多层分析

仪器信息网多层分析专题为您整合多层分析相关的最新文章,在多层分析专题,您不仅可以免费浏览多层分析的资讯, 同时您还可以浏览多层分析的相关资料、解决方案,参与社区多层分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

多层分析相关的耗材

  • 多层硅胶固相萃取 SPE 小柱
    用于 US EPA 方法8290 - "高分辨率GC/高分辨率MS (HRGC/HRMS)分析多氯代二苯并二嗯英(PCDDs) 和 多氯二苯并呋喃 (PCDFs) " EPA 方法8290中所提及的样品处理步骤需要一系列手动填充玻璃柱步骤包括: 1) 多层硅胶柱 2) 硫酸钠/氧化铝玻璃柱 3) 多层硅藻土545-活性炭玻璃柱 52732-U 可用于取代所需的多层硅胶玻璃柱,52733-U 用于取代所需的多层硅藻土 545-活性炭玻璃柱. 注意该SPE固相萃取柱中所装填料的重量比EPA方法8290中所描述的要少。因此,使用这些SPE固相萃取柱,样品体积需要相应降低。
  • 多层铝箔气体采样袋
    多层铝箔气体采样袋1、多层铝箔气体采样袋 对低分子量化合物,如甲烷,一氧化碳,二氧化碳,和永久气体有良好的稳定性。2、多层铝箔气体采样袋 防止光照和水分,具有良好的惰性。3、多层铝箔气体采样袋 由于自身本底水平原因,不推荐用于采集ppm水平的挥发性有机化合物。4、多层铝箔气体采样袋 5层的保护膜,最大限度地减少的气体渗透。- 60 号的尼龙(外层)- 铝金属层- 聚乙烯层- 0.0003" 铝箔层- 0.002" 聚乙烯(内层) 型号 包装量 货号#1 L 7" x 7" 5-pk. 22950* 3 L 10" x 10" 5-pk. 22951 5 L 12" x 12" 5-pk. 22952 10 L 12" x 22" 5-pk. 22953 12 L 13" x 24" 5-pk. 22966 25 L 18" x 24" 5-pk. 2296740 L 24" x 24.5" 5-pk. 22968可更换隔垫,表面是聚四氟乙烯硅胶,直径4毫米 10-pk. 22104
  • 默克Supelco多层硅胶二噁英柱28397-U
    默克Supelco多层硅胶二噁英柱28397-U属性 物料 玻璃五金质量水平 100 机构 适用于 EPA 1613 包装 pkg of 5 技术 适用于固相萃取 (SPE): 内径 × 长度 15 mm × 35 cm 外径 × 长度 6.35 mm × 35 cm 螺纹内径 24 mm 应用 食品和饮料相容性 与 6.35 mm 接头一起使用,与二恶英样品制备套件一起使用 默克Supelco多层硅胶二噁英柱28397-U 说明一般描述二噁英多层硅胶柱适合搭配二噁英样品制备套装使用。适用固相萃取(SPE)技术。用于净化萃取物,去除杂质并分离目标化合物用于分析。应用二噁英多层硅胶柱可作为USEPA方法中的净化步骤去除潜在的色谱干扰物质并制备样品,以便用于进一步的分析和定量。多层硅胶二噁英柱是二噁英分析中所需要的预处理工具,能够有效提高分析的准确性和效率。

