电池循环过程

仪器信息网电池循环过程专题为您整合电池循环过程相关的最新文章,在电池循环过程专题,您不仅可以免费浏览电池循环过程的资讯, 同时您还可以浏览电池循环过程的相关资料、解决方案,参与社区电池循环过程话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

电池循环过程相关的耗材

  • TUBALL® BATT锂电池改质剂
    TUBALL?BATT锂电池改质剂 TUBALL?BATT添加剂是在锂电池正极材料的不同化学反应制备过程中,使用作为添加剂于电极材料中。锂电池使用TUBALL?BATT后,可大幅提高锂电池的循环寿命,以及增加电池的放电及充电效能。TUBALL?BATT的主要成分是OCSiAl生产的独特材料TUBALL?-全球 在能够大规模生产的单/双壁碳纳米管(SWCNT/ DWCNT)的公司,并且其价格能够应用于客户的大量生产。在TUBALL?BATT的制备中使用高质量SWCNT,因此能够提高锂离子电池的循环寿命,即使添加量仅0.01%(以干残余物的百分比)于电极材料中。当适度分散在电极团中,TUBALL?可强化电极内部,并在充电/放电循环中,改善其机械稳定性,进而防止裂缝的出现和在长时间使用过程中产生的电极“无效区"(dead zone)。TUBALL?是优异的导电性添加剂,可确保整个活性正极材料中电极接触的质量。与多壁碳纳米管、碳纳米纤维及其他类似的材料相比,TUBALL?BATT材料的使用不会导致在电极浆料的粘度显著改变,也不需重大改变既有的电池标准制程。 TUBALL BATT VS CARBON BLACK 包装规格:1000ml
  • 高性能内置电池
    便携式设备在应急事故处理以及现场执法中发挥着越来越重要的作用, 其中电池的性能决定了便携式设备现场工作时长及使用便捷性, 大多数客户为了提高设备续航能力选购了各种UPS和大容量户外电源设备, 虽解决了续航问题, 但给客户带来了接口复杂、 携带不便、 兼容性差甚至有安全隐患等风险。北京博赛德科技有限公司结合20多年丰富的现场监测和应急监测经验, 以及 多年来在各类重大突发环境事件和应急事故中对现场仪器设备的使用要求, 研发出了一适合便携式GCMS和顶空使用, 且具有长达八小时超强续航能力的高性能内置电池 - SP3000, 解决了现场监测过程中便携气质和顶空的电源问题。SP3000是一款内置专用捚电池, 具有容量大、 续航长、 工作温度范围广、 使用寿命长的特点, 可用于HAPSITEER (SMART)和便携式顶空/Hapline P8800便携式气质联用仪/HS-PS 便携式顶空等多种设备。 由于其效率高, 防展性及密封性强, 重量轻, 充电灵活, 携带方便, 可以完全满足现场监测及应急处置时对便携设备的需求。
  • 爱谱斯 气体扩散电极变温测试池(燃料电池) 电解池
    气体扩散电极变温测试池(燃料电池)适用于气体扩散电极测试,如氢氧燃料电池,直接甲醇燃料电池等。电解池可以控制温度,控制实验过程中气体的流速,参比电极默认为可逆氢参比电极,工作电极可选择不同类型的气体扩展电极。另外该电解池也适合于腐蚀测试,CO2还原测试等。气体扩散电极变温测试池(燃料电池)特点:电解池集成了工作电极和对电极(惰性铂)平行布置,形成平行的电流线;参比电极位于单独的储液罐中,因此电流曲线不受干扰;工作电极可根据需要通气测试;Flex Cell电解池可通过集成加热系统将口昂之温度85°C(PP)或160°C(PTFE);Flex Cell电解池适用于电解液的pH值为-2至16;Flex Cell电解池的最小电解液体积为40ml;

