频光谱测量

仪器信息网频光谱测量专题为您整合频光谱测量相关的最新文章,在频光谱测量专题,您不仅可以免费浏览频光谱测量的资讯, 同时您还可以浏览频光谱测量的相关资料、解决方案,参与社区频光谱测量话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

频光谱测量相关的耗材

  • 透反射测量支架 如海光电 透/反射光谱
    SA-Stage-RT透反射测量支架 关键词:反射/透射/漫反射光谱 1 产品简介SA-Stage-RT透反射测量支架是一个新型的,能满足透射和反射测量的采样支架。适用于分析如硅、金属、玻璃和塑料等一类的材料。SA-Stage-RT与如海光电的光纤光谱仪、光源、积分球有多种组合方式。可以同时满足客户对于反射光谱测量和透射光谱测量的需求。 2 产品功能示意图3 产品参数产品参数SA-Stage-RT底座尺寸φ150mm样品区域尺寸宽度<100mm样品通光口径(透射测量)直径10mm调节高度~150mm(其他长度可以定制)准直镜波长范围200~2500nm台体材料阳极氧化铝反射积分球用于连接38毫米积分球(另外选配)用途 专为透反射光纤测量而设计,能有效固定光纤,防止因抖动等人为因素影响检测效果
  • R3系列反射光谱率测量系统
    R3 反射光谱测量系统 多角度反射率光谱测量 反射是光谱测量的基本手段,实现反射光谱测量通常需要光谱仪、光源、光纤、测量支架、标准参比样品和测量软件等。对于不同种类的样品,为了获取最佳的光谱数据,反射这种基本模式又会演化为更多的形式。 复享科技为用户提供了以光谱仪为核心的反射光谱测量仪器,可以搭建个性化的光谱测量系统。复享科技R3反射光谱测量系统可以配置1个或者2个支架,用于固体和粉末样品的反射率测量。R3光谱测量支架也可以用来固定光纤探头和光源,具备高灵活性和强实用性。  更多优惠信息: http://www.ideaoptics.com/Products/PContent.aspx?pd=R3应用案例典型光谱测量系统示意图产品特点1、丰富的模块化附件方便用户自由组合配置。2、方便用户标准化测试方案,优化实验方案3、通过固定光纤,探头,光源和光谱仪减少用户占用资源。更多信息访问:http://www.ideaoptics.com/.clear{ clear:both } .right{ width:717px } .shang{ margin-bottom:20px font-size:12px } .shang tr td{ padding:10px 0px line-height:24px } a:link { text-decoration: none } a:visited { text-decoration: none } a:hover { text-decoration: none } a:active { text-decoration: none } #nav li{ font-size:12px } /*New Nav Style*/ #nav_wrap { width:710px margin:20px auto } #nav{ background:url(images/nav_bg.gif) repeat-x height:39px position:relative width:710px margin:0px auto } #nav .l{ background:url(images/navnbg.gif) no-repeat 0px 0px width:2px float:left} #nav .r{ background:url(images/navnbg.gif) no-repeat -4px 0px width:2px float:right} #nav .bt_qnav { float:right } #nav .bt_qnav a{ width:31px line-height:39px display:block padding:9px 2px 0 0 } #nav .c{ float:left margin:0 padding:0} #nav li { float:left list-style:none } #nav li .v a{ width:100px line-height:33px text-align:center display:block color:#FFF background:url(images/navnbg.gif) no-repeat -87px 6px font-family:"Microsoft Yahei" } #nav li .v a:hover,#nav li .v .sele{background:url(images/navnbg.gif) no-repeat 0px -52px color:#116406 line-height:42px