热物性分析

仪器信息网热物性分析专题为您整合热物性分析相关的最新文章,在热物性分析专题,您不仅可以免费浏览热物性分析的资讯, 同时您还可以浏览热物性分析的相关资料、解决方案,参与社区热物性分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

热物性分析相关的耗材

  • MicroPulite HSS tC18分析色谱柱
    选用微纯HSS高强硅胶系列分析色谱填料和三键键合技术,可以耐受更高的压力范围。化合物性质适应性广,可兼容100%的水相,酸性条件耐受性好,柱流失极低,特有的封端技术,让峰形更优异。
  • --请选择-- 热分析耗材 其他物性测试仪配件
    热销宝贝梅特勒氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/瑞士¥5.00TA/PE/耐驰/梅特勒/岛津/铝坩埚/固体/热分析坩埚/样品皿/DSC¥2.50PE铝坩埚/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00德国耐驰/铝坩埚/液体/固体/热分析坩埚/样品皿/NETZSCH/DSC/坩锅¥3.00瑞士梅特勒/平底铝坩埚/液体/固体/热分析坩埚/样品皿/DSC/40ul¥3.00TA/铝样品盘/Q20/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00耐驰氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/德国¥5.50不锈钢坩埚/液体/固体/热分析坩埚/样品皿/耐驰/梅特勒/TA¥6.00耐驰氧化铝坩埚/异形/热分析/样品皿/8*23mm/德国¥8.00TGA,热重分析仪,差示扫描量热仪,氧化铝坩埚,铝坩埚,液氮制冷¥156000.00瑞士梅特勒/定位铝坩埚/液体/固体/热分析坩埚/样品皿/40ul坩锅¥3.00DSC200L/差示扫描量热仪/低温/高压/相转变/结晶/熔融/诱导期¥220000.00此模板由精准推广王提供,我也要免费出现在这里我公司专业生产DSC差示扫描量热仪,SDTA差热分析仪,TGA热重分析仪等各种热分析仪专用的铝制、氧化铝、不锈钢、金属镍、铂金和石英材质的样品盘/坩锅,且最小壁厚可达到0.2~0.3mm;适用于美国PE,美国TA(原杜邦),德国耐驰NETZSCH,瑞士梅特勒Mettler,法国塞塔拉姆SETARAM,日本岛津Shimadzu,日本Rigaku,日本精工SII,德国布鲁克AXS等,并提供来样来图加工定制,本公司是国内唯一一家引进进口工艺加工生产的坩埚生产厂家,专供出口,非国内其他厂商的不良产品。样品盘分类: 为确保样品与传感器之间高效率的热交换,请选用优质的、适合温度范围的样品盘/坩锅做实验,从而达到最佳的实验效果。1.不锈钢样品盘/坩锅适用温度范围为室温到300℃2.金属铝样品盘/坩锅适用温度范围为室温到550℃3.金属镍样品盘/坩锅适用温度范围为室温到700℃4.铂铑合金样品盘/坩锅可以使用到1800℃5.石墨、钨样品盘/坩锅可以使用到2400℃ 主要特点:★铝样品盘和样品盖:适用于非挥发性固体样品,例如聚合物和药物,通常用于聚合物、热塑性材料和热固性材料的聚合物熔化、结晶及玻璃化转变的研究;样品皿为卡口式,但并未密封。 ★为了避免样品盘/坩锅和样品反应可以使用惰性样品盘/坩锅,如铂铑合金样品盘/坩锅。★铜制或铂铑样品盘/坩锅可以起到催化剂效应,也多用于大多数材料的TGA分析。★高压样品盘:整个实验样品在样品盘/坩锅的密封环境中进行,抑制了挥发性物质的挥发;密封防止溶剂蒸发或将挥发反应产物包含在内,从而消除汽化热的干扰。★高质量的样品盘/坩锅可以帮助扩大DSC的应用范围,使用大体积的样品盘/坩锅放入更多的样品可以测定微弱的热效应,想获得好得分辨率可以使用轻质、热传导性好的样品盘/坩锅。其他规格来图或来样定制加工,价格及起订量面议。成交记录
