黏弹性

仪器信息网黏弹性专题为您整合黏弹性相关的最新文章,在黏弹性专题,您不仅可以免费浏览黏弹性的资讯, 同时您还可以浏览黏弹性的相关资料、解决方案,参与社区黏弹性话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

黏弹性相关的耗材

  • GelPak 凝胶膜,无硅弹性胶膜
    价格货期电议Gel-Pak 新产品 Vertec 新型无硅弹性体材料上海伯东美国 Gel-Pak 推出新型无硅弹性体材料 Vertec, 包含热塑性弹性体 Thermoplastics ( TPE ), 防静电热塑性弹性体 ESD Thermoplastics ( TPE ), 热塑性氨酯材料 Thermoplastic Urethanes ( TPU- Film Only ) 和聚氨酯 Polyurethanes ( PU ).美国 GelPak Vertec 新型无硅弹性体材料特别适合客户的产品会与普通硅胶中硅产生富集效应或者产生硅胶残留的场合. Vertec 系列可以用来制作 AD 和 VR 系列芯片盒, 同时 Gel Pak 可以针对客户的要求定制 E-Film 产品 TPE, TPU与常规的 Gel 胶膜相比, Vertec 无硅弹性体材料有如下的特性无硅弹性体耐温达到 75摄氏度可以非常方便的制造完全防静电的产品黏接的时间拉长 ( 如果放芯片或器件时, 可以施加一个压力会有助于更好的粘结力 )自动设备拾取的时间增加使用美国 Gel-Pak Vertec 无硅弹性体制作的芯片包装盒, 现已全面上市!VTX 盒子特性无硅不需要辅助真空来帮助拾取产品胶膜较 VR 系列更不易破损成本低适用于芯片尺寸大于 600微米的场合 Vertec 无硅弹性体材料粘度Gel-Pak 胶膜的粘度根据需要分成超低, 低, 中, 高四挡, 用户可以根据自己的产品情况选择合适的粘度等级.所有 Gel-Pak 产品都符合 Rohs 和 Reach 的相关要求* ER, EH, EH07 和 FE70 粘性水平是静态耗散美国 Gel-Pak 公司自 1980年成立以来一直致力于创新包装产品的生产, Gel-Pak 产品使用高交联合聚合材料 Gel, 材料通过本身表面的张力来固定器件, 固定力等级取决于 Gel 产品的自身特性. 美国 Gel-Pak 晶圆包装盒广泛应用于储存和运输半导体精密器件, 光电器件和其他精密器件等, 上海伯东是美国 Gel-Pak 芯片包装胶盒中国总代理.若您需要进一步的了解详细信息或讨论, 请联络上海伯东罗先生伯东版权所有, 翻拷必究!
  • 弹性样品夹
    产品简介:弹性样品夹用于辅助固定微小样件,与冷镶嵌模配套使用。
  • 弹性样品夹
    弹性样品夹用于辅助固定微小样件,与冷镶嵌模配套使用。

