Fanzor结构与它们非常相似,这无疑说明Fanzor可能具有类似的功能。Cas12、TnpB、Fanzor的结构对比研究者猜测,Fanzor可能以ωRNA 3端侧翼序列为向导RNA,在目标DNA序列执行切割功能。为此,他们构建了Fz OMEGA系统,并与质粒文库匹配进行切割实验。实验结果可见,不同Fanzor蛋白具有特定的切割模式,并具有针对双链DNA(dsDNA)的特异性。不同Fanzor蛋白具有特定的切割模式Fanzor表现出ωRNA引导的、TAM和靶序列依赖的dsDNA切割研究者在人类细胞中测试了Fz OMEGA的编辑效率,针对8个不同基因位点,4个Fanzor同源物中有3个表现出了可测量的编辑活性,效率最高达11.8%,总体水平与AsCas2f1相当。编辑效率最高达11.8%为提升编辑效率,研究者还尝试了修饰ωRNA和向Fanzor中引入突变。多方尝试之下,可将编辑效率最高提升至18.4%。不同修饰ωRNA(上)和Fanzor突变(下)后的编辑效率研究者还通过冷冻电镜技术分析了SpuFz1的结构,在2.7Å下可见典型的双球形结构,REC和WED结构域识别包含TAM的DNA双链,NUC和RuvC结构域则形成了类似Cas的沟槽,容纳ωRNA与DNA形成的异源双链。Fanzor结构最后,研究者还对SpuFz1的天然ωRNA结构进行了分析,确定其中tem2的区域是功能所不需的,去除后ωRNA总长为96nt,可令结构更紧凑、便于应用。ωRNA结构中tem2不影响活性不过,目前为止,研究者们还没有搞清楚Fanzor蛋白的生理功能,仅猜测与转座有关。Fanzor的真核生物起源和它相较Cas12等更小的大小,使得它有潜力成为新一代的基因编辑手段,但是它的天然功能使其可能面对在生物体内活性低、作用严重受控等问题。研究者认为,这可以通过基因工程改造来优化。今日,《自然》杂志刊登张锋团队新研究成果,研究者首次在真核生物中找到受RNA引导的核酸内切酶Fanzor(Fz),并可组装能对人类基因组进行编辑的类CRISPR/Cas系统,经初步改造编辑活性可达18.4%。该蛋白的真核起源和较小体积,都预示着它可能具有比目前CRISPR/Cas更广阔的应用场景。论文题图毫不夸张地说,CRISPR/Cas的出现为生物学发展带来了巨大的变革,起源于原核生物的CRISPR也让人好奇,是否在真核生物中也存在类似的系统。2021年,张锋团队在《科学》发文,他们发现了一种类CRISPR系统OMEGA(obligate mobile element–guided activity)。OMEGA系统由转座子末端转录的非编码RNA(ωRNA)和内切酶组成,其中3种转座子编码蛋白IscB、IsrB、TnpB是天然存在的RNA引导的核酸酶,且IscB和TnpB分别为Cas9和Cas12的可能祖先。而早在2013年,Fanzor蛋白就被报道为一种真核TnpB-IS200/IS605样蛋白,这不由得让人怀疑,Fanzor就是那个我们还未知的真核生物中的Cas。经公开遗传数据库搜索,研究者发现Fanzor蛋白广泛存在于真菌、原生生物、节肢动物、软体动物、巨病毒等物种,可分为Fz1和Fz2两种不同的独立起源,并发现了细菌TnpB向真核生物水平转移并进化为Fanzor的痕迹。与TnpB和Cas12的结构对比可以看出,Fanzor结构与它们非常相似,这无疑说明Fanzor可能具有类似的功能。Cas12、TnpB、Fanzor的结构对比研究者猜测,Fanzor可能以ωRNA 3端侧翼序列为向导RNA,在目标DNA序列执行切割功能。为此,他们构建了Fz OMEGA系统,并与质粒文库匹配进行切割实验。实验结果可见,不同Fanzor蛋白具有特定的切割模式,并具有针对双链DNA(dsDNA)的特异性。不同Fanzor蛋白具有特定的切割模式Fanzor表现出ωRNA引导的、TAM和靶序列依赖的dsDNA切割研究者在人类细胞中测试了Fz OMEGA的编辑效率,针对8个不同基因位点,4个Fanzor同源物中有3个表现出了可测量的编辑活性,效率最高达11.8%,总体水平与AsCas2f1相当。编辑效率最高达11.8%为提升编辑效率,研究者还尝试了修饰ωRNA和向Fanzor中引入突变。多方尝试之下,可将编辑效率最高提升至18.4%。不同修饰ωRNA(上)和Fanzor突变(下)后的编辑效率研究者还通过冷冻电镜技术分析了SpuFz1的结构,在2.7Å下可见典型的双球形结构,REC和WED结构域识别包含TAM的DNA双链,NUC和RuvC结构域则形成了类似Cas的沟槽,容纳ωRNA与DNA形成的异源双链。