频产生

仪器信息网频产生专题为您整合频产生相关的最新文章,在频产生专题,您不仅可以免费浏览频产生的资讯, 同时您还可以浏览频产生的相关资料、解决方案,参与社区频产生话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

频产生相关的耗材

  • EdgeWave 超快调制与测量 谐振产生倍频器
    SSFS光纤拉曼频移器飞秒激光波长调谐模块 SSFS光纤拉曼频移器飞秒激光波长调谐模块利用孤子自频移(SSFS)现象。它们允许在近红外范围内对飞秒激光进行波长调谐。通常,来自固定波长铒飞秒源的孤子可以从1550 nm范围调谐到2100 nm波长。通过改变输入光功率,可以很容易地调谐输出波长。波长偏移输出信号保持相干性和线性极化。模块完全即插即用。它们是无源的,只需要连接到激光源输出端口。飞秒激光器的扩展能力易于调谐的输出波长非线性微拷贝,多光子显微镜宽调谐范围和连续、无间隙调谐非线性分光镜,例如汽车传感、气体检测频率和双频梳状产生生物医学(如深部组织成像、虚拟活检)实验室实验选择性消融 输入脉冲偏振态的保持输入脉冲相干性的保持高转换效率引入最小啁啾低损耗
  • JP-100ml 国产生产供应微波消解罐
    JP-100ml 国产生产供应微波消解罐  微波消解罐  微波消解仪已广泛应用于食品、药品、纺织、塑料、地质、冶金、煤炭、生物医药、石油化工、环境监测、污水处理、化妆品等领域。但进口微波消解仪内罐无论是供应周期还是产品价格确实让很多使用单位望而却步。为了满足更多客户的需求,德氟作为PTFE产品的生产单位,在完善的成熟的生产技术水平上,不断开发生产国内外各品牌各型号的微波消解仪内罐及外罐、转盘、塞子、垫片、弹片、主控罐盖子等。  TFM微波消解罐特点:  1、内罐选用进口美国3M公司旗下牌号TFM1700,PFA(改性聚四氟乙烯)PTFE加工完成。  2、罐体材料纯进口,保证与原厂一致,绝不添加回料,洁净的车间环境,精准高效的工艺,确保合理的成本。  3、TFM材质耐高低温-190~+260℃,极限可耐300℃,具有空白值更低,耐变形性更好,耐渗透,高温高压下恢复性更强等特点。  3、德氟特殊研发的生产工艺(五轴CNC),保证了特别厂家(如美国3M)的超长内罐的光洁度。  德氟具有的独特优势:  德氟是国内zui早从事PTFE行业的厂家,从产品原材料到半成品再到成品,全程把控,绝不添加回料。德氟已经通过了ISO9001.ISO14001,以及被多家世界500强企业纳入合格供应商名单内。在全国各地区德氟在四氟行业相当有知名度。所加工的产品实验数据不亚于原厂且成本低,价格只有原厂的1/4,大大缩减了众多科研单位购买耗材的成本开支。  德氟可以配合客户开发生产任何PTFE、POM、PEEK、PVDF、PCTFE、TFM等多种材质的所有产品,工艺技术与日本德国看齐。德氟拥有:现代化模压设备、数控设备、走心机、三轴、四轴、五轴CNC、车铣复合等多种设备数十台,保证了技术产品的稳定性,产品单价的合理性。  德氟可定制各个厂家微波消解仪内罐:  美国3M、迈尔斯通、、耶拿、上海新仪、上海新拓、上海屹尧、北分瑞利、北京祥鹄、山东海能等,我厂特殊研发的生产工艺保证特别厂家(如3M MARS5、MARS6、XPRESS)的超长罐的光洁度。
  • 皮秒可调谐光参量产生器
    皮秒可调谐光参量产生器(Picosecond Tunable Optical Parametric Generator)LT-2215-OPGLT-2215-OPG是新型的皮秒参量产生器,它是专为扩展Nd:YAG皮秒激光器LS-2151的应用而设计的。LT-2215-OPG内置3次谐波生发器(355 nm),可提供425-2300 nm的可调谐范围,LS-2151的在3次谐波时也如此。LT-2215-OPG有类型II OPG和内置高功率OPA段,它可通过手动控制(型号 LT-2215-OPG)或PC控制(型号 LT-2215-OPG-PC) 来递送。规格:LT-2215-OPG调谐范围, nm信号波(SW)425-710惰轮波 (IW)710-2300抽运辐射交换效率, %抽运辐射交换效率, %1215 Hz, SW10脉冲重复率, Hz15典型线宽 δλ, nm1.5偏振SW及 IWSW-线性水平, IW-线性垂直TH (355nm) 输出, mJ20尺寸长x宽x高, mm630 x 265 x 120

