高密度双峰聚乙烯

仪器信息网高密度双峰聚乙烯专题为您整合高密度双峰聚乙烯相关的最新文章,在高密度双峰聚乙烯专题,您不仅可以免费浏览高密度双峰聚乙烯的资讯, 同时您还可以浏览高密度双峰聚乙烯的相关资料、解决方案,参与社区高密度双峰聚乙烯话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

高密度双峰聚乙烯相关的耗材

  • 高密度聚乙烯废液漏斗
    安全废料体系,高密度聚乙烯(High-density Polyethylene, HDPE)废料漏斗,高密度聚乙烯或者氟化高密度聚乙烯废料容器,聚丙烯(Polypropylene, PP)瓶盖和漏斗接合口,PTFE滤膜用于暂时储存溶剂,化学试剂和生化废料。这个体系包括一个具有抗化学侵蚀和抗破裂的1-1/8加仑(4L)HDPE或者2-5/8加仑(10L)氟化HDPE容器;以及带盖的可拆卸的漏斗,瓶盖/漏斗接合头,和颈筛插入物。大直径的漏斗包括带有易咬合安全插销的封盖,可以将偶然发生的溅出物和挥发性排出物减到最少。可以很轻易地将漏斗从聚丙烯瓶盖/漏斗接合头中拧下进行清洁,并可以快速进行注入。瓶盖/接合头包括了带聚丙烯/PTFE通风插栓通风孔,可以减少在灌注期间产生的压力,在使用时防止发生喷射;瓶盖/接合头还可以连接到外部针头过滤器。可拆卸的聚丙烯颈筛插入物/过滤器安装在漏斗的末端以捕捉大型的微粒。(申请专利中) 警告:不要与放射性同位素一起使用。在要操作放射性同位素的时候,请使用NALGENE beta和伽玛射线防护罩。
  • Nalgene 7002桶(有刻度),白色高密度聚乙烯;聚乙烯绝缘提环
    Nalgene 7002桶(有刻度),白色高密度聚乙烯;聚乙烯绝缘提环?带涂层的金属手柄,标有刻度,宽大的倾倒口,是运送实验室溶液和粉末物质的理想工具。刻度单位为品脱和升。有刻度订货信息:Nalgene 7002桶(有刻度),白色高密度聚乙烯;聚乙烯绝缘提环目录编号 7002 -0025容量,L9.5容量,gal.2-1/2每盒数量1每箱数量6
  • WHEATON 高密度聚乙烯瓶
    WHEATON 自然色高密度聚乙烯圆筒瓶* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211533027×7820-41012722211546035×9820-410127222115512541×12320-4101272WHEATON 白色高密度聚乙烯圆筒瓶* 白色高密度聚乙烯材质可以保护光敏感样品* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm) 盖规格个/ 包个/ 箱2211633027×7820-41012722211646035×9820-410127222116512041×12324-4101272WHEATON 白色高密度聚乙烯圆筒瓶* 白色高密度聚乙烯材质可以保护光敏感样品* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号 容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211633027×7820-41012722211646035×9820-410127222116512041×12324-4101272WHEATON 高密度聚乙烯圆桶* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带聚乙烯衬垫的白色聚丙烯旋盖技术参数 订货号容积(L)直径× 高(mm)盖规格包装数量2223333.78143×28538-4004WHEATON 自然色高密度聚乙烯广口Blake 瓶* 良好的抗化学腐蚀性* 广口设计适合固体储存* Blake 设计大大的提.高了存储空间* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格包装数量20968312041×50×9438-4007220968550062×77×14943-40048209686100079×96×19253-40024 WHEATON 高密度聚乙烯广口储存瓶* 良好的抗化学腐蚀性* 容积范围:2000-3840mL* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)盖规格包装数量W209677200089-4006W2096783000100-4004W209679384089-4004