  • --请选择-- 热分析耗材 其他物性测试仪配件
    热销宝贝梅特勒氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/瑞士¥5.00TA/PE/耐驰/梅特勒/岛津/铝坩埚/固体/热分析坩埚/样品皿/DSC¥2.50PE铝坩埚/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00德国耐驰/铝坩埚/液体/固体/热分析坩埚/样品皿/NETZSCH/DSC/坩锅¥3.00瑞士梅特勒/平底铝坩埚/液体/固体/热分析坩埚/样品皿/DSC/40ul¥3.00TA/铝样品盘/Q20/固体/热分析坩埚/样品皿/DSC/sample pan/美国¥3.00耐驰氧化铝坩埚/陶瓷/热分析坩埚/样品皿/sample pan/德国¥5.50不锈钢坩埚/液体/固体/热分析坩埚/样品皿/耐驰/梅特勒/TA¥6.00耐驰氧化铝坩埚/异形/热分析/样品皿/8*23mm/德国¥8.00TGA,热重分析仪,差示扫描量热仪,氧化铝坩埚,铝坩埚,液氮制冷¥156000.00瑞士梅特勒/定位铝坩埚/液体/固体/热分析坩埚/样品皿/40ul坩锅¥3.00DSC200L/差示扫描量热仪/低温/高压/相转变/结晶/熔融/诱导期¥220000.00此模板由精准推广王提供,我也要免费出现在这里我公司专业生产DSC差示扫描量热仪,SDTA差热分析仪,TGA热重分析仪等各种热分析仪专用的铝制、氧化铝、不锈钢、金属镍、铂金和石英材质的样品盘/坩锅,且最小壁厚可达到0.2~0.3mm;适用于美国PE,美国TA(原杜邦),德国耐驰NETZSCH,瑞士梅特勒Mettler,法国塞塔拉姆SETARAM,日本岛津Shimadzu,日本Rigaku,日本精工SII,德国布鲁克AXS等,并提供来样来图加工定制,本公司是国内唯一一家引进进口工艺加工生产的坩埚生产厂家,专供出口,非国内其他厂商的不良产品。样品盘分类: 为确保样品与传感器之间高效率的热交换,请选用优质的、适合温度范围的样品盘/坩锅做实验,从而达到最佳的实验效果。1.不锈钢样品盘/坩锅适用温度范围为室温到300℃2.金属铝样品盘/坩锅适用温度范围为室温到550℃3.金属镍样品盘/坩锅适用温度范围为室温到700℃4.铂铑合金样品盘/坩锅可以使用到1800℃5.石墨、钨样品盘/坩锅可以使用到2400℃ 主要特点:★铝样品盘和样品盖:适用于非挥发性固体样品,例如聚合物和药物,通常用于聚合物、热塑性材料和热固性材料的聚合物熔化、结晶及玻璃化转变的研究;样品皿为卡口式,但并未密封。 ★为了避免样品盘/坩锅和样品反应可以使用惰性样品盘/坩锅,如铂铑合金样品盘/坩锅。★铜制或铂铑样品盘/坩锅可以起到催化剂效应,也多用于大多数材料的TGA分析。★高压样品盘:整个实验样品在样品盘/坩锅的密封环境中进行,抑制了挥发性物质的挥发;密封防止溶剂蒸发或将挥发反应产物包含在内,从而消除汽化热的干扰。★高质量的样品盘/坩锅可以帮助扩大DSC的应用范围,使用大体积的样品盘/坩锅放入更多的样品可以测定微弱的热效应,想获得好得分辨率可以使用轻质、热传导性好的样品盘/坩锅。