font-size:14px} #nav .kind_menu { line-height:24px top:39px position:absolute color:#656565 border:1px solid #cccccc width:708px left:0px font-size:12px } #nav .kind_menu tr td { padding:0px 10px font-size:12px } #nav .kind_menu table{color:#656565 margin:20px auto display:block font-family:"宋体" left:0px } #nav .kind_menu span { font-size:10px color:#cecece line-height:30px *line-height:26px float:left } #tmenu{ margin:20px } .bt{ color:#0099FF font-size:14px font-weight:bold } .yi,.er,.san,.si,.wu,.liu{ background-color:#e9f4fe padding:0px 10px height:80px margin-bottom:15px line-height:20px } .clear{ clear:both } .xbt{ background-color:#ecf6ff padding:5px 10px margin-bottom:15px } .xbt a{font-size:14px font-weight:bold color:#333333 width:80px border-right:1px solid #cccccc text-align:center float:left } .xbt a:hover{color:#0066FF } .cpgs,.xlxh,.yyaj,.cptd,.gjjs,.cpxn{ display:block border-bottom:1px dashed #cccccc font-size:12px font-weight:bold color:#FF6600 padding:10px margin-bottom:10px }
  • 多功能量子效率测量系统配件
    超级多功能量子效率测量系统配件成功问世,一套量子效率测试系统可以测量:薄膜厚度, 折射率,透过率,光学常数, 光谱响应,外量子效率和 内量子效率。 多功能量子效率测量系统配件是特别为太阳能光伏电池(器件)的测量而设计开发的新一代量子效率测试系统。它可以测量光伏器件的 光谱响应(Spectral Response, SR, A/W), 外量子效率(External Quantum Efficiency, EQE/IPCE,%) 和 内量子效率(Internal Quantum Efficiency, IQE,%) 多功能量子效率测量系统配件特色 ×光路全部采用光纤传导替代自由空间光系统(Free-Space Optics), 从而可以保证用户长时间使用而不需要准直或调节光路,也不需要日常频繁地移动光学器件或维护,×光路传导系统也规避了周围环境光线对测量的影响。 ×快速测量EQE/IQE测量(5分钟内就可测量串联光伏电池的全部特性); ×真正全部匹配各种光伏技术(C-Si,多晶硅,硅薄膜电池, CIS/CIGS,有机光谱电池等); ×根据用户的需求提供订制化服务; ×集成其它光学测量功能,如”薄膜厚度测量“功能。 内量子效率测量系统测量方法 多功能量子效率测量系统配件由300-1100nm的光源和1/4m的单色仪构成。内部还配置电动的6位滤波片轮实现高精度地测量。而光电流(Photocurrent)测量是通过锁相放大器和数字控制的chopper实现的。 外量子效率测量系统的软件控制光源(LED), 使用高性能光电二极管作为参考,可对串联电池进行偏置测量(Biasing Measurement)。 多功能量子效率测量系统配件对于内量子效率(IQE)的测量是通过使用两个积分球与一个微型光谱仪联合实现的。其中微型光谱仪用于确定反射率和透过率,标定(校准)单色仪的输出光谱带宽。 对于我们还有重要的配件供用户选择:安装样品的温度控制基座和外部电压偏倚源共选择。 多功能量子效率测量系统配件的软件全天候控制这个套系统。该软件基于LABVIEW构建,不仅可以控制系统工作,处理电子和光谱测量,还具有极其广泛的拓展性。 软件采用”指导提示性”界面设计,指导用户一步步完成实验操作,从而大大方便用户的使用。即使没有使用经验的人员也能在软件的提示下工作。 量子效率测试系统软件提供如下两个工作模块: 1) EQE-模块用于测量外部量子效率,控制所有二级模块如温度和偏置测量等》 2) IQE-模块用于反射率和透过率,计算内量子效率,定义单色仪的输出带宽,不要激光和特殊校准配件和程序。