频产生相关的仪器

  • 强太赫兹产生器 400-860-5168转3512
    ?强太赫兹产生器Tera-AX 可提供 nJ 量级脉冲能量。 系统需要使用飞秒钛蓝宝石放大器泵浦源作为激发光。 THz 非线性光谱可以提供原子、分子固态基本共振的新信息。Tera-AX 可以用于 THz 非线性光谱,大尺寸 THz 成像,或其他需要高能量超短 THz 脉冲的 THz 光学应用。Tera-AX 通过基于 MgO:LiNbO3 相位匹配和光学校正产生 THz,通过倾斜飞秒激光器脉冲波前达到相位匹配条件,使整个系统达到最高的“光—太赫兹”转换效率。 主要用途:THz nonlinear(THz非线性)关键技术:Tilt Wavefront(波前倾斜)THz产生晶体:MgO:LiNbO3(掺镁铌酸锂) 规格参数 输出的THz辐射特性THz脉冲能量300nJ脉冲宽度0.5-1ps中心频率1THz光谱半高全宽 FWHM1-1.5THz重复频率3KHzTHz光束散射角45 mrad (垂直方向)100 mrad (水平方向) 尺寸600mm × 300mm × 200mm对pump激光器的要求激光脉冲能量0.5-2 mJ脉冲宽度150 fs中心波长770-830 nmEO-AX 光电探测器参数(可选项)扫描长度180 ps频谱分辨率30 GHz 系统包括 —— Tera-AX光学组件基于MgO:LiNbO3光学整流原理产生THz辐射,利用抛物净收集输出THz光束—— EO-AX 光电探测器基于ZnTe晶体的电光取样原理,包括: 1) 3个离轴抛物镜,用于聚焦THz光束到样品上 2) 高灵敏度的平衡探测器以及数字转换器 3) 光学斩波器 4) 延迟线 5) 控制软件
    留言咨询
  • 超连续谱产生模块 400-860-5168转2831
    超连续 谱产生模块一.超连续谱产生模块产品概述 昊量光电新推出封装的非线性纳米光子波导模块,可用于脉冲激光的超连续谱(SCG)产生。该模块采用纳米光子波导技术紧密束缚光线,实现了低脉冲能量下的超连续谱产生,并且用户可以通过定制波导尺寸调节实际输出的光谱信号。模块支持标准光纤 连接,通过标准封装提供定制光谱输出。这一模块适用于光通信、光谱分析、生物医学等领域,产品性能高、易于集成和使用。二.超连续谱产生模块基本参数规格SC-1560-780SC-Custom输入脉冲波长~ 1560 nm~ 1000 to 2000 nm 输入脉冲宽度 200 fs 350 fs输入脉冲能量150 pJ 150 pJ输出光谱范围~ 750 to 1300 nmCustomizable色散 波能量 40 uW 100 uW输出信号类型FC/APCFiber or lens模块尺寸~ 57×13×9 mmCustomizable平均光学功率400 mW4 Watts (w/TEC)工作温度15 to 30 ℃-10 to 60 ℃ *假设光学脉冲的压缩过程在模块外壳内实现,则输入脉冲宽度需要考虑光纤的色散影响 *色散波的能量功率与脉冲重复频率呈线性关系。 三.超连续谱产生模块案例数据 借助超连续谱产生模块,可以将通过PM780光纤输入的1560 nm光展宽至倍频的780nm光。在低脉冲能量(15 pJ)下,光谱相对较窄。当脉冲能量高于140 pJ时,光谱会极大展宽,其中峰值位于780 nm。这一倍频光的产生可用于激光频率梳 的fceo检测。(值得注意的是,标准化模块的输出使用的是PM780光纤,这一光纤对波长大于~1300 nm的光会产生部分衰减,定制款可根据要求提供其他输出光纤。)关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学 、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 电缆故障测试仪主要特点 1、双钳法/地桩法双重测量方式:电缆故障测试仪适合任意接地场所,多点或单点接地,都可正常测试; 2、抗干扰能力强:自产生高频电流,从而过滤市电中50Hz、100Hz等谐波干扰电流,即使在500KV变电站环境下,也能**测量; 3、测量范围广、分辨率高:量程从0.01Ω~200Ω,分辨率0.01Ω,对0.7Ω以下接地电阻,也能准确测量; 4、大钳口设计:钳口直径50mm(标准配置),满足用扁铁/钢作接地引线的情况,特殊钳口尺寸可按客户要求定制;5、大容量数据存储:可储存200组测量数据; 6、操作简单,单人作业:全中文操作界面、体积小、重量轻,防爆便携箱,野外测量携带方便。一、功能特点1.设备紧凑型设计,软件控制,具有自动升压、稳压功能。2.智能操作,实时高压动态显示,故障点放电自动指示。3.系统软件自动判断,具有过流自动保护功能,并及时进行液晶文字提示。4.工业级4.3寸彩色液晶显示,人机界面友好,数据显示非常直观。5.性能稳定,箱体采用工程塑料绝缘材料,操作安全,体积小、重量轻、接线简单。6.专用组合接地线设计,避免因人为接线原因引起的工作异常,性能稳定。7.可连续工作5小时以上。8.工业级防爆便携拉杆机箱,方便用户使用及携带。二、技术参数1.输出电压:负直流0~32kV,连续可调2.外接电容:2uF/30kV(标配),可扩展3.冲击能量:≤1024J/5S4.放电周期:min 3S5.显示电压误差:≤±2%6.瞬点放电电流:>1.5A7.显示方式:工业级4.3寸彩色液晶屏8.其它功能:具有应急工作模式,性能稳定9.工作电源:AC220V±10%,50Hz,可外置移动电源工作10.工作温度:-10℃~50℃11.相对湿度:≤90%12.输出功率:≤1.5kVA13.外形重量:长360mm×宽265mm×高290mm14.重 量:≤12kg
    留言咨询