热物性分析相关的仪器

  • 薄膜热物性测试仪 400-860-5168转1840
    仪器简介:HCX09A薄膜热物性测试仪 该仪器用于测试薄膜材料热物性参数。薄膜物理指出当物体很薄时,同样材料薄膜状态的物性与容积状态的物性不一定相同,因此对薄膜物性的测量必须在薄膜状态下进行。根据物体表面温度按余弦(或正弦)规律变化时的瞬态实验模型。采用温度波法来测试薄膜材料的热物性参数,由于薄膜是有限厚的一维模型。在这一状态下,当温度振荡频率达到一定值后,利用样品上、下表面温度的相位差计算导温系数或导热系数。仪器专用于研究薄膜材料热物性特性。技术参数: HCX09A薄膜热物性测试仪 该仪器用于测试薄膜材料热物性参数。薄膜物理指出当物体很薄时,同样材料薄膜状态的物性与容积状态的物性不一定相同,因此对薄膜物性的测量必须在薄膜状态下进行。根据物体表面温度按余弦(或正弦)规律变化时的瞬态实验模型。采用温度波法来测试薄膜材料的热物性参数,由于薄膜是有限厚的一维模型。在这一状态下,当温度振荡频率达到一定值后,利用样品上、下表面温度的相位差计算导温系数或导热系数。仪器专用于研究薄膜材料热物性特性。 主要技术参数: 1.导热系数范围:0.05~20w/m&bull k 2.仪器实现数字化测温,精度优于0.2级。 3.测量结果,准确度 ± 3% 4.计量加热功率可调节± 1%。 5.样尺寸要求:圆柱体¢15--30*5--30mm . 6.温度和保护气氛按用户要求定制。 7.配接计算机实现全自动测试分析。
    留言咨询
  • 3D热物性分析仪-电池导热系数测试仪-TCA 3DP-160 / 产品概述测试特性:导热系数、比热容适用领域:软包锂电池 | 复合材料基于红外热像仪非接触式测温的三维传热模型反演分析技术开发的一款热物性分析仪器,特别适用于软包锂电池、碳纤维板等此类具有典型各向异性导热系数且结构复杂的层叠复合材料,并可实现原位测量。3D热物性分析仪-电池导热系数测试仪-TCA 3DP-160 / 产品特点可测试的样品尺寸范围大,对样品的表面平整度要求无需破坏制样,直接对多层薄膜堆叠制品的等效导热系数进行准确测试适合各种不同规格、表面硬度、粗糙度、孔隙率的均质或非均质样品6面冷板均温,高精度油槽控温,环境温度可调非接触测量,自动补偿表面散热、支架散热等干扰,测试结果更准确仪器操作简单,实验开启和运行全自动进行彩图展示测试数据、预测数据、误差数据以及误差评估,快速判断实验结果的有效性自动生成并保存图表、过程数据,支持历史数据查询技术规格导热系数测试范围纵向:(0.2~5)W/(mK)面向:(5~100)W/(mK)热扩散系数测试范围纵向:(0.1~2)mm² /s面向:(2~50)mm² /s样品尺寸面向≤400mm×250mm;3mm≤纵向≤20mm测试时间≤10min测试重复性≤3%测试温度区间(0~60)℃温度稳定性0.03℃温度精度0.1℃尺寸650mm*550mm*850mm重量65kg
    留言咨询
  • 产品应用微小领域(微米等级)、纳米薄膜、Sic(单晶体、多晶体)、AIN等的测量。热物性显微镜TM3B的优势:? 热物性显微镜是测量热物性值中热渗透率的一种设备;? 可以通过点、线、面测量样品的热物性;? 可测量微米等级的热物性值的分布;? 非接触方式且高分辨率的热物性测量设备;? 检测光点径3μm、高分辨率来测量微小领域的热物性(点、线、面 测量);? 可改变深度范围进行测量,从薄膜、多层膜到散装材料都可测量;? 基板上的样品也可测量;? 激光非接触式测量;? 可检测薄膜下的裂纹、孔隙、脱落等问题。主要规格 名称/商品名 热物性显微镜/Thermal Microscope 测量模式 热物理性分布测量 (1次元?2次元?1点) 测量项目 热渗透率、(热扩散率)、(热传导率) 检测光点径 约3μm 1点测量标准时间 10秒 测量对象薄膜 厚度 数百nm~数十μm 重复精度 耐热玻璃、硅的热渗透率±10%以内 样品 ?样品支架 30mm×30mm,厚度5mm,样品表面的镜面需要研磨 ?板状样品30mm×30mm以内,厚度3mm以内,样品表面需Mo溅镀 使用温度范围 24℃±1℃(根据设备内部温度感应器) 平台移动距离 ?X轴方向20mm  ?Y轴方向20mm   ?Z轴方向10mm 加热用激光 半导体激光波长:808nm 检测用激光 半导体激光波长:658nm 电源 AC 100V~1.5kVA 标准配件 样品支架、基准样品 *选项 光学平台、空调机、空调用booth、spatter装置 本体 外形尺寸:730(W) x 620(D) x 560(H)mm 重量:80.0Kg 电源箱 外形尺寸:620(W) x 480(D) x 310(H)mm 重量:26.4Kg
    留言咨询