频光谱测量相关的仪器

  • 组合式荧光光谱测量系统-OmniFluo系列荧光光谱测量系统介绍系统组成:在许多应用领域如材料学、生物学(叶绿素和类胡萝卜素)、生物医学(恶性病的荧光诊断)和环境应用中都需要用到荧光检测技术。荧光检测通常需要高灵敏度光谱仪,在大多数应用中荧光能量仅为激发光能量的0.1%,波长要长于激发光,而且是散射光。在荧光测量系统中,一定要避免激发光进入到光谱仪中。荧光实验光学布局中的一个重点是如何避免激发光进入光谱仪, 以下几种方法提供给各位参考:1. 选择TLS或TLSE系列可调单色光源作为荧光激发源,因其具有良好的单色性,杂散光低,能够较少的影响荧光的检测;2. 在光路上使用垂直90°配置,避免激发光直射或镜面反射至荧光光谱仪,可大幅降低激发光对荧光的干扰。可调单色光源+样品室+荧光光谱仪+数据采集及处理系统+软件+计算机系统优点:可同时做激发谱及发射谱,对于未知激发谱之材料可提供更有效分析工具。OmniFluo系列组合式荧光光谱测量系统OmniFluo 系列荧光光谱测量系统采用模块化的组合方式集成而成,通过不同配件的选择,不仅可以实现荧光光谱测量,还能够实现功能的多样化,如PL、拉曼、透射反射吸收、探测器定标等光谱测量;系统采用一体化的光学调校,可以完全固定在一块精密光学平板上,只需要在初次安装时进行调校,实际应用过程中只需要对样品进行简单调整,确保在仪器使用中始终保持高效率的操作。OmniFluo-113型光子计数级稳态荧光光谱系统主要技术参数:● 激发光源:TLSE1805i-X150可调单色光源,采用150W氙灯● 激发光功率:0.3mW(@500nm,单色)● 激发光谱范围:250-1500nm(可选200-1500nm)● 激发光谱带宽:0.15-10nm(连续可调@1200g/mm光栅)● 荧光光谱仪光谱范围:200-2500nm● 荧光光谱带宽:0.1-8nm(连续可调@1200g/mm光栅)● 波长准确度:±0.25nm(Ex),±0.2nm(Em)● 波长重复性:±0.1nm(Ex,Em)● 光探测器:光子计数级光电倍增管,200-850nm● 数据采集器:DCS200PC单光子计数器,计数率:100Mcps● 系统灵敏度:纯水拉曼峰信噪比:1,000:1(RMS@带宽5nm,积分时间1s)● 超大样品室设计,便于操作,并可选配多种滤光片附件及偏振附件● 提供荧光量子产率测量附件● 可选配闭循环超低温制冷机,最低温度可达2K● 系统扩展性:采用模块化设计,可扩展至近红外波段光谱测量● 可选配锁相放大器,特别适合红外波段测量时提升系统信噪比● 软件提供灵活的实验运行步骤自定义功能,可随时储存和提取图谱,并能够进行复杂的光谱处理及光谱数据间的四则运算
    留言咨询
  • 荧光光谱仪在许多领域中被广泛应用,如:材料学(宽禁带半导体材料发光特性检测)、生物学(叶绿素和类胡萝卜素检测)、生物医学(恶性病的荧光诊断)和环境监测中都可以用到荧光检测技术。 OmniFluo “卓谱”系列荧光光谱测量系统采用模块化的组合方式集成而成,吸收了我公司 15 年的光谱系统设计、制造经验,通过不同配件的选择,不仅可以实现荧光光谱测量,还能够实现功能的多样化,如 PL、拉曼、透射反射吸收、探测器定标等光谱测量,有效解决了传统荧光分光光度计光谱范围有限及拓展功能不足的问题。 OmniFluo “卓谱”系统采用高性能“谱王”Omni-λ系列光谱仪 / 单色仪、高灵敏度单通道或多通道探测器,采用单光子计数技术或锁相放大技术,极大的提高了荧光探测的灵敏度,使得纯水拉曼信噪比达到 1000:1 以上的水平。 OmniFluo“卓谱”组合式荧光光谱测量系统将 PL 和 PLE 两种荧光测试需求完美结合,采用模块化设计,可以根据需要进行系统架构的灵活调整,实现常温及低温下的荧光光谱、激发光谱测量。 