多层分析相关的仪器

  • 菲希尔金镍测厚仪,无损多层镀层测厚仪金镍测厚仪用途 该设备适用于多层镀层厚度测量及材料分析,可用来定量和定性分析样品的元素组成,也可用于镀层和镀层系统的厚度测量,最多可同时测定24种元素,广泛应用于电路板、半导体、电镀、珠宝等工业中的功能性镀层及电镀槽液中的成分浓度分析。 金镍测厚仪特点:1、无论是镀层厚度测量,还是镀液分析,复杂的多镀层应用,一个软件程序就可以完成所有测量应用2、X射线管有带玻璃窗口和钨靶的X射线管或带铍窗口和钨靶的微聚焦X射线管多种选择3、X射线探测器PC(比例接收器)、PIN(硅PIN接收器)、SDD(硅漂移接收器)4、可自动切换的准直器和多种滤片可以灵活地应用不同测量。X射线荧光镀层测厚及材料分析仪测量方向产品型号应用范围检测器射线管基本滤片准值器数量/尺寸(mm)C型开槽从下往上XUL一款适合电镀厂测量镀层厚度的性价比高的仪器,它配备了一个固定的准值器和滤,射线管出射点稍大,非常适合测量点在1mm以上的应用。对于测量典型电镀层厚度的应用,如Cr/Ni/Cu等,非常合适。PC标准11(Φ0.3)是XULM多用途的镀层厚度测量仪。无论是薄的还是厚的镀层(如50nm Au或100um Sn)都通过选择好的高压滤片组合很好的测量。微聚焦管可以达到在很短的测量距离内小到100um的测量点大小。高达数kcps的计数率可以被比例接收器接收到。PC微聚焦34(0.05*0.05-Φ0.3)是XAN110/120专门为分析金合金开发的划算的仪器。比较XAN而言,只有一个固定的准直器和固定的滤片,特别适合贵金属分析。XAN 110配备比例接收器,适于几种合金元素的简单分析。XAN120配备了半导体接收器,更可以应用于多元素的复杂分析。PC(XAN 110)PC(XAN 120)标准11(Φ0.3XAN110)1(Φ1XAN120)否XAN分析专用仪器,测量方赂从下到上。用途广泛。测量室全封闭,可以使作大准直器分析,高计数康可也可被硅漂移探测器处理。激发和辐射检测方式与XDV-SDD相同。它是金合金分析和塑料中有害物质衡量分析的理想仪器。PINSDD微聚焦3/64(Φ0.2-Φ2)否从上往下测量XDL适合镀层厚度测量的耐用仪器,即使大测量距离也可以测量(DCM,范围0-80mm)配备一个固定的准值器和固定的滤片。适合测量点在1mm以上的应用;跟XUL类似。可选 用自动测量的可编程工作台。PC标准11(Φ0.3)是XDLM比XDL适用面更广,配备微聚焦管,4个可切换的准直器和3个基本滤片。测量头与XULM想似;适合于测量小的结构如接插件触点或印刷线路板,也可以测量大的工作(DCM,范围0-80mm)PC微聚焦34(0.05*0.05-Φ0.3)是XDAL与XDLM类似但配备了半导体接收器。这样就可能可以分析元素和测量超薄层(基于良好的信噪比)。比较适合测量结构较大的样品。PIN微聚焦34(Φ0.1-Φ0.6)是XDC-SDD适合于全部应用的高端机型。根据测量点大小和光谱组成,激发方式灵活多样。配备了硅漂移接收器,即使强度高达100kcps的信号也可以在不损失分辨率的情况下处理。SDD微聚焦64(Φ0.1-Φ0.3)否SDV-U专用微观分析的测量仪器。根据X射线光学部件的不同,可以分析小到100um或更小的结构。强度很高所以精度也非常好。即使很薄的镀层,测量不确定性小于1nm也是可能的。仅适于测量表面平整或接近平整的样品。SDD微聚焦4多毛细管系统是XDV-Vacuum具备综合测量能力的通用高端机型。与XDV-XDD相当。但可外配备了可抽真空的测量室,这样就使得分析从原子序数Z=11(Na)开始的轻元素成为可能。高精度的马达驱动的XYZ平台和视频摄像头可以精确定位样品位置和测量细小部件。SDD微聚焦64(Φ0.1-Φ3)否在线测量X-RAY 4000用于生产过程中薄膜,金属带或穿孔带的连续测量。测量头可以装配与样品传送方向的直角的位置。操作方便,启动迅速。数据接口可集成到质量管理或控制系统X-RAY54000用于生产线上连续测量的法兰式测量头。测量带状物,薄膜或玻璃的金属元素。在空气和真空都可以测量。提供水冷版本仪器。