Fanzor结构最后,研究者还对SpuFz1的天然ωRNA结构进行了分析,确定其中tem2的区域是功能所不需的,去除后ωRNA总长为96nt,可令结构更紧凑、便于应用。ωRNA结构中tem2不影响活性不过,目前为止,研究者们还没有搞清楚Fanzor蛋白的生理功能,仅猜测与转座有关。Fanzor的真核生物起源和它相较Cas12等更小的大小,使得它有潜力成为新一代的基因编辑手段,但是它的天然功能使其可能面对在生物体内活性低、作用严重受控等问题。研究者认为,这可以通过基因工程改造来优化。参考资料:[1]Saito, M., Xu, P., Faure, G. et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature (2023). https://doi.org/10.1038/s41586-023-06356-2[2]https://www.broadinstitute.org/news/researchers-uncover-new-CRISPR-like-system-in-animals-that-can-edit-the-human-genome
  • 生物大分子药之蛋白表征
    蛋白表征生物大分子药蛋白质是由不同氨基酸连接形成的多聚体,并且通过正确折叠为一个特定构型,发挥蛋白药物的生物学功能。氨基酸序列的特定位置可以与化学基团共价结合,发生蛋白质翻译后修饰,这些翻译后修饰会导致蛋白的结构发生改变,从而影响蛋白药物的生物学活性,所以需要对蛋白的分子量、肽段覆盖率、翻译后修饰等进行检测。精确分子量分析:分子量的检测是鉴定蛋白的第一步,使用高分辨率质谱分析可得到蛋白质的多电荷信号,通过对信号进行去卷积分析,可获得精确分子量数值,并初步判断蛋白的修饰状态。对于抗体药物还可打开轻重链或者去除糖基,分别分析糖基化和去糖基化轻链和重链的分子量。我们推荐THERMO高分辨质谱来进行:Thermo Scientific LTQ-Orbitrap XL 是离子阱和轨道阱高分辨组合质谱仪,通过强大的功能、稳定性以及低运行成本成为蛋白质组学和代谢组学研究的最佳选择,完全超过并替代 Q-TOF系统。通过高分辨、精确质量数测量和多级碎片解析,完成复杂体系成份鉴定和表征。LTQ-Orbitrap XL采用全新HCD八极碰撞反应池,实现信息更丰富的MS/MS应用,包括蛋白质差异定量分析iTRAQ、PTM分析、de novo 序列分析以及代谢组学研究。Thermo Scientific&trade Q Exactive&trade 组合型四极杆 Orbitrap 质谱仪可以快速可靠地识别、定量和确认更多化合物。 本台式 LC-MS/MS 系统将四极杆母离子选择性与高分辨率和准确质量数(HRAM)Orbitrap 检测相结合,提供出色性能和多功能性。 Q Exactive 质谱仪特别适用于非目标或目标化合物筛查,也能够实现广泛的定性和定量应用,可广泛用于药物发现、蛋白质组学、环境和食品安全、临床研究和法医毒理学。2.肽段覆盖率及肽段分析:肽段覆盖率是指检测到的肽段氨基酸数量占该蛋白质总氨基酸数量的比例。蛋白质肽段覆盖率的检测,对于蛋白质类药物的一级氨基酸序列的确证,保证蛋白质类药物的高级结构形成及维持蛋白质类药物性质均具有很重要的意义。3.二硫键分析:二硫键是蛋白质通过各种链间和链内的半胱氨酸连接在一起的化学键,对蛋白质分子保持正确的高级结构,维持必要的生物活性至关重要。所以在蛋白质类药物的结构分析中,二硫键一直是分析的重点。4.N-糖糖型分析:N糖(聚糖与天冬酰胺的氮链相连)是生物药物中,尤其是单抗药物中最广为人知的糖基化形式,其中N-聚糖结构会影响药代动力学、药效学和免疫原性,因此需要对糖型进行分析。另外,抗体结构分析还可以用到毛细管电泳系统,我们推荐BECKMAN PA800 PLUScIEF法测定单抗药物等电点 使用CE(毛细管电泳仪)对样品与已知等电点多肽作为参照物进行cIEF等点聚焦,依据样品与参照肽段的相对迁移时间计算样品的等电点。 cIEF 法测定单抗样品电荷异质体纯度 使用CE(毛细管电泳仪)对样品进行cIEF等点聚焦,而后对主峰纯度进行积分,得出样品电荷异质体纯度。 CE-SDS 法测定单克隆抗体纯度 将样品还原后,使用SDS毛细管电泳电泳与紫外检测器分析,检验轻链或重链的纯度及杂质含量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制