热物性分析相关的方案

热物性分析相关的论坛

  • 相变储能材料热物性的三种主流测试方法

    相变储能材料热物性的三种主流测试方法

    [color=#993399]摘要:本文介绍了国内外相变储能材料热物性的三种主流测试方法,对比分析了差示扫描量热法(DSC)、参比温度曲线法(T-History)和动态热流计法(DHFM)三种主流相变材料热物性测试方法的特点,简述了各方法在相变材料热分析测试时的注意事项,为相变储能材料研究、生产和使用中选择合适的热物性测试方法提供了参考。[/color][color=#993399]关键词:相变材料,储能,差示扫描量热法,参比温度法,动态热流计法[/color][hr/] [b][color=#993399]1. 引言[/color][/b]相变储能材料是利用相变过程中吸收或释放的热量来进行潜热储能的物质,其研究和开发经历了漫长的过程。与显热储能材料相比,相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点,因而可以应用于很多领域,如太阳能利用、废热回收、智能空调建筑物、调温调湿、工程保温材料、医疗保健、纺织行业(保温衣服)、日常生活、航天与卫星等精密仪器的恒温等方面。相变储能材料的热物性是衡量其工作性能的标准,也是其应用系统设计及性能评估的依据。相变储能材料的热物性包括相变温度、相变潜热、热导率、比热、循环热稳定性、膨胀系数、储热系数等,而相变温度、潜热及热导率是衡量相变储能材料性能最关键的几个参数,因此对相变储能材料的热物性测试一般都围绕这几个参数进行。相变储能材料热物性测试方法众多,但常用的主要有三种方法,本文将介绍这三种测试方法及其应用。[b][color=#993399]2. 差示扫描量热法(DSC Method)[/color][/b]差示扫描量热法是在程序控制温度下测量输入到物质(试样)和参比物的功率差与温度的关系的一种技术,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度、熔融温度、结晶温度、比热容及热焓等。根据测量方法的不同又分为两种类型:功率补偿型和热流型,两种类型的测试仪器结构如图2-1所示。[align=center] [img=差示扫描量热法测试结构示意图,690,536]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252152_02_3384_3.png[/img][/align][align=center][color=#cc33cc][b]图2-1 差示扫描量热法测量原理图[/b][/color][/align]功率补偿型DSC:通过功率补偿使试样和参比物始终保持相同的温度,测量为满足此条件样品和参比物两端所需的能量差。热流型DSC:在给定样品和参比物相同的功率下,测量样品和参比物两端的温差,根据热流方程将温差换算成热量差作为信号输出。差示扫描量热仪是比较成熟的设备,其使用温度范围广,分辨能力和灵敏度高,数据采集和处理集中,能够通过电脑直接得到DSC曲线。差示扫描量热仪测试过程中的主要影响因素有:(1)实验条件:包括升温速率的大小对试样内部温度分布均匀性的影响,检测室气体成分和压力对试样蓄放热的影响,天平的测量精度对试样选取量的影响等。(2)试样特性:样品量必须与突然释放大量能量的潜力相一致,故应尽可能使用小数量的材料,通常为1~50mg,样品在几何形状、粒度大小和纯度等方面应具有代表性。(3)参考物质:参考物质在试验温度范围内不能发生任何热转变。典型的参考物质包括煅烧氧化铝、玻璃珠、硅油或空容器。(4)其他因素:如仪器的校正等。差示扫描量热仪测试过程中的注意事项有:(1)试样的选取:由于DSC测试需要的样品量很少,在几毫克到几十毫克,因此,试样的选取关乎实际应用中大块材料的热物性,应尽量选取粒度和纯度具有代表性的试样。为减小天平测质量时产生的相对误差,应尽量多的取样。(2)温度变化速率的控制:升温速率不宜过高,过高的升温速率会导致试样内部温度分布不均匀,易产生过热现象。