电池循环过程相关的仪器

  • ZY-4535电池针分容循环测试柜用途:本机可适用于完成各类型电池的针刺及挤压试验,适用于常温环境温度下,检测电池产品外物穿或外力挤压后可能引发的局部热失控或内部短路,测试过程中模拟产品在实际使用中,可能承受的外力,以此来评定产品的安全性能,并通过试验数据,优化产品,可满足各标准中的单体蓄电池与蓄电池模块的针刺挤压试验要求;符合标准:GB/T 36276-20XX 、GB/T 36276-2018 、GB/T 36972-2018 、GB/31241-2014、GB/T18287-2013、UL1642 、UL2054-2005 、IEC62133,UN38.3 等主要技术参数:最大试验力:50KN力值分辨率:0.001kN力值精度:试验力5kN 时,±0.5%试验力5kN 时,±0.05kN测试行程: 0-300mm(可定制)行程分辨率:0.001mm行程精度:±0.5%测试速度:针刺速度 0.01-25mm/s 任意设置挤压速度 0.01-15mm/s 任意设置速度精度:速度≥1mm/s 时为±0.5%实测值速度≥0. 1mm/s 时为±1%实测值速度分辨率:0.01mm/s测力系统:美国进口高精度传感器箱体结构:内箱尺寸(约):800*800*800MM内箱使用钢板加强并形成框式结构,并使用方管加以辅助加强,搭配使用组高强度不锈钢铰链与试验箱门连接形成刚性整体,并搭配泄压装置,抗爆能力强,可有效防护测试冲击;外箱材质冷轧钢板静电喷涂处理机台左侧安装有∮100mm 测试孔一个,并配相应密封装置,供通电测试时引线使用。防爆观察窗口,附带可拆卸式不锈钢防撞网照明系统:试验箱内部顶部靠观察窗侧安放高亮度照明灯。自动防爆泄压装置:具有防爆泄压功能,箱体后部安放泄压门, 当强气流冲击时,泄压门自动打开,减轻爆炸冲击力,利于冲击压力的及时释放, 避免对设备本体、内部电路及控制系统等带来损伤。排气系统:设备背部安装有静音式独立强制排气系统及排气管,当试验样品产生烟雾时,可启动风机并通过管道将烟雾排出;灭火系统:机器内搭配二氧化碳灭火器,并设有控制接口可监控:搭配 500 万像素高清红外摄像机,观察电池情况。测试夹具:配套针刺测试夹具,夹持范围满足 1-10mm配套 R75 挤压头、平板挤压头各 1 套,其他规格可选测试钢针:Φ3,Φ5,Φ8,Φ10,长度 150mm(其他可选)重量:约 950Kg 机器尺寸约:W1200*D1200*H2100mm 电源:AC220V 机器外观图(以实际为准,图片仅供参考)
    留言咨询
  • IVIUM电池循环测试仪 400-860-5168转1558
    IviCycle C030/C200系列是一种多通道电化学工作站/电池循环测试仪,每个模块8个通道,总计32通道,采用标准19英寸机架。内置数据安全模块,因此即使通讯中断或电脑崩溃,测量也将继续,而且数据不会丢失。可选交流阻抗分析仪,可以同时测量所有通道的交流阻抗。 数据安全和连接l 数据储存在独立于电脑的数据卡中l 可连接多个电脑 软件IviCycle通过IviumSoft软件控制,具备IVIUM电化学工作站的几乎所有测量和分析功能。IviCycle也可以由LabVIEWTM, C++, Delphi等第三方软件控制。 l 可单独控制某个通道l 所有通道同时测量l 同步开始测量l 不同通道可以单独作图或者在一个图形显示系统性能- 电流:±30mA/±200mA- 输出电压:±10V- 电极连接:四电极- 恒电位仪带宽:500kHz- 稳定性设置:高速/标准/高稳- 信号采集:双通道16-bit ADC,100k个数据点/秒 恒电位模式- 施加电位范围:±10V- 施加电位精度:0.2%或1mV- 电流档范围:±10nA - ±100mA- 测量电流分辨率:电流档x0.015%,1pA- 测量电流精度:0.2% 恒电流模式- 施加电流分辨率:电流档x0.033%- 施加电流精度:0.2%- 控制电流档:±10μA - ±100mA- 电位范围:±1mV, ±4mV, ±10mV, ±40mV, ±100mV, ±400mV,±1V, ±4V, ±10V- 测量电位分辨率:电位档x0.03%,75nV- 测量电位精度:0.2%或1mV 交流阻抗分析仪- 频率范围:10μHz - 20kHz- 振幅:0.15mV – 1V,电流档之0.03% - 10 0% 电量计- 输入阻抗:1000Gohm //20pF- 输入偏置电流:20pA- 带宽:5MHz 环境要求- 电源:100-240V, 50-60Hz, 120VA- 接口:USB/LAN(以太网)- 外形尺寸:44 x 26 x 22 cm- 重量:12.5kg- 电脑:WIN10- 内置数据安全模块:数据采集时间:zui小2ms,储存数据点:20M个/每通道
    留言咨询
  • 功能和优势 &bull 功能和优势: 消除技术障碍,加快工作流程。VSP-300恒电位仪数据和TAM IV等温微量热仪数据可在同一用户界面中执行采集和分析,让您轻松运行实验和分析结果。 &bull 即刻完成实时数据整合: 用户无需等待冗长的实验完成即可查看初步结果。 &bull 可容纳三类常见的电池和多种尺寸: 方便研究人员采用多种电池配置和化学成分获得更优质的数据,并在各种设置条件下节省数月的实验时间。 &bull 纽扣电池(CR2032和CR2325) &bull 圆柱形电池(18650) &bull 软包电池(最大尺寸50 mm x 94 mm) &bull 高通量: 一次可并行循环多达12个电池样品,大幅缩短确认电量真实性所需的实验时间和漫长的等待时间。&bull 缩短实验和培训时间: 借由高效的实验设计和软件功能轻易达成&bull 即插即用式电池量热夹具: 用户友善的设计不需要专门的工程设计,消除了因定制OEM产品的危险操作风险。
    留言咨询