频产生相关的方案

频产生相关的论坛

  • 【求助】倍频峰产生原理

    求助,关于倍频峰,有的说由基态跃迁至第二、三振动能级所产生的吸收峰,称为倍频峰;有的说是光栅二级衍射造成的,请问哪种说法是对的?多谢呀

  • 变频器产生的高次谐波的危害

    传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰;感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干?电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。要有效地对高次谐波治理,就必须先了解它的危害表现形式。(1)电力电子设备:电力电子设备通常靠精确电源零交叉原理或电压波形的形态来控制和操作,若电压有谐波成分时,零交叉移动、波形改变、以致造成许多误动作。(2)计量仪表:计量仪表因为谐波会造成感应盘产生额外转距,引起误差,降低精度,甚至烧毁线圈。(3)电力电容器:当高次谐波产生时由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。(4)变压器:电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声等。(5)开关设备:由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。(6)保护电器:电流中含有的谐波会产生额外力距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。(7)感应电动机:电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。另外,高次谐波还会对电脑、通信设备、电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。

频产生相关的资料

频产生相关的资讯

  • 斯坦福大学教授:从源头上杜绝问题食品产生
    “中国对食品安全的重视到了前所未有的高度,今年《食品安全法》的出台就是中国食品安全一个标志性事件。然而,也应清醒地看到,中国的食品监管还有很长的路要走。”斯坦福大学国际研究所Helen Farnsworth主席、高级研究员Scott Rozelle教授指出,“如何能从源头上杜绝问题食品的产生,把食品安全事故扼杀在摇篮中,是中国目前最需要解决的问题。”他是在16日举行的斯坦福中美学生论坛2009年中国会议上接受中国经济网记者采访时作出如上表述的。   从源头入手 杜绝问题食品的产生   “食品安全问题并非中国独有,也不可能一下子就能解决。”Scott Rozelle教授指出。美国食品问题的管理和追查比较容易,因为生产企业都是大企业,没有作坊式的小厂。而中国食品生产加工企业共有50多万家,其中有很大一部分还是中小食品企业、小作坊。对这些企业的监管涉及到生产、流通、消费等几个环节。面对如此庞大的监管工作量,质量监管无法保证效果。Scott Rozelle教授建议:“中国应该从其产品链最薄弱的地方入手,关停生产不合格农药的厂家,从源头上杜绝受污染的不安全的食品被生产出来。”研究表明,植物性农产品的农药、重金属、化肥污染,动物性农产品的抗生素、激素残留,农产品中有害微生物引起的安全性问题,以及转基因农产品的安全问题,已经成为中国农产品不安全的四大主要原因。其中农药、激素残留超标更是食品安全的最大敌人。   严惩黑心商家 “一次违法、终身出局”   在美国,一旦出现食品安全问题,相关企业根本无法逃脱惩罚。生产商或销售商都会受到处罚,且要花巨额费用召回相关食品。