高密度双峰聚乙烯相关的仪器

  • WHEATON 自然色高密度聚乙烯圆筒瓶* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211533027×7820-41012722211546035×9820-410127222115512541×12320-4101272WHEATON 白色高密度聚乙烯圆筒瓶* 白色高密度聚乙烯材质可以保护光敏感样品* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211633027×7820-41012722211646035×9820-410127222116512041×12324-4101272WHEATON 白色高密度聚乙烯圆筒瓶* 白色高密度聚乙烯材质可以保护光敏感样品* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211633027×7820-41012722211646035×9820-410127222116512041×12324-4101272WHEATON 高密度聚乙烯圆桶* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带聚乙烯衬垫的白色聚丙烯旋盖技术参数 订货号容积(L)直径× 高(mm)盖规格包装数量2223333.78143×28538-4004WHEATON 自然色高密度聚乙烯广口Blake 瓶* 良好的抗化学腐蚀性* 广口设计适合固体储存* Blake 设计大大的提.高了存储空间* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格包装数量20968312041×50×9438-4007220968550062×77×14943-40048209686100079×96×19253-40024WHEATON 高密度聚乙烯广口储存瓶* 良好的抗化学腐蚀性* 容积范围:2000-3840mL* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)盖规格包装数量W209677 2000 89-400 6 W209678 3000 100-400 4 W209679 3840 89-400 4
    留言咨询
  • 高密度聚乙烯(HDPE),为白色粉末或颗粒状产品。无毒,无味,结晶度为80%~90%,软化点为125~135℃,使用温度可达100℃;硬度、拉伸强度和蠕变性优于低密度聚乙烯;耐磨性、电绝缘性、韧性及耐寒性较好;化学稳定性好,在室温条件下,不溶于任何有机溶剂,耐酸、碱和各种盐类的腐蚀;淤浆法制备高密度聚乙烯,淤浆法是一种将乙烯和脂肪烃类溶剂混合,添加钛系或者铬系催化剂,并在低压、低温的情况下使乙烯发生聚合反应的方法。这种方法出现的时间早,所以工艺相对来说比较成熟,得到了广泛的应用。根据反应器的不同反应形式可以将淤浆法分为搅拌釜式和环管反应器两种。岩征仪器全自动搅拌釜式反应装置,采用双反应器,既可以并联使用,也可以串联使用。将氢气和乙烯、催化剂等放入反应器,使之发生聚合反应,聚合物以淤浆的形式存在于己烷当中,也称为淤浆法制备工艺。HDPE高密度聚乙烯系统,乙烯淤浆聚合兼顾丙烯液相本体聚合评价装置,主要用来评价、研究工艺过程,探索最佳工艺参数,经取样分析、评 价、数据处理,获取产品分布、产品性质等数据,为中试及工业化工艺设计 提供设计基础数据。
    留言咨询
  • 高密度EVA海绵密度检测仪MDJ-300A是常用的的密度检测仪器。它采用的是德国进口的HBM称重传感器以及英国进口的ARM数据处理器,精度高数据处理能力强,能够可以快速准确测量各种固体材料的密度,配置专业的测量配件,一体成形的透明水槽。其设计应用的是阿基米德浮力法结合现代微电子科技,已经基本实现了全自动化测试,无需人工计算,省却了繁琐的操作步骤,操作简单测试方便,深受广大企业用户的喜爱。EVA 是乙烯-醋酸乙烯共聚物简称,一般醋酸乙烯(VA)含量在5%~40%。与聚乙烯相比,EVA由于在分子链中引入了醋酸乙烯单体,从而降低了高结晶度,提高了柔韧性、抗冲击性、填料相溶性和热密封性能,被广泛应用于发泡鞋料、功能性棚膜、包装膜、热熔胶、电线电缆及玩具等领域。 高密度EVA海绵密度检测仪技术参数:1、型 号: MDJ-300A MDJ-600A MDJ-1200A MDJ-300S MDJ-600S2、密度解析: 0.001 g/cm3 测量范围: 0.001—99.999g/cm33、MAX称重: 300g 600g 1200g 300g 600g4、MIN称重: 0.01g 0.01g 0.01g 0.005g 0.0055、测量种类: 橡胶、塑胶、金属、塑料颗粒、紧固件、管材、板材、木材、海绵、玻璃、金属、水泥、宝石、石墨、煤与岩石、陶瓷…等;涵盖吸水性、不吸水性所有固体物质领域。 高密度EVA海绵密度检测仪的特点:1.直读任何固体物质的密度值、体积2.PVC颗粒、EVA发泡体、粉末、薄膜等皆可快速测量3.操作简单、方便、测量快速4.全动零点跟踪功能5.使用水作介质,也可使用其它液体介质6.具有实际水温补偿功能7.带有蜂鸣器功能8.采用一体成形大容量设计测量配件 高密度EVA海绵密度检测仪测量步骤:1.先测量产品在空气中重量,按ENTER键记忆。2.再放入水中测水中重量,按ENTER键记忆,显示密度值。环保EVA胶垫(符合欧盟环保标准,可提供检验报告)1、环保EVA是一种聚烯煌塑料发泡而成,又称泡棉,它不含任何对人体有害、有毒物质。2、环保EVA它柔韧、质轻、密度好、富有弹性能当作缓冲材料来保护产品更好的吸收和分散外来的撞击力,也可以贴在产品表面上起防震防磨擦的作用。同时,EVA具有保温、防潮、耐腐蚀等一系列的使用特性。3、环保EVA的厚度通常为0.5--60MM硬度25--80度。颜色丰富多采,一般为黑色白色,也可根据客户要求做任何的颜色。EVA的成型工艺简单,可缩短交货周期。4、环保EVA目前正广泛适用于IT、电子电器、五金机电、玻璃制品、精密仪器等产品的包装。 高密度EVA海绵密度检测仪MDJ-300A是一种新型的密度检测仪器,能够自动测量样品密度并直接显示在电子屏幕上。密度检测仪一般是由称重天平,密度配件,密度软件等组成。
    留言咨询