[b][color=#993399]3. 参比温度法(T-History Method)[/color][/b]参比温度法是一种能够测定多组相变材料凝固点、比热、潜热、热导率和热扩散系数的方法,其基本原理是将相变材料样品和参考物质分别放在相同规格的试管内,并同时置于某一设定温度的恒温容器内进行加热,直至所有材料的温度都达到这一设定温度。然后将它们突然暴露在某一较低设定温度环境中进行冷却,则得到样品和参考材料的温降曲线,通过两者的降温曲线建立热力学方程得到材料的热物性。在各种热物性测试方法中,普遍现象的是测试装置越简单所对应的测试数学模型就越复杂,需要考虑的边界条件和假设就越多。参比温度法中所进行的假定为:(1)相变过程近似为准稳态过程。(2)在固液相分界面上液相相变材料通过对流传给固相相变材料的热量忽略不计。(3)近似为一维径向传热试管的径长比要远小于1。参比温度法测试仪器结构如图3-1所示。[align=center] [img=02.参比温度法测试仪器结构示意图,690,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252153_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图3-1 参比温度法测试仪器结构示意图[/color][/b][/align]参比温度法是一种近十几年来发展起来的热分析技术,测试仪器要远比差示扫描量热仪简单,操作更简便,无需差示扫描量热仪那样的复杂培训和操作。一般采用用普通玻璃或石英试管装样品,使用方便且相变过程易被观察到,并能同时进行多样品的同时测量,样品个数取决于恒温容器的大小和数据采集系统的通道数。参比温度法测试过程中的主要影响因素有:(1)参比温度法中样品的用量为5~50g,为使样品在恒温容器内升温时受热均匀,需将样品粉碎,这破坏材料本身的结构,不能准确反映材料自身的热物性,因此会产生一定误差。(2)加热试管时,由于试管内材料分布不均等原因会导致试样内部温度不均匀,对实验结果的准确性会有影响。升温和降温过程的快慢影响试样的蓄放热,对实验结果产生一定的影响。参比温度法测试过程中的注意事项有:(1)测试条件:要求比奥数<0.1时,适用集总热容法建立热力学方程,故在测试之前应该对测试条件是否满足要求进行估算。(2)温度的选择:为了获得良好的降温曲线,加热温度要高于相变温度,冷却温度要低于相变温度。[b][color=#993399]4. 动态热流计法(DHFM Method)[/color][/b]动态热流计法是一种采用热流计测试装置来对试样热流进行动态测量的瞬态测试方法,首先测量装置中的两块加热板处于一个相同的、低于或高于样品相变温度的稳定温度,然后控制两块加热板步进升温或降温到一系列相同温度点并恒定,并实时测定每个步进温度变化过程中热流密度变化,根据热流密度变化测得每个温度点下的的热焓。动态热流计法是最近几年发展起来的新方法,此方法特别适合用于测量各种固态相变复合材料和制品、结合相变材料的混合材料以及相变材料颗粒在整个相变过程中的热物性测试评价。动态热流计法测试仪器结构如图4-1所示。[align=center] [img=03.动态热流计法测试仪器结构示意图,690,229]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_01_3384_3.png[/img][/align][align=center][b][color=#cc33cc]图4-1 动态热流计法测试仪器结构示意图[/color][/b][/align]动态热流计法同样是种多参数热物性瞬态测试方法,通过热流的瞬态变化过程可以测量相变材料的显热和潜热,由一块相变材料样品可以测量固相和液相比热、相变温度和相变焓,由此可以确定相变材料的蓄热能力。另外通过试验过程的控制,可以在稳态条件下测量相变材料相变区间前后的热导率动态热流计法测试过程中的主要影响因素有:(1)伴随着过冷现象,测试结果会是不太寻常的热涵-温度曲线。固液和固固相变的初始温度常取决于加热和冷却速率、相变材料纯度以及相变材料是不是非晶态。