Scott Rozelle教授认为,只有当消费者能够通过诉诸法律获得巨额赔偿的情况下,食品安全体制才可能真正影响生产企业的所作所为。必须让食品生产商知道,如果这种诉讼赔偿巨大、过于频繁或范围广泛,它最后只能沦落到破产的地步。他指出:“这样严厉的处罚对食品企业才会形成有力的威慑。”   中国产品被拿来说事是挑战也是契机   在谈到为何别的国家出口商品出现问题的比率高于中国,却未被国外媒体抓住不放,而中国产品一出问题就被无限“放大”时,Scott Rozelle教授指出,这既是一个严重的挑战,同时也是一个不错的契机。挑战需要通过加强沟通和合作来化解,契机则是这同时也会促使中国在产品质量监管上完善制度、加大力度。事实终究是不可被屏蔽的,只要真正提高自己的产品质量,就不会惧怕任何“借题发挥”和“煽风点火”。   作者简介:   Scott Rozelle教授是康奈尔大学博士,曾任教于加利福尼亚大学戴维斯分校农业与资源经济系,现任斯坦福大学国际研究所Helen Farnsworth主席、高级研究员和教授,世界银行、美国农业部经济研究局、国际农业研究磋商小组影响评价委员会、联合国开发计划署中国办公室政策顾问。主要研究领域包括:中国农业供求分析、中国农业国际贸易、中国农业政策及其效果、转型经济中市场制度的建立及其对平等与效率的影响、贫困与不平等的经济分析等。
  • 生态环境部固体废物与化学品司就全国医疗废物产生与处置有关情况答记者问
    近日,生态环境部固体废物与化学品司有关负责人就疫情情况下,全国医疗废物产生情况、处置能力及实际处置情况回答了记者的提问。  医疗废物是怎么分类的,产生情况如何?  医疗废物(以下简称“医废”)属于危险废物,是指医疗卫生机构在医疗、预防、保健及其他相关活动中产生的具有直接或者间接感染性、毒性以及其他危害性的废物,包括感染性废物、损伤性废物、病理性废物、化学性废物和药物性废物五类。  新冠肺炎病人、疑似病人在定点医院、发热门诊等场所进行治疗、隔离观察、诊断及其相关活动中产生的医废(通常简称“涉疫医废”)具有高度感染性,采取比普通医废更严格的管理措施。另外,医疗机构外需严格管理的场所(如封管控社区、隔离酒店等)中核酸检测阳性者、密切接触者、密接的密接等产生的生活垃圾和工作人员使用过的防护用品,以及核酸检测产生的医疗废弃物等参照医废管理。2021年,全国共产生医废140万吨(其中涉疫医废20.1万吨),比2019年、2020年分别增长18.6%、11.1%。  目前全国医疗废物处置能力处于什么水平?  近年来,各地逐步提升医废处置能力。新冠肺炎疫情发生以来,各地加快集中处置设施建设,并储备大量协同应急处置设施,我国医废处置能力大幅提升。截至2021年底,全国共有540个医废集中处置单位,集中处置能力达215万吨/年,比疫情前(2019年底)提高39%。总体上,目前各地医废核准常规处置能力与医废产生量的比例,全国平均为1.5倍,其中高于平均数的省份有18个,其他低于平均数的13个省份集中处置能力也都超过产生量;通过延长设施工作时间及启用备用设施等方式,提升后的各地医废处置能力与医废产生量的比例,全国平均为1.9倍,其中高于平均数的省份有19个,其他低于平均数的12个省份,集中处置能力均在其产生量的1.2倍以上。此外,各地还储备了充足的应急处置能力(包括备用设施,以及危废焚烧炉、生活垃圾焚烧炉等协同应急处置设施),可随时启用以保障应急处置。全国医废处置能力总体充足。据测算,每100万人参加核酸检测产生约5吨核酸检测废物,现有医疗废物常规和应急处置能力能够满足包括核酸检测废物在内的医疗废物处置需求。  全国医疗废物处置情况如何?  2021年,全国累计处置医废140万吨,其中集中处置医废120.9万吨,应急处置19.1万吨,集中处置设施负荷率约为56%,产生的医废全部妥善处置,涉疫医废做到日产日清;医废应急处置量占总处置量的比例为14%。数据对比显示,常规集中处置是医废处置的主要方式,协同应急处置方式对疫情期间的废物处置发挥重要的补充作用。  从近期调度情况看,全国中高风险地区医疗废物处置情况平稳有序,近三个月以来,全国涉及中高风险地区的市(州)和直辖市中,医疗废物处置设施日均负荷率均低于90%,其中97%的地区低于80%,66%的地区低于50%。所有医疗废物均得到妥善处置,涉疫医废日产日清。