    留言咨询
  • EUV多层膜反射镜 400-860-5168转2943
    优点NTT-AT公司已提供了20 多年高质量XUV、EUV和X射线反射镜。尤其是利用本公司的丰富经验和出色技能,提供可定制设计的多层膜反射镜,满足各用户的需求。1990年,NTT-AT公司开发了极紫外(XUV或EUV)多层反射镜和X射线反射镜并开始销售。并将亚洲、北美洲、南美洲和欧洲的大学、研究所和企业反馈的意见反映到这些反射镜的设计中。本公司将利用广泛积累的经验和可靠的技术支持用户的多层反射镜生产。特点因为NTT-AT公司的多层反射镜质量高,所以一直被世界上的研究机构所选用。本公司定制多层材料和结构,满足用户的基板、峰值波长、带宽和分散体等详细规格。还应对耐高温多层反射镜。利用同步加速器设备的反射率评估服务也可作为选项提供。同时也为包括EUV光刻的EUV工业应用提供成本低、交付周期短、质量稳定的多层反射镜。作为用户的研发伙伴,支持用户的EUVL光源开发、EUV光刻胶开发、EUV掩模检查和其它周边领域的实际利用。XUV多层膜反射镜(EUV多层膜反射镜)基板形状:平面、凸形、凹形、抛物面、超环面、椭圆面基板材料:石英、硅、zero dewer等多层膜材料:Mo/Si、Ru/Si、Zr/Al、SiC/Mg、Cr/C等基板尺寸:φ3毫米至φ300毫米NTT-AT公司将提供高耐用性XUV多层反射镜、耐高温XUV多层膜反射镜以及施瓦兹希尔德光学系统和泵浦探测光学系统等光学系统。X射线多层膜反射镜基板形状:平面、椭圆面、抛物面、柱面、超环面基板:石英、硅、zero dewer等基板材料:W/B4C、W/C、Pt/C等基板尺寸:最大500毫米NTT-AT公司提供K-B反射镜系统、沃尔特反射镜等单层反射镜基板形状:平面、椭圆面、抛物面、柱面、超环面基板材料:石英、硅、zero dewer等多层材料:C、B4C、SiC、Ru、NbN、Pt等基板尺寸:最大500毫米NTT-AT公司提供K-B反射镜系统、沃尔特反射镜等本公司定制多层材料和结构,满足用户的基板、峰值波长、带宽和分散体等详细规格。还应对耐高温多层反射镜。利用同步加速器设备的反射率评估服务也可作为选项提供。世界上只有为数不多的公司生产和销售EUV反射镜。如果您不满意现在的供应商,NTT-AT公司能够制造满足您严格要求的定制设计反射镜。NTT-AT公司将推荐正确反映用户规格的最优设计。 应用示例 基板材料典型波长XUV(EUV)反射镜EUV光刻高阶谐波应用阿秒科学X射线激光器多层反射镜Mp/SiRu/SiZr/AlSiC/MgCr/C50电子伏至100电子伏50电子伏至100电子伏50电子伏至70电子伏25电子伏至50电子伏至300电子伏单层反射镜SiCPtRu10电子伏至100电子伏X射线反射镜同步加速器应用XFEL应用内置X射线无损检查设备多层反射镜W/CW/B4CRu/CPt/C1k电子伏至30k电子伏单层反射镜CB4CSiCCrNi1k电子伏至30k电子伏NTT-AT公司已支持了许多同步加速器辐射应用、XFEL应用、包括阿秒科学和材料科学的高阶谐波应用、软X射线激光应用和天文学的实验和研究。NTT-AT公司的XUV多层反射镜的绝无仅有的质量受到学术界的好评。XUV多层膜反射镜(EUV多层膜反射镜)Φ10毫米平面反射镜测量的Mo/Si多层的反射率(正入射角:2度)用于泵浦探测试验的多层反射镜测量宽带反射镜、窄带反射镜(波长:30纳米)的反射率EUV宽带椭圆面反射镜(Φ100毫米zero dewer)Mo/Si多层反射镜具有接近13纳米(90电子伏)波长的高反射率。NTT-AT公司的Mo/Si多层反射镜具有高达70%的正入射反射率。