黏弹性相关的仪器

  • 弹性体 400-659-9826
    仪器简介:《热分析应用手册系列丛书》之《弹性体》分册通过大量实例全面深入地介绍和讨论了热分析在聚合物弹性体方面的应用,第1至第3章热分析方法简介,弹性体的结构、性能和应用;弹性体的基本热效应,第4至第5章介绍了大量的应用实例,包括对结果的详细解释和导出的结论。目录应用一览表1.热分析概论1.1差示扫描量热法1.1.1 常规1.1.2温度调制1.2热重分析1.3热机械分析1.4动态热机械分析1.5 与TGA的同步测量1.5.1 同步DSC和差热分析1.5.2逸出气体分析1.5.2.1 TGA&mdash MS1.5.2.2 TGA&mdash FTIR2.弹性体的结构、性能和应用2.1聚合物的结构2.1.1 大分子中单体的排列2.1.2大分子的结构2.2聚合物的物理结构2.3聚合物材料的分类2.4弹性体产品2.4.1聚合物的交联2.4.2弹性体的生产2.4.3弹性体的组成2.5弹性体的分类2.6弹性体实例2.7弹性体分析2.7.1 热效应2.7.2应用概述2.7.3 弹性体分析标准方法汇总3.弹性体的基本热效应3.1DSC测试效应3.1.1玻璃化转变的计算方法3.1.2结晶和熔融3.1.3硫化反应3.1.4借助ADSC用于曲线解析&hellip &hellip 4.热分析的应用5.结果的总结参考文献
    留言咨询
  • 皮肤黏弹性测试仪 400-860-5168转2128
    皮肤黏弹性测试仪CutiScan CS100 CutiScan CS100 通过一个视频摄像头测试皮肤在经过一个负压和恢复过程中的位移变化,提供了一个检测皮肤粘弹性和各向异性的新方法。应用领域: 应用于化妆品的功效评价、皮肤表面形态研究、皮肤老化研究、皮肤弹性改善研究等。欢迎致电:010-62186640
    留言咨询
  • S-VECD简单黏弹性循环损伤试验型号:用途:用于评价沥青混合料的疲劳性能标准规范:AASHTO TP107, EN 12697-24, JTG E20 T0770在美国,随着AMPT沥青混合料性能试验仪的普及, 通过S-VECD直接拉伸疲劳试验评估疲劳开裂性能,甚至是在路面钻取小直径芯样执行S-VECD试验来计算沥青混合料的疲劳模型,并由此评价疲劳性能已经变得越来越流行。这种使用直径38mm/50mm的小直径试验,更是如今的一个热点,AASHTO已经为此编写了试件制备方法标准、动态模量标准和S-VECD标准。 这种试验方法一直是在IPC的AMPT沥青混合料性能试验仪上开发,IPC为此提供了全套的试验工具,包括试件的安装工具,传感器,以及配套的粘贴工具,传感器安装工具和模量校准设备等。 S-VECD试验通常在AMPT沥青混合料性能试验仪上执行,也可以在UTM多功能路面材料动态伺服试验系统和AST沥青混合料简单测试系统上完成。 订购信息 79-PV70610,单轴疲劳拉伸盘,适用于直径100mm,高度130mm的圆柱体试件。79-PV70504,量程±0.5mm的LVDT位移传感器。79-PV70611,拉伸盘粘贴工具。用于在试件的两端快速粘贴拉伸盘,保证对中。 79-PV70501,位移传感器快速安装工具。用于在圆柱体试件的表面快速粘贴LVDT位移传感器,可以同时安装2个,3个或4个传感器。 79-PV70502,标准模量校准工具。该工具由模量稳定的金属材质构成,用于动态模量试验和S-VECD试验时的设备校准。
    留言咨询

黏弹性相关的方案

黏弹性相关的论坛

  • FRAE 基本概念之:弹性节点和钢性节点

    G 知道了这些,才能够最大限度的节约成本。才能将“好钢用到刀刃上” QCd‑v%:"| 节点是对于发酵时间而言的,对于参数则称之谓弹性参数和钢性参数。通过FRAE软件的扫描,如果参数在某节点的影响值很大,则这个参数具有弹性参数的条件,如果在工艺上可调,那么才是弹性参数。举例来说,如果40小时pH对发酵单位的影响很大,而pH可以进行控制,那么40小时的pH是弹性节点,如果整个发酵过程pH对发酵单位都有很强的影响,那么pH是弹性参数。有一些参数,虽然具有弹性性质,但不一定是弹性参数,如前期的pH,虽然我们可以通过加酸和碱进行调节,但是原工艺在前期没有规定调节pH,因此批报显示pH的性质是自然的pH性质,这一时刻pH与发酵单位关系强,并不是单纯的与pH关联,而是与代谢的一种关联,因为pH是菌种与培养基的一种相互作用的反映。如果用FRAE对参数进行分析之后,发现前期pH高则发酵单位高的情况后,如果在以后的发酵过程中人为的将前期pH调高,也很难使后期的发酵单位提高。因此说前期pH可能不是弹性节点。如果前期pH具有弹性性质,但不是弹性节点的话,这种情况也不是说对我们没有用途。最起码能让我们知道这个参数很重要,需要通过参数分析:从pH的变化推测细胞与培养基相互作用的情况。通过这种推测,使我们有可能发现C/N比的不合理,从而提高C或N的比例。如果通过调节没有效果,那么可能就是原材料或种子的情况,这时可以通过摇瓶实验去验证这种判断。这就是从少数节点的变化情况着手,从而提出解决问题的一种思路。

  • 急弹性,缓弹性和塑性三种变形的特点是怎样的?