高密度双峰聚乙烯相关的方案

  • 微波消解高密度聚乙烯
    高密度聚乙烯简称为HDPE,又称低压聚乙烯,是一种结晶度高、非极性的热塑性树脂。高密度聚乙烯是种白色粉末颗粒状产品,无毒、无味,它具有良好的耐热性和耐寒性,化学稳定性好;还具有较高的刚性和韧性,机械强度好;介电性能,耐环境应力开裂性亦较好;硬度、拉伸强度和蠕变性优于低密度聚乙烯;耐磨性、电绝缘性、韧性及耐寒性均较好,但与低密度绝缘性比较略差些。化学稳定性好,在室温条件下,不溶于任何有机溶剂,耐酸、碱和各种盐类的腐蚀。为检测HDPE中的多种重金属元素含量,选择微波消解对其进行前处理,探索最适合的消解参数,该方法还有回收率高、空白低等特点,有利于后续对多种无机元素的快速准确测定。
  • 微波消解高密度聚乙烯
    高密度聚乙烯简称为HDPE,又称低压聚乙烯,是一种结晶度高、非极性的热塑性树脂。高密度聚乙烯是种白色粉末颗粒状产品,无毒、无味,它具有良好的耐热性和耐寒性,化学稳定性好;还具有较高的刚性和韧性,机械强度好;介电性能,耐环境应力开裂性亦较好;硬度、拉伸强度和蠕变性优于低密度聚乙烯;耐磨性、电绝缘性、韧性及耐寒性均较好,但与低密度绝缘性比较略差些。化学稳定性好,在室温条件下,不溶于任何有机溶剂,耐酸、碱和各种盐类的腐蚀。为检测HDPE中的多种重金属元素含量,选择微波消解对其进行前处理,探索最适合的消解参数,该方法还有回收率高、空白低等特点,有利于后续对多种无机元素的快速准确测定。
  • YBB00092002-2015口服液体药用高密度聚乙烯瓶密封性测试
    本标准适用于 高密度聚乙烯 HDP 为主要原料 采用注吹成型工艺生产的口服液体制剂用塑料瓶。本标准适用于 高密度聚乙烯 HDP 为主要原料 采用注吹成型工艺生产的口服液体制剂用塑料瓶

高密度双峰聚乙烯相关的论坛

  • 以高密度双峰聚乙烯为例用GPC-IR检测低含量单体

    方案优势全自动操作,基线稳定,重复性好,GPC ONE软件处理能力好。POLYMER CHAR的GPC-IR的使用实例应用领域:橡胶/塑料检测发布时间:2014-12-18检测样品:高密度双峰聚乙烯检测项目:低含量单体参考标准:分子链甲基分布原文详见:http://www.instrument.com.cn/netshow/SH101663/s493958.htm