(2)相变材料及其复合材料大多表面粗糙,这会给测量带来很大的接触热阻,可以采用弹性薄片来减小接触热阻,这些弹性薄片热焓会带入测量,需进行校准修正以保证测量精度。(3)对于热导率较高的相变材料样品,样品边缘热损会给测量带来一定影响,要设法保证测量区域内尽可能为一维热流。动态热流计法测试过程中的注意事项有:(1)测试温度区间的设定:相变材料一般并未有精确的熔化温度或凝固温度点,因此必须大至的相变温度区间来对测试温度范围以及温度变化步长进行设定,既要保证测量精度,又要兼顾测试效率。(2)测试条件:在测试过程中要求测量装置在一系列温度点达到稳态,即在稳态条件下样品的整体温度均匀且相同,没有热流进出样品,在测试中要确保稳态条件形成后才能进入下一个温度点的测试过程。(3)热流计的选择:要选择合适的热流计使得整个测试过程中的热流都必须可测,热流传感器既要保证测量精度,又有具有较大的测量范围,避免出现热流值超出热流计量程的现象。(4)校准:动态热流计法测试中要保证热流计经过校准和测量精度,而且需要采用规定的校准程序来确定相应的修正因子。[b][color=#993399]5. 测量方法比较[/color][/b]通过对以上三种测量方法的原理分析、测试仪器的比较以及其各自的特点和适用范围选择,总结三种测试方法在相变材料热物性测量中的优缺点对比如表5-1所示。[align=center][b][color=#cc33cc]表 5 1 三种相变材料测试方法优缺点比较[/color][/b][/align][align=center][b][color=#993399][img=热分析三种主流测试方法对比,690,447]http://ng1.17img.cn/bbsfiles/images/2017/08/201708252154_02_3384_3.png[/img][/color][/b][/align][b][color=#993399]6. 结论[/color][/b]通过对相变材料热物性当前三种主流测试方法的分析,探讨了各个测试方法的适用性和优缺点。针对相变储能材料热物性考核评价,对如何选择合理的测试方法所需关注的内容进行了总结。(1)三种测试方法各有优点和不足。DSC方法技术成熟度高,测量精度高,测量结果准确,但所用试样量偏少,导致样品热物性无法完全反映实际应用的大块材料的热物性。参比温度法的实验装置和操作过程都比较简单,试验过程易于观察,样品用量也较大,但样品结构不完整,受热可能不均匀。动态热流计法技术成熟度高,可直接对大块相变材料热物性进行测量,但测试周期较长。因此在实际应用中可以结合三种方法的使用,对比试验结果,以得到合理的测试结论。(2)对于粒度均匀,结构和组成单一,少量试样能够代表总体样品性质的材料宜选用测量精度高的DSC方法测量。对于松散材料,DSC测试取样无法具有代表性时,可以选用参比温度法测量其热物性。对于有完整性和代表性要求以及需要了解热导率性能的相变材料,可以选用动态热流计法。(3)这三种测试方法经过了不断的工程应用和实践,已经成为目前国际上的主流测试方法,通过这三种测试方法完全覆盖了从微量级样品到大尺寸产品级的相变储能材料热物性测试评价。这三种测试方法分别是相变储能材料不同生产阶段内的标准性测试方法,在具体应用中可根据实际情况进行合理的选择。[b][color=#993399]7. 参考文献[/color][/b] (1) ASTM E793 - 06(2012) Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry (2)Yinping, Zhang, and Jiang Yi. "A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials." Measurement Science and Technology 10.3 (1999): 201. (3)ASTM C1784-14 Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products