NTT-AT的XUV反射镜的材料、膜结构和基板形状可以定制以满足用户有关中心波长和光学装置的需求。X射线多层膜反射镜用于K-B反射镜系统的多层反射镜W/B4C多层和W/C多层膜反射镜对硬X射线应用具有高反射率。为了有效反射和聚集硬X射线,必须最大限度地缩小入射角的斜角。这需要较长的反射镜长度和较小的多层膜周长。评估的反射率(波长:0.154纳米,蓝色:测量的反射率,粉红色;计算的反射率,周期长度: 2.95纳米)NTT-AT公司的X射线反射镜的材料、膜结构和基板形状可以定制以满足用户有关中心波长、带宽和光学装置的需求。单层反射镜带钌层的椭圆面反射镜利用全反射的单层反射镜用于波束控制、光聚合和去除XUV至X射线范围内的无需波长。NTT-AT公司的单层反射镜的材料和基板形状可以定制以满足用户有关中心波长和光学装置的需求。
    留言咨询
  • 一、产品简介  超声波多层时差法流量计是依据国内外“超声波管道式流量计”原理研发而成的一款适合明渠测流的设备,通过对超声波管道式流量计设计结构的延伸,应用到明渠测流中。其具备多层测流方式,可根据渠道类型分布换能器层结构设计,通过测量不同水层的流速,从而提高测量精度测流设备。  二、组成部分  超声波多层时差法测流系统主要有以下设备组成:  1.三对流速传感器  3.一个超声波液位传感器  3.采集系统  4.太阳能供电系统  5.立杆与支架  三、工作原理  超声波时差法是采用声学时差法流速仪测流,其原理是在河道两岸与流速方向成一定的夹角(通常45度)安装一对或多对换能器,一个换能器发射超声波,另一个换能器接受超声波(超声波传输路线称为声路),通过声学时差法流速仪测得顺、逆流方向的超声波传输时间差计算出测线平均流速,可实现多层流速监测,通过数据建模形式计算平均流速,再通过流速面积法计算出瞬时流量。  四、监测站特点  1.测量优势:  1.1依据超声波管道式流量计设计标准与标定规范研发而成,具有极高的精确性和稳定性,明渠测量精度能达到95%以上   1.2流量计安装在明渠河流的渠道内,可设置多层换能器,对不同层流速进行实时测量,采用多次采样不同水层的流速   1.3由于本测流系统采用多层传感器结构,运行一段时间后可建立层流速分布模型,即:即使只有一层传感器仍能正常工作,本系统设备依旧可以高效的工作   1.4采用IP68防护等级:本系统中的磁致伸缩水位计(或双级磁编码水位计)、流速换能器均具备IP68防护标准,即使在渠道水势较高,淹没全部设备时,依旧可以正常工作   1.5可修正:随着时间的推移,渠道结构的变化,可通过人工率定方式,在一体化积算仪中输入率定参数,可进一步校正本系统的精准度。  2.安装方式特性  2.1嵌入式结构:多层流速仪和水位计均以嵌入式的安装在渠道两次,不阻水、避免水草、漂浮物等附着,大大减少了维护工作量   2.2换能器层数、高度可根据水位高程设定:由于渠道结构多样性,换能器科根据渠道的特性对应设置高度(如:0.3H、0.6H、0.9H三层结构)   2.3无阻水特性:设备采用嵌入式安装方式,几乎无水头损失、阻水等情况的发生,提高了灌溉效率。  3.干扰因素  3.1设备适用于渠道宽度在0-50米范围之内的,有一定规则断面的明渠   3.2设备应用在泥沙含量较高的水系中时,测量精度受一定的影响   3.3设备对渠道的淤积情况无法实时监测,需定期查看渠道淤积并予以清淤或率定。  五、技术参数 流速传感器三对测量原理时差法连续测量测量声道3声道适应能力可测量含有固体物质的污水测量精度5%流速范围0.01-30m/s测量渠道宽度时差法0.5-15米环境温度-20-70℃工作温度-20-70℃介质温度-20-80℃防护等级IP68液位传感器一个,超声波测量精度1.0%测量范围0.01m-10m分辨率1.0mm环境温度-20-70℃工作温度-20-70℃介质温度-20-80℃防护等级IP68
    留言咨询