    急弹性,缓弹性和塑性三种变形的特点是怎样的? 急弹性变形的特征为外力作用时立即变形,外力去除则立即恢复。 缓弹性变形的特征为外力作用时变形逐渐增加,外力去除后逐渐恢复。 塑性变形的特征为外力作用时产生变形,外力去除后变形不恢复。 急弹性变形的实质为大分子链键长和链角的开合,皱曲大分子的部分伸展。 缓弹性变形的实质为大分子链屈曲伸展,滑移错位。 塑性变形的实质为大分子键质心不可恢复的粘性流动。

  • 强迫高弹性和高弹性的异同

    强迫高弹性和高弹性的异同强迫高弹性是指处于玻璃态的高分子可在强制外力作用下,产生高弹形变的性质。区别:①强迫高弹形变TTg;②当外力撤消后,强迫高弹形变无法恢复,而高弹形变可以恢复。联系:都是链段运动,都是能发生较大形变。

黏弹性相关的资料

黏弹性相关的资讯

  • 2013年MTS弹性体设备用户培训班成功举办
    2013年3月18-22日,MTS在上海交通大学闵行校区举办了为期 5天的弹性体设备用户培训。 培训期间, 来自一汽、一汽大众、上海大众、北汽福田、无锡特瑞堡、泛亚汽车、哈金森工业橡胶等近40家整车及零部件用户、80名培训人员参加了此次培训。 本次培训由MTS美国弹性体系统专家Justin Ficker先生,MTS中国应用工程师马金财先生主讲,主要针对弹性体的控制系统、软件操作、试验设置等进行演示和实际操作练习,受到了广大用户的普遍欢迎。 培训最后一天,培训人员参观了无锡特瑞堡减震器有限公司,无锡特瑞堡是业内著名的汽车减震器供应商,有着MTS各系列的弹性体和零部件试验系统,广大客户在现场通过观看试验演示对设备有了更深一层的了解。 参观结束后,MTS中国区副总裁、销售总监王爽先生与特瑞堡公司减震事业部亚太区副总裁、技术总监Didier Gawronski先生、采购总监冯强会谈,就双方今后的发展和合作交换了意见、并取得共识。 MTS中国2013年3月
  • 浙大攻克世界性难题:让石墨烯有弹性
    p  在80后90后的童年记忆中,有一个著名的历史故事,司马光砸缸。当陶土做的水缸被石块砸了一下,就破了一个洞,水流出来了,掉在缸里的孩子也得救了。/pp  而对于女孩子来说,跳皮筋是洋溢着欢快笑声的集体游戏,在牛皮筋的一勾一拉中,旋转,跳跃,不停歇。/pp  这两个童年记忆,其实包含着一个自然界的普遍规律,玻璃、陶瓷这样的无机材料通常都是又脆又硬的,没有什么弹性,而橡胶这类的有机材料韧性好,弹性足,可以反复拉伸。/pp  如何让无机材料变得像有机材料那样可以回弹,是世界很多科学家的努力目标。/pp  这其中就有浙江大学高分子科学与工程学系的高超教授团队。最近,他们的研究取得了突破性进展,设计制备出了高度可拉伸的全碳气凝胶弹性体,并且表现出优异的性能,今后有望应用在柔性器件、智能机器人及航空航天等多个领域。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/99d0c873-4a30-4542-90ee-86367a879173.jpg" title="3.jpg"//pp  论文发表在国际著名期刊《自然通讯》,共同第一作者为博士生郭凡、姜炎秋,通讯作者为许震特聘研究员、高超教授。br//pp  strong打破物质的本性/strong/pp  材料科学的发展一直与人类文明密切相关。现如今我们已经拥有了各种各样的材料。可是让科学家烦恼的是,无机材料耐高低温但没有弹性,有机材料有弹性却又不耐高低温。/pp  如果能研究出一种无机材料,在保持耐高低温的同时具备一定的弹性,该多好啊。“这样就能扩大材料的使用范围。我们做科学研究就是要打破物质的本性,这样才能发现新性能,寻找新用途。”