OmniFluo“卓谱”组合式荧光光谱测量系统性能特点 ■ 模块化的结构设计——各功能模块完美结合,根据需要进行选择,后续升级方便■ 合理的空间布局——在满足功能需求的前提下尽可能占用更少的空间,且方便测量操作■ 超宽光谱范围*——200nm-2500nm■ 独有的发射光谱校正功能*——让光谱测量更精准且具有可比性■ 宽波段、高输出功率光源——150W、500W氙灯光源可选■ 多种激光器波长可选*——266nm/325nm/375nm/405nm/442nm/532nm/785nm/1064nm等■ 量子产率测量功能可选**——扩展选项■ 电致发光(EL)功能可选**——扩展选项■ 超低温测量附件可选**——可提供≤10K的超低温测量*需根据实际需要进行配置确定;**选配项,请详细咨询。OmniFluo“卓谱”组合式荧光光谱测量系统参数规格表(*) 主型号OmniFluo光谱测量范围200-2500nm荧光光谱分辨率0.1nm激发光源基于150W或500W氙灯可调单色光源激发光输出带宽0.1nm-30nm激光器可选波长266nm/325nm/375nm/405nm/442nm/532nm/785nm /1064nm等探测器类型制冷型CCD 2000×256制冷型InGaAs 512×1单点 PMT 单点制冷型 InGaAs探测光谱范围200- 1000nm800-2200nm200-870nm800- 2500nm数据采集器--单光子计数器或锁相放大器锁相放大器
    留言咨询
  • SGM1040系列光谱测量工具包SGM1040系列光谱测量工具包此款产品是针对一般可见光和近红外测量透过率和吸光度的测试系统,此系统配置的高性能光谱仪覆盖了350 ~ 1020nm的波长范围,配合平衡光源、ND Filter、RGB片和比色皿等,借助特殊设计的多功能测试平台,可灵活实现各种测试, 完全满足教学使用要求。 该套产品所有部件均可打包在防水箱内,方便实际现场教学。 SGM1040系列光谱测量工具包特征■ 光谱范围 350 ~1020 nm■ 标准配置平衡光源,满足可见、近红外测试需求■ 高度集成的光谱测量平台,可实现透过率、吸收度等快速测量■ 丰富的附件配给■ 用户界面友好■ 适用严苛的环境(优异的温湿度、震动、与撞击稳定性。) ■ 内置CPU和内存、支持颜色参数计算■ 非常精确的连续多重曝光■ 适合物理,生物化学实验室和工业生产线SGM1040系列光谱测量工具包典型实验应用:■ 灯源光谱测量实验实验目的:认识各灯源的光谱特性实验内容:测量卤素灯灯源光谱、色温与色纯度■ 透射光谱测量实验实验目的:认识透过率及其测量方式。通过透过率测量实验,藉以获得未知物的透过率特性。数据库完整的情况下,还能根据未知物的透过率特性,判断未知物为何物。实验内容:测量红色试片、绿色试片、蓝色试片透过率■ 吸光度测量实验实验目的:掌握吸光度值测试方法,绘制工作曲线实验内容:使用比色皿测定某液体溶液的吸光度光谱,对其进行定量鉴别。SGM1040系列光谱测量工具包订购信息: 光谱测量工具包配件数量SGM1040-VNIR微型光谱仪1套SGT-SE12-BA测试组件(含光源)1套测试组件清单平衡光源1比色皿架1准直镜2光纤准直镜1光纤1光谱测量软件1石英比色皿(方形)1塑料比色皿(方形)1ND Filter(15%, 50%, 75%)1组RGB测试片1组SMA905适配器1组多功能测试平台1组防水保护箱1 规格/型号 SGM1040-VNIR 波长范围(nm) 350 ~1020 入口狭缝宽度(_m) 25 分辨率(FWHM) 1.3 nm CCD 索尼 ILX554B 2048像素 CCD线型传感器 积分时间 1ms ~ 65sec 动态范围 1800:1 信噪比 200:1 波长重复性(nm) +/- 0.05 (连续 100次测量 (汞-氩灯)) 波长准确度(nm) ± 0.3 温度稳定性 0.04nm/℃ 数据传输 USB 2.0 @ 480 Mbps (高速) 光谱仪光纤接口 SMA 905 体积 86(宽) x 110(长) x 31.4(高) mm
    留言咨询