多层分析相关的方案

多层分析相关的论坛

  • 【求助】多层复合膜的红外分析

    医药品的外包装膜,多层冲压在仪器红外分析,一般只能分析其两个表面,请问,中间的几层如何分析呢?使用仪器:FTIR-8400S(日本岛津)谢谢!

  • 多层PCB抄板怎样进行呢?

    PCB抄板也叫克隆或是仿制,是指在原有电路板基础上进行逆向分析,将原有数据进行1:1还原,然后在利用这些文件,从而完成原电路板的复制。对于需要许多从事PCB抄板工作的人来说,对于单、双面板的抄板并不会感到陌生,但是对于多层的PCB 板许多人就会感到棘手。那么多层PCB抄板怎样进行呢?  元坤智造的工程师介绍说PCB多层板抄板设计技术,可以说多层板抄板和双层板抄板设计差不多,甚至布线更容易。  你有双层板抄板的设计经验的话,设计多层就不难了。  首先,你要划分层叠结构,为了方便设计,最好以基板为中心,向两侧对称分布,相临信号层之间用电地层隔离。  层叠结构(4层、6层、8层、16层):  对于传输线,顶底层采用微带线模型分析,内部信号层用带状线模型。6层/10层/14层/18层基板两侧的信号层最好用软件仿真,比较麻烦。  6层/10层/14层/18层等基板两侧是信号层,没有电地隔离,需要注意相临层垂直走线和避免交流环路。  如果还有其他电源,优先在信号层走粗线,尽量不要分割电地层。  其次,向厂家询问参数(介电常数、线宽、铜厚、板厚),以便进行阻抗匹配。这些参数不必自己计算(算了也没用,厂家不一定能做到),应由厂家提供。有了这些参数,就可以计算线宽、线间距(3W)、线长,这时就可以开始画板子了。  多层板有盲孔、埋孔、过孔三种,可以方便布线,但价格贵。有时需要减小板厚,以便插入PCI槽,而绝缘介质材料不满足要求(除非走私进口),此时可以变通地采用非均匀板,例如:中间14层,边缘2层来解决。  高速线最好走内层,顶底层容易受到外界温度、湿度、空气的影响,不易稳定。如果需要测试,可以打测试过孔引出。不要再存有飞线、割线的幻想,多层板已经不需要“动手能力”了,因为线在内部而且高频,不能飞,线很密也不能钻孔。养成纸上作业的习惯,确保制板一次成功,否则,就地销毁吧,眼不见心不烦。  对于多层PCB抄板的方法就为大家介绍到这里,不管是单、双层PCB抄板,还是多层抄板,在平时的工作中一定要细心加耐心,别外还有一个就是胆大,要积极尝试、多动手,这样才能完美的完成手中的工作。