高密度双峰聚乙烯相关的资料

高密度双峰聚乙烯相关的资讯

  • 未来五年全球聚乙烯需求将快速增长
    据美国析迈(CMAI)称,2009年全球聚合物消费量达到1.76亿吨,其中聚乙烯(PE)占到消费总量的约38%。2009年全球PE需求接近6700万吨,预计未来五年将以年均逾5%的速度增长,到2014年的需求量将超过8700万吨。2009年高密度聚乙烯(HDPE)需求量约占到聚合物总需求量的17%,或约3000万吨,而线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)的需求量分别占到约11%和10%。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 全球聚乙烯市场现状与展望
    据美国《化学周刊》近期报道 由于中国、印度、拉美、中欧等新兴经济体的驱动,预计2011年至2014年聚合物需求快于全球GDP增速,年增长率超过5%。   CMAI(休斯顿)统计数据显示,2009年全球聚合物消费量约为1.76亿吨,其中聚乙烯消费量占38%,接近6700万吨。按年增长率超过5%推算,2014年,聚乙烯需求将超过8700万吨。高密度聚乙烯(HDPE)占全球聚合物需求总量的17%,约为3000万吨 线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)分别占11%和10%。LLDPE和HDPE需求的强劲增长归因于包装用品和非耐用品的用量增加,全球新投产的LDPE产能中,大多数产品为LLDPE和HDPE。2010年经济触底反弹,需求增长较快。目前美国市场聚乙烯供应趋紧,开工率达到90%。欧洲市场情况与美国相近,德国国内市场将继续增长,出口市场也将逐渐走强,土耳其市场年增长超过10%,全球所有地区都将高于2009年水平。预计2011年聚乙烯需求增长不会与今年一样显著,更接近GDP增长水平,将增长4.5%至5.5%。   2009年,美国的聚乙烯产品大部分出口到正在进行大规模基础设施建设的中国。今年,多出口到加拿大和墨西哥。美国出口中国产品减少是因为中国经济增速放缓,同时更多新增产能进入中国市场参与竞争。中东新增产能的冲击比预期要弱,因为一些中东生产能力没有按期投产,产能增长步伐比预期要慢。明年,随着新增产能投产,新产品投入市场,全球市场将需更长时间达到供需平衡。北美生产商不会与以中国、拉美、欧洲为主要目标市场的中东生产商展开竞争。一些生产商已宣布关闭部分亏损产能以应对激烈的市场竞争。利安德巴塞尔关闭位于英国Carrington的18.5万吨/年LDPE装置,去年道达尔石化关闭位于法国Carling和Gonfreville的2套LDPE装置,今年北欧化工将关闭位于Stenungsund的15万吨/年LDPE产能,最近沙特基础工业公司关闭了位于荷兰Geleen的12万吨/年LDPE装置。   埃克森美孚扩大丁基橡胶产能据美国今日下游网近期报道 埃克森美孚化工子公司日本埃克森美孚有限会社宣布,旗下的日本丁基橡胶有限公司已完成川崎丁基橡胶装置扩能,产能增加1.8万吨/年,使其丁基橡胶总产能达到9.8万吨/年,以满足亚太市场日益增长的丁基橡胶需求。公司此次扩能采用埃克森美孚化工最近开发的新工艺技术。例如,其中一项新专利技术可使丁基聚合物的聚合反应温度达到-75摄氏度,而常规技术的反应温度为-95摄氏度,该新技术可大幅降低能耗并节省投资。埃克森美孚化工在高端丁基橡胶聚合物的开发和应用方面处于业内领先地位,其产品具有更长的寿命、可节约能源、减少温室气体排放,从而带来更高的附加值。为了满足丁基橡胶行业需求的不断增长,日本丁基橡胶有限公司近期内已有过多次扩能,本次扩能也是进一步服务日益增长的丁基橡胶市场。2008年,埃克森美孚化工将其得克萨斯州贝城丁基橡胶装置的产能提高了60%。在此之前,日本丁基橡胶有限公司已在2006年将其鹿岛卤化丁基橡胶装置产能增加1.7万吨/年。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制