频光谱测量相关的试剂

频光谱测量相关的方案

频光谱测量相关的论坛

  • 【求助】关于ICP光谱测量重金属

    查文献看到过用ICP光谱测量重金属的,想知道具体是什么仪器,100个左右的土样测量重金属大概要多长时间。1 具体仪器和方法2 100个样测量所需时间谢谢!

  • 同步荧光光谱测量

    同步荧光光谱测量

    [color=#444444]同步荧光光谱测量[/color][color=#444444]1、同步荧光光谱是否是对激发或发射波长作图,这是由仪器决定的吗?[/color][color=#444444]2、我用的岛津RF-5301,测量的亚甲基蓝,Ex=662nm Em=695nm 斯托克斯位移为15nm 测量的结果是 峰位置不在发射波长处,这样可以吗?[/color][color=#444444]3、下面图片是我设置的一些参数,不知道是否有问题[/color][color=#444444]请各位大神指教,多谢了[/color][color=#444444][img=,690,518]https://ng1.17img.cn/bbsfiles/images/2019/08/201908061647532139_1939_1843534_3.jpg!w690x518.jpg[/img][/color]

频光谱测量相关的资料

频光谱测量相关的资讯

  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • 对反物质光谱测量精度达万亿分之二
    p   英国《自然》杂志近日发表一项粒子物理学研究成果:欧洲核子研究中心(CERN)科学家完成了到目前为止对反物质的最精准光谱测量。此次测量结果不仅证明了反原子光谱学的能力,也将反物质的高精度检测向前推进了一大步。 /p p   当代物理学家们面临的一个巨大挑战,就是解释为何是物质而不是反物质在宇宙大爆炸中“幸存”了下来。因为根据经典模型的预测,在大爆炸发生后,原本存在等量的物质和反物质,但现在,宇宙几乎全部是由物质构成的。鉴于此,获取反物质并了解其特性,被认为具有极其重要的意义。 /p p   在光谱学领域,科学家会通过激光激发原子,检查其如何吸收或散发光来确定原子跃迁的特性。虽然同样的技术也可用于研究反原子,但是反物质非常难以生成和捕捉,一旦与物质接触就会湮灭,因此也难以测量它的特性。 /p p   2017年年底,欧核中心的ALPHA合作组在《自然》杂志上发文,报告了对激光驱动的反氢1S—2S跃迁(从基态到激发态)的实验性观测,这是人类首次对反物质原子进行光谱测量。而今,合作组与丹麦奥胡斯大学物理学家杰弗里· 汉格斯特及其同事,详细表述了该跃迁的其中一个超精细组分的特征。 /p p   研究团队此次分析测量了约15000个反氢原子,这些原子被磁囚禁在一个长280毫米、直径44毫米的圆柱体内。研究人员进行了为期10周的测量,最终发现:反氢跃迁的共振频率与氢1S—2S跃迁的预期频率一致,其测量精度达万亿分之二。 /p p   这是有史以来对反物质进行的最精准的一次光谱检测,标志着人类向超敏测量反物质行为并了解其“最终奥秘”迈近了重要一步。 /p p br/ /p
  • 中国科大实现百公里开放大气双光梳精密光谱测量
    中国科学技术大学潘建伟、窦贤康、张强和薛向辉等组成的交叉研究团队,通过发展大功率低噪声光梳,结合时间频率传递等量子精密测量技术,在国际上首次实现百公里级的开放大气双光梳光谱测量。这一技术可应用于监测大尺度范围的地球大气温室气体和污染气体,并可以扩展到卫星和地面之间的大气双光梳光谱测量,用于全球尺度的温室气体监测和精确校准。9月12日,相关研究成果在线发表在《自然-光子学》(Nature&ensp Photonics)上。大气光谱学是研究大气化学和物理性质的关键技术,通过探讨光与大气中分子和颗粒的相互作用来研究大气问题,广泛应用于全球气候变化、碳预算评估和空气污染研究等领域。目前,大气光谱遥感使用的光栅光谱仪、外差光谱幅度计和傅里叶变换光谱仪等技术能够以不同的时间和空间分辨率提供地球大气成分的光谱学数据。然而,这些技术存在较多限制,如无法在夜间进行测量、无法同时测量多种组分等。近年来,开放大气双光梳光谱技术被证明是进行准确、连续、多气体测量的理想技术。双光梳光谱技术具有高采集速度、溯源至原子钟级别的绝对频率精度和可以同时测量多个组分等优点,在油田监测、城市车辆排放、畜牧排放测量和温室气体监测等领域应用广泛。该技术不受湍流散斑和背景噪声的影响,在原理上能够在不校准的情况下测量更长的距离,被认为是用于大气遥感的理想精密光谱工具。当前,国际上能够实现的最远的测量距离不超过20公里,只可针对工厂、牧场等小范围区域实现监测,无法应用于更大的区域如大型城市、雨林等。该团队开发出新的双基站开放大气双光梳光谱测量方案。相比于传统单基站方案,该方案无需在测量远端放置反射器,光只需要经过待测路径一次即可完成测量,从而减小了链路损耗,更适用于远距离、大尺度的测量。利用该方案,科研人员在乌鲁木齐测量得到113公里水平开放大气中水汽和二氧化碳的强度谱与相位谱。这一距离比国际上最远的测量距离高了约一个数量级。该工作创新性地融合了潘建伟、张强等前期发展的高精度自由空间时间频率传递技术且频率准确度达到10kHz,并运用自主研发的高精度反演算法,使二氧化碳反演精度在36分钟内小于0.6ppm。该研究使得双光梳光谱能够测量的大气距离从十几公里提升至一百多公里,扩大了这一技术的应用范围。同时,系统可容忍最大损耗为83dB,与中高轨星地链路损耗相当,为实现未来的星地大气双梳光谱测量奠定了基础。上述研究是量子信息科学与地球科学深度交叉融合取得的成果,基于光频梳的量子精密测量技术有望在地球科学、深空探测、环境科学和油气行业等领域得到应用。研究工作得到国家发展和改革委员会、国家自然科学基金委员会、科学技术部、中国科学院、上海市、安徽省和山东省的支持。百公里开放大气双光梳光谱测量示意图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制