  • 【求助】热物性参数的测定

    课题要求测几个典型钢种的热物性参数(高温比热,导热系数,热膨胀系数),测试温度需覆盖钢种的热轧温度区间(950-1200摄氏度)。而且各参数的测定还必须按照astm标准来进行。但是学校没有这种设备,想问一下那个测试机构能做这种测试?

热物性分析相关的资料

热物性分析相关的资讯

  • TA仪器热物性巡讲成功举办
    年11月,TA仪器分别在北京、上海、呼和浩特、四川绵阳、重庆举办系列巡讲。该系列讲座将介绍来自TA仪器强大的最新技术。在过去的12个月里,TA仪 器研发或并购了在热物性测量、热分析、流变系统、微量热领域多项新技术。特别是在美国安特公司及其实验室和德国BAHR公司加入TA仪器后, 其热物性测量产品线得到了极大的扩展。   此次巡讲, TA仪器全球热物性技术支持,拥有十多年热物性研究和应用经验的王恒博士不仅仅与大家分享了其在美国工作多年的一些研究和应用的成功案例,也就大家平时工 作中遇到的棘手问题做出了认真解答。给了广大与会者很多技术上的建议和指导。很多参会者表示,王博士的演讲让他们看到了国外对热物性研究的先进理念,开拓 了思路和眼界,并深信作为行业领导者的TA仪器一定能更好的推动热物性产品在中国的应用和发展。   BAHR 公司简介   BÄ HR 热分析公司是膨胀测定法和热分析领域的持续创新者,能提供最精确的、最广泛的热膨胀测量仪器。卧式、立式和光学热膨胀仪的配置能最优化样本环境控 制、绝对精确度以及最广泛的实验温度范围(-160°C到 2400°C)。高温粘度计和淬火热膨胀仪使得金属加工过程最优化,展示了我们对高温材料特征的深度理解。   Anter 公司简介   安 特公司是热物性测量领域的开拓者,提供热扩散、热导、热容和热膨胀技术方面广泛的产品与服务。安特仪器覆盖最广泛的温度范围(-150°C 到2800°C)并用于数百个实验室,用以研究以下各种材料,如:高分子材料,陶瓷材料,金属与合金,无机复合材料。合同测试服务同样适用于我们的每一种 技术。   王博士正在热物性讲座上海站进行演讲     北京科技大学的观众正在认真听讲中     热物性讲座绵阳站现场非常热烈
  • 我司参加《第九届亚洲热物性会议》
    第九届亚洲热物性会议10月19日—22日在北京国家会议中心召开,atpc是世界三大热物性会议之一,每三年举办一次,与欧洲热物性会议及美国热物性会议并称为热物性领域三大会议。亚洲热物性会议始于1986年,由王补宣院士和日本n. seki教授倡议创办,先后在中国、日本、韩国、印度等国成功举办。林赛斯(linseis)作为世界知名的热分析仪器厂家,不会错过这次盛会, 欢迎广大用户和合作伙伴咨询、洽谈。 linseis此次展出的仪器有:赛贝克系数测定仪、激光热导仪、差示扫描量热仪热膨胀仪、热机械分析仪、综合热分析仪等。
  • 热分析及热物性仪器中标披露及新品速递(2021上半年)
    自2021年1-6月,中国政府采购网陆续发布了热分析及热物性仪器的中标数据。仪器类型涵盖了热重分析仪、差示扫描量热仪、同步热分析仪、热机械分析仪、导热仪、热膨胀仪、熔点仪和量热仪等。仪器品牌方面,进口品牌出现了TA、耐驰、梅特勒-托利多、珀金埃尔默、塞塔拉姆、林赛斯、岛津、理学、Rubolab、费尔伯恩、瑞士步琦、马尔文等的身影;国产品牌中,则出现仰仪科技、卓光仪器;总体来看进口仪器中标情况优于国产;采购需求中,热重分析仪、差示扫描量热仪以及同步热分析仪产品中,出现部分高温、高压产品的购买需求;仪器价格方面,热重分析仪和量热仪均有出现单台套价格超过200万,综合热分析仪、导热仪、热分析联用仪单台套价格最高超100万,高压产品单台套价格均在200万上下;采购数量上,各采购单位采购每类型仪器一般为1台套。仪器信息网热分析板块品类先锋(截至2021.8.20)仪器专场(点击查看相应专场)品类先锋(点击查看相应品类先锋仪器)热重分析仪/热天平(TGA)耐驰差示扫描量热仪(DSC/DTA)菁仪北京恒久同步热分析仪(STA)耐驰日立分析仪器热分析联用仪理学耐驰热机械分析仪塞塔拉姆日立分析仪器热膨胀仪TA仪器导热仪TA仪器耐驰熔点仪仪电物光量热仪三德PARR值得注意的是,在单一来源采购公告中,大连理工大学有两款仪器进行了单一来源采购,理由基本归纳为经调研国内外仪器无法满足技术需求,故只能进行单一来源采购。1. 大连理工大学单一来源采购Rubolab的RuboSORP-TGA MP-SHT型号高压热重分析仪 Rubolab 磁悬浮天平超高温超高压热重分析仪公告中提到的单一来源采购理由:“大连理工大学煤化工研究设计所长期从事煤炭及生物质、固体废弃物等的高效清洁利用技术,在煤炭分质转化、煤焦油的深加工和生物质及工业固废的合理利用等方面开展基础和应用研究,以解决能源转化、环境保护过程中的关键工艺和材料等科学和技术问题。