多层分析相关的资料

多层分析相关的资讯

  • 前沿科技 | 全新亚微米红外&拉曼同步测量关键技术助力多层薄膜内部组成分析
    包装薄膜材料常使用传统红外光谱进行表征,但传统FTIR通常只能测单一红外光谱,不具备样品红外光谱成像功能或成像空间分辨率受红外波长限制,高也仅为5-10 μm。在实际应用中,层状材料越来越薄,这对常规FTIR技术的空间分辨率提出了大的挑战。 全新光学光热红外光谱技术光学光热红外光谱技术(O-PTIR)可在非接触反射模式下对多层薄膜进行亚微米的红外表征,同时探针激光器会产生拉曼散射,从而以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像。基于光学光热红外光谱技术的非接触亚微米分辨红外拉曼同步测量系统的工作原理是:光学光热红外光谱技术通过将中红外脉冲可调激光器与可见探测光束结合在一起,克服了红外衍射限。将红外激光调谐到激发样品中分子振动的波长时,就会发生吸收并产生光热效应。如图1所示,可见光探针激光聚焦到0.5 μm的光斑尺寸,通过散射光测量光热响应。红外激光可以在一秒钟或更短的时间内扫过整个指纹区域,以获得红外光谱。图 1. 非接触亚微米分辨红外拉曼同步测量系统 红外和拉曼光谱的光束路径示意图。 红外&拉曼同步测量传统的透射红外光谱通常不能用于测量厚样品,因为光在完成透射样品之前会被完全吸收或散射,导致几乎没有光子能量到达检测器。由于光学光热红外光谱技术是一种非接触式技术,因此非接触亚微米分辨红外拉曼同步测量系统可以对较厚的样品进行红外测量,大地简化了样品制备过程,提升了易用性。在图2中,作者使用非接触亚微米分辨红外拉曼同步测量系统针对嵌入环氧树脂中的薄膜样品横截面进行了分析。图2线阵列中各点之间的数据间隔为500 nm。 由于非接触亚微米分辨红外拉曼同步测量系统与传统FTIR光谱具有好的相关性,因此可以使用现有的光谱数据库搜索每个光谱。对红外光谱的分析对照可以清楚地识别出不同的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。图 2.上:薄膜横截面的40倍光学照片;中:红外光谱从标记区域收集;下:同时从标记区域收集拉曼光谱。 化学组分分布的可视化成像当生产层状薄膜时,产品内部的化学分布是产品完整性的重要组成部分。非接触亚微米分辨红外拉曼同步测量系统特地实现了高分辨率单波长成像,以突出显示样品中特定成分的化学分布。非接触亚微米分辨红外拉曼同步测量系统可以在每层的特吸收带处采集图像,以此实现显示层的边界和界面的观察。图3展示了多层膜截面的光学图像。从线阵列数据可以看出,中间位置存在一个宽度大约为2 μm的区域,该区域与周围区域的光谱差异很大。红色光谱显示1462 cm?1处C-H伸缩振动显著增加。图3. 上:薄膜截面的40倍光学照片;下:标记表示间距为250 nm的11 μm线阵列。红外单波长成像使我们能够清晰地可视化层状材料的厚度和材质分布,如图4所示。从图像中可以看出,非接触亚微米分辨红外拉曼同步测量系统红外显微镜可以在非接触状态下进行反射模式运行,以佳的空间分辨率提供单波长图像。图4. 红外单波长成像层状材料的成分分布。 总结通过同时收集红外和拉曼光谱,科学家发现非接触亚微米分辨红外拉曼同步测量系统可被广泛用于分析各种多层膜。收集的光谱与传统的FTIR光谱显示出 99%相关性,并且可以在现有数据库中进行搜索。此外,使用非接触亚微米分辨红外拉曼同步测量系统进行单波长成像可实现亚微米分辨率样品中组分的可视化。通过该技术,我们可以更好地了解薄膜材料的整体构成。总体而言,非接触亚微米分辨红外拉曼同步测量系统次提供了可靠且可视化的亚微米红外光谱,目前它已在高分子、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境、物证分析等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。
  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 半导体所在多层石墨烯边界的拉曼光谱研究方面获进展
    单层石墨烯(SLG)因为其近弹道输运和高迁移率等独特性质以及在纳米电子和光电子器件方面所具有的潜在应用而受到了广泛的研究和关注。每个SLG样品都存在边界,且SLG与边界相关的物理性质强烈地依赖于其边界的取向。在本征SLG边界的拉曼光谱中能观察到一阶声子模-D模,而在远离边界的位置却观察不到。研究发现边界对D模的贡献存在一临界距离hc,约为3.5纳米。但D模的倍频模-2D模在本征SLG边界和远离边界处都能被观察到。因此,D模成为研究SLG的晶畴边界、边界取向和双共振拉曼散射过程的有力光谱手段。   SLG具有两种基本的边界取向:&ldquo 扶手椅&rdquo 型和&ldquo 之&rdquo 字型。与SLG不同,多层石墨烯(MLG)中每一石墨烯层都具有各自的边界以及相应的边界取向。对于实际的MLG样品,其相邻两石墨烯层的边界都存在一个对齐距离h。h可以长到数微米以上,也可短到只有几个纳米的尺度。当MLG的所有相邻两石墨烯层的h等于0时,我们称之为MLG的完美边界情况。MLG边界复杂的堆垛方式以及存在不同h和取向可显著影响其边界的输运性质、纳米带的电子结构和边界局域态的自旋极化等性质。尽管SLG边界的拉曼光谱已经被系统地研究,但由于MLG边界复杂的堆垛方式,学界对其拉曼光谱的研究还非常少。   最近,中国科学院半导体研究所博士生张昕、厉巧巧和研究员谭平恒等人,对MLG边界的拉曼散射进行了系统研究。他们首先对MLG边界进行了归类,发现N层石墨烯(NLG)的基本边界类型为NLGjE,即具有完美边界的jLG置于(N-j) LG上。因此,双层石墨烯(BLG)的边界情况可分为BLG1E+SLG1E和BLG2E两种情况。研究发现:(1)NLG1E边界与具有缺陷结构的NLG的D模峰形相似,其2D模则为NLG和(N-1)LG的2D模的叠加。(2)在激光斑所覆盖区域的多层石墨烯边界附近,相应层数石墨烯的2D模强度与其面积成正比,而相应的D模强度则与在临界距离内的对齐距离(如果h
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制