/pp  研究团队在研制这一新材料时,聚焦的无机物材料为碳。因为碳所特有的导电性能,为未来应用提供了更多可能性。他们发现,高分子弹性体,比如橡胶,分子是链状结构,就像柔软的棉线团,有很多缠结的地方可以被拉开,当外力去除,这些高分子的“棉线”又重新缠结变成线团。无机物之所以不能拉长再回弹,就是因为没有相似的结构。/pp  这时候,高超团队搬出了他们的研究老伙伴,石墨烯。他们希望能在“一片片”的石墨烯中制造出一些褶皱,将高分子的可拉伸“线团结构”拓展成为石墨烯中可拉伸的“纸团结构”,来提高石墨烯的延展性。/pp  团队借鉴生物学理念,从肌肉和关节的拉伸中寻找答案,设计出类似传统拉缩式灯笼的结构,并用3D技术打印出来,通过限位压缩定型,形成一些“褶皱”。这时候,石墨烯材料可以拉伸100%。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/96def27c-0e76-4da6-b6ea-cf62831f59ba.gif" title="PT180405000012hNkQ.gif"//pp  继续拉伸,石墨烯的“一片片”分子结构之间就会出现裂纹。怎么办?团队引入了另外一种纳米材料——碳纳米管,在石墨烯的片层之间打上“补丁”。这样一来,石墨烯就可以拉伸200%了。br//pp  高超教授说,这种全碳气凝胶弹性体具有优异的抗疲劳性能,在拉伸200%的状态下,可稳定循环至少100圈 在100Hz、1%应变的状态下,可稳定循环至少百万次。“之前一些研究是在有机材料上涂一层无机材料,以此来实现可拉伸。我们这套方法是改变了材料的本身特性。”/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/eb23600f-2e7b-4eed-b973-5aac366964dd.jpg" title="4.jpg"//pp  对于这一新型材料的未来发展前景,高超教授表示,可以应用到与仿真机器人相关的导电弹性体上,比如电子皮肤等等。“更大的意义,我们希望开拓一个新的研究领域。当大家都在研究气凝胶的压缩性能时,我们希望换一种思路,从拉伸这个方向开展研究。”br//pp  strong从一只雁到一群雁/strong/pp  高超团队与石墨烯的情缘已有十年之久。“石墨烯本身是一个‘很小’的材料。国际科研领域已经对它的纳米级结构分析得非常透彻了,我们想看看,把它组装起来变‘大’后会怎么样。”10年前的2008年,高超被引进加入浙大高分子系后,为自己定了一个清晰的全新研究方向——石墨烯宏观组装。/pp  他用一首儿歌来解释这项研究。“秋天到了,一行大雁往南飞,一会排成一字形一会排成人字形。”当一群大雁在飞行时,我们一眼就能看出雁群的形状,反倒是一只大雁在空中飞的时候,我们很难看清楚它的结构。/pp  通过群效应团队发现了氧化石墨烯的液晶现象。在一次实验中,团队成员把氧化石墨烯倒进一个杯子,偶然对着光一晃,发现杯中出现了彩色带。这是什么原因呢?团队顺藤摸瓜,发现氧化石墨烯在溶液中的浓度达到某个临界值时,会自发进行取向排列,不但可以流动还高度有序。/pp  又有一次实验,成员把两条氧化石墨烯纤维放在一起,过了一会儿,这两条纤维居然“焊”在一起了。原来氧化石墨烯有一种“自融合”的本领。/pp  从这两大发现出发,团队“倒腾”出了四大发明:石墨烯纤维、石墨烯组装膜、石墨烯泡沫、石墨烯无纺布,科研成果发表在《自然通讯》和《先进材料》等国际著名期刊上。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/4097cb8e-708a-4cfb-ae4d-85994a64a7d4.jpg" title="5.jpg"//pp  高超说,一流是要不断奋斗出来的,“不是说做好一个工作就行,而是要不断推进”。