目前正在牵头承担国家重点研发计划项目“低变质煤直接转化制高品质液体燃料和化学品的基础研究”和“煤与生物质共热解过程中的交互作用及机制研究”等多项国家自然科学基金项目。项目研究内容是测定煤及生物质等固体燃料在不同反应气氛、不同压力条件下随温度变化过程重量的变化,从而认识固体燃料中不同组分的反应特性,为煤炭分质转化、生物质及工业固废的合理利用等工艺技术的研究与开发提供技术支撑。目前实验室有常压热天平,无法满足高压和还原性气氛下的反应要求。本项目拟通过构建高压、高温质量监测系统,对物质的热解及气化、石油裂化、催化剂活化、腐蚀和活性等特征进行研究,因此实验环境包括高温、高压、氧化性和还原性气氛及水蒸气条件等。目前国内外市场上的高温高压热重分析仪中,部分产品只适合氧化性气氛,无法在还原性气氛(如氢气)和水蒸气条件下运行,而加氢及水汽重整是拟开展研究的重要内容,因此无法满足本项目技术需求。德国儒亚的产品是带有磁悬浮天平、加样电梯辅助系统、高压冷壁反应器、电加热炉和GDU 全自动高压动态气体蒸汽引入和压力控制系统以及质谱接口,允许的温度/压力为:1500℃@50 bar。实验的气氛允许接入不同的气体或者气体的混合气,可以测试所有有机和无机气体,包括腐蚀性气体和蒸汽能满足本项目的技术要求。因此,只能采用单一来源采购方式进行采购。”2. 大连理工大学欲单一来源采购梅特勒-托利多的RC1mxTM全自动实验室反应量热器 梅特勒-托利多 全自动实验室反应量热仪 RC1mx公告中提到的单一来源采购理由:“大连理工大学化工学院H502实验室拟开展化工热安全方面的研究,采用实验与理论分析的方法,主要围绕典型化工介质和反应工艺(聚合反应、热分解反应、过氧化反应)热安全特性,对不同工况下的聚合反应、热分解反应、过氧化反应等化工工艺的失控过程进行研究,考察冷却温度、搅拌速率、加料速率、自催化速率对反应过程的影响,分析反应体系压力温度变化,提出合理的反应失控判据。基于以上基础开展化学反应失控抑制与泄放技术研究,优化泄放位置,开发新型高效的淬灭剂和快速响应的喷料装置,建立安全泄放压力预测模型和泄放面积计算方法。基于该项目研究内容,需采购全自动合成反应量热仪。项目研究围绕的反应工艺常伴有高温、高压及多组分复杂工况,同时研究需对进料速率、搅拌速率、冷却温度进行精准控制,进而对反应失控系统温升、最高温度、最大压力、最大温升速率、最大升压速率进行精确快速测量。因此,购置的全自动反应量热仪的最高温度需达到300℃左右(乙烯聚合反应最高温度),并具备提供低温反应环境的能力,最大压力应不低于20个大气压(低压法合成聚乙烯的最大压力),控温速率迟滞性要小。经调研,国内部分全自动反应量热仪的最高温度为200℃左右,无法达到300℃,同时控温采用外置加热/冷却装置,存在控温缓滞。某全自动反应量热仪校准加热器功率较大易产生热点,影响反应体系和原有的实际工艺条件。国外部分全自动反应量热仪的最高温度为200℃左右,无法达到300℃,且设备的最大压力为常压,无法进行压力较高的实验。且采用外置加热/冷却装置进行控温,存在控温滞缓,校准加热器功率较大易产生热点。而梅特勒-托利多国际贸易(上海)有限公司的RC1mxTM全自动实验室反应量热器温度范围为-70-300℃,最大压力可达100bar,采用内置快速冷热硅油混合控温可实现没有缓滞的快速冷却及加热,校准加热器功率25W(选配5W)不容易产生影响反应体系的热点。因此,只有梅特勒-托利多国际贸易(上海)有限公司的RC1mxTM全自动实验室反应量热器能够满足本项目温度、压力、控温等技术要求的需要,只能采用单一来源采购方式进行采购。”2021年上半年新品速递日立高新技术推出NEXTA® DSC系列热分析仪,用于先进材料开发和质量控制2021年1月19日,英国牛津—日立高新技术分析科学公司(Hitachi High Tech Analytical Science Corporation)(日立高新技术全资子公司,从事分析和测量仪器的制造和销售),推出了用于先进材料开发和产品质量控制的新型差示扫描量热仪——NEXTA DSC。作为日立高新技术高级热分析仪系列的最新产品,NEXTA DSC为实验室和制造商两者都提供了一种新的选择,可以进行最详细和彻底的DSC分析。详见《日立高新技术推出NEXTA® DSC系列热分析仪,用于先进材料开发和质量控制》
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制