  • 半导体所等在手性分子产生自旋极化研究的进展
    利用手性与自旋极化的相互转换产生自旋流是近年来自旋电子学领域的研究热点,相关现象被称之为“手性诱导自旋选择性”(Chirality-Induced Spin Selectivity, CISS)。CISS在自旋电子学器件中具有潜在的应用价值和丰富的物理内涵,但是手性与自旋极化相互转换的微观机理一直是激烈争论的科学问题。佛罗里达州立大学熊鹏教授团队与中国科学院半导体研究所赵建华研究员团队合作,以“磁性半导体/手性分子/非磁性金属”为核心构建自旋阀器件(图1),系统研究了具有不同自旋轨道耦合强度的金属电极对器件磁电导的影响,揭示了手性与电子自旋极化的转换机理。具体而言,当非磁性金属为具有强自旋轨道相互作用的Au电极时,能观察到显著的类自旋阀信号;而当非磁性金属为Al电极时,类自旋阀信号则减小了约一个数量级(图2)。魏茨曼科学研究所颜丙海教授从理论上指出,手性分子的结构不对称性使得电子产生轨道极化,而具有强自旋轨道耦合的非磁性金属电极进一步将电子的轨道极化转换为电子的自旋极化。在此基础上,该合作团队发展出一个势垒可调的隧穿模型,很好地对实验数据进行了定量解释。值得指出的是,高质量的磁性半导体(Ga,Mn)As薄膜在这项工作中发挥了关键作用。实际上,前期的类似工作未能给出令人信服的实验数据,其主要原因在于自组装的手性分子隧穿势垒层不可避免地存在孔洞等缺陷,从而导致“磁性金属/手性分子/金属”自旋阀器件短路失效。而在分子和金属电极间加一层薄的氧化绝缘层的方法又会增加器件本身的复杂性。将磁性金属换成磁性半导体(Ga,Mn)As,由于金属/半导体肖特基势垒的存在,上述问题得到了有效解决。此外,(Ga,Mn)As可以通过应变将其调控为垂直各向异性材料,为观测到清晰可靠的自旋阀信号提供了保障。该工作以“Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves”为题近日发表于Nature Communications。佛罗里达州立大学Yuwaraj Adhikari博士生和柳天寒博士为论文的共同第一作者,半导体所赵建华研究员、魏茨曼科学研究所颜丙海教授和佛罗里达州立大学熊鹏教授为共同通讯作者,半导体所王海龙副研究员也为本工作做出重要贡献。这项工作建立在该合作团队前期构建“手性分子/半导体”自旋阀器件的基础上。他们通过系统研究自旋阀信号对电流和电压的依赖行为,为建立合理的物理模型提供了实验基础。相关工作以“Linear and Nonlinear Two-Terminal Spin- Valve Effect from Chirality-Induced Spin Selectivity”为题发表于ACS NANO14, 15983 (2020)。上述工作得到了科技部、中国科学院和国家自然科学基金委的项目经费资助。图1 (a) 手性分子产生电子自旋极化的机理示意图。(b,c) 垂直自旋阀的器件结构示意图和扫描电镜图。图2 非磁性金属为 (a) Au和 (b) Al 对应的类自旋阀信号。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制