在团队建设中,高超也非常强调“一流”,认为要有一流的文化、一流的平台、一流的待遇,最终产出一流的成果。他经常跟学生说:“科研首先要发奋,拼搏了才能有所发现,有所发明。还要努力让科研成果转化为对社会有用的产品,让科技发达起来,让国家发达起来。”br//pp  从最初的几个人,到现在的几十人,高超团队也从“一只大雁”发展到了“一群大雁”。对于过去没钱买研究设备的窘况记忆犹新,对于未来,高超说,他会坚持在首创、极致和影响力三个层面上继续努力。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201804/insimg/2ca1ddb9-ed63-40a0-8d43-cff98afbd069.jpg" title="6.jpg"//pp strong 科学也可以诗情画意/strongbr//pp  对于石墨烯宏观组装研究,高超今年1月还专门写了一首诗来解释其中的奥妙。/pp  氧化石墨烯/pp  插层氧化银成金,/pp  水洗超声片片新。/pp  纵是千疮身百孔,/pp  组装修复变烯神。/pp  高超说,这首诗的大意就是,氧化石墨烯通过插层、氧化、水洗、超声等过程制得,尽管缺陷很多,但可以通过组装及结构修复形成有重要应用价值的石墨烯宏观材料。在他心目中,氧化石墨烯的可塑性太强了,可以在很多领域派上用场。早些年,他还写过另外一首诗来赞美石墨烯。/pp  烯望/pp  石陶铜铁竞风流,/pp  信息时代硅独秀。/pp  量子纪元孰占优,/pp  一片石墨立潮头。/pp  科研工作很忙,这些作品都是高超利用坐火车乘飞机这样的琐碎时间完成的。写诗和骈文是高超业余的重要爱好。他认为科学家也可以写风花雪月的诗句,但如果用诗的语言表达科学,更有利于传播科学,也更能发挥科学家的特长。/pp  “习总书记曾说,科技创新、科学普及是实现创新发展的两翼,要把科学普及放在与科技创新同等重要的位置。我觉得,研究不能只是成为枯燥的论文,还要让公众能够看懂。”/pp  他还认为,科学家要多交小朋友,从而提高科学的吸引力和公众的科学鉴赏能力。/p
  • 我国首台高能非弹性中子散射谱仪建成
    图为高能直接几何非弹性中子散射飞行时间谱仪。(中山大学供图)中山大学与散裂中子源科学中心合作建设的高能直接几何非弹性中子散射飞行时间谱仪(以下简称“高能非弹谱仪”)于11月12日揭牌,预计明年正式投入使用。这是我国首台非弹性中子散射飞行时间谱仪,填补了我国高能非弹性中子散射领域的空白,主要性能指标达到国际先进水平。中子散射谱仪是一种能深入研究材料内部结构和运动等性质的测量仪器。用特定速度的中子轰击样品,能够在了解材料微观结构和关联强度的基础上反映其特性,为物理、化学、材料、力学和交叉学科研究提供有力支撑。中山大学物理学院中子科学与技术中心主任、教授王猛介绍,高能非弹谱仪正式投入使用后,团队可以利用中子谱仪观察镍氧化物的磁激发谱,获取磁性、自旋动力学等数据,助力高温超导的机理研究。2021年和2022年,高能非弹谱仪共获批专项博士研究生指标15名,面向谱仪的学科发展设置,采取双导师制,由中山大学物理学院的教授和散裂中子源的导师共同指导。高能非弹谱仪将为中子谱仪研究领域培养青年人才提供平台。中国科学院院士、中山大学校长高松表示,谱仪开放运行后,将坚持面向世界科技前沿和国家战略需求,主动服务粤港澳大湾区,积极推动我国中子科学与技术发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制