电池循环过程相关的试剂

电池循环过程相关的方案

电池循环过程相关的论坛

  • 高镍正极半电池循环过程中切换倍率后电压充不上去

    高镍正极半电池循环过程中切换倍率后电压充不上去

    材料是NCM9622,电池在0.1C倍率下循环3圈活化,活化后想在1C跑长循环,但是充到3.9V左右电池电压就很难充上去。几乎所有电池都有这个问题,这可能是什么原因导致的呢?电解液是LP57,极片经过了正常的辊压步骤,活性物质载量大约3.4mg/cm2。[img=充放电曲线,611,600]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031123459587_2177_5982351_3.jpg!w611x600.jpg[/img]

  • 汽车电池冷却水循环机换热器需要考虑哪些方面?

    汽车电池冷却水循环机一直是大家比较受欢迎的设备之一,其换热器管路中设计也是需要进行设计的,那么汽车电池冷却水循环机换热器需要考虑哪些方面呢?  汽车电池冷却水循环机换热设备的类型很多,对每种特定的传热工况,通过优化选型都会得到一种比较合适的设备型号,如果将这个型号的设备使用到其他工况,则传热的效果可能有很大的改变。对汽车电池冷却水循环机管壳式换热器的设计,有以下因素值得考虑:  流速是汽车电池冷却水循环机换热器设计的重要变量,提高流速则提高传热系数,同时压力降与功耗也会随之增加,如果采用泵送流体,应考虑将压力降尽量消耗在换热器上而不是调节阀上,这样可依靠提高流速来提高传热效果。  选择较大的压力降可以提高汽车电池冷却水循环机换热器流速,从而增强传热效果减少换热面积。但是较大的压力降也使得泵的操作费用增加。合适的压力降值需要以换热器年总费用为目标,反复调整设备尺寸,进行优化计算而得出。  主要根据汽车电池冷却水循环机流体的操作压力和温度、可以利用的压力降、结构和腐蚀特性,以及所需设备材料的选择等方面,考虑流体适宜走哪一程。  汽车电池冷却水循环机换热终温一般由工艺过程的需要确定。当换热终温可以选择时,其数值对换热器是否经济合理有很大的影响。在热流体出口温度与冷流体出口温度相等的情况下,热量利用效率比较高,但是有效传热温差比较小,换热面积比较大。  对于汽车电池冷却水循环机一定的工艺条件,首先应确定设备的形式,例如选择固定管板形式还是浮头形式等,在换热器设计过程中,强化传热总的目标概括有:在给定换热量下减少换热器的尺寸;提高现有换热器的性能;减小流动工质的温差;或者降低泵的功率。  汽车电池冷却水循环机换热器在传热的过程中,可以根据具体的工艺要求来选择具体的汽车电池冷却水循环机换热器。

  • 新能源汽车电池高低温循环测试分析锂电池的使用方法

    新能源汽车电池高低温循环测试分析锂电池的使用方法

    无锡冠亚新能源汽车电池高低温循环测试是现代汽车电池测试中使用比较广的设备之一,锂电池作为比较常见的电池之一,在使用的时候需要注意哪些呢?  锂电池使用需要把握时间,防过充,正确的时间做正确的事,虽然,锂电池本身具有优异的电化学性能,然而,任何一种事物在背离平衡状态后都会存在安全隐患。  新能源汽车电池高低温循环测试建议大家,锂电池保养温度适宜,防冷热。在闲置时,锂电池通常不会发生安全事故,日常保养的目的就是使锂电池置于适宜的环境中,从而延迟电池的老化。事实上,锂电池参数设计中有一个就是适宜温度,相对来说,温度低一些问题不大,但如果放在较高的温度下,俗话说物极必反,也是会产生安全问题的。我们说的闲置状态仅仅是就正常环境而言,如果把锂电池放到水里或靠近火源那就已经脱离“保养”的话题了,那么,在正常环境下要做的是什么呢?水的方面防潮和热的方面防暴晒。故而,无锡冠亚恒温制冷技术有限公司提醒,锂电池日常保养的适宜环境应是四个字:通风、阴凉。无论锂电池是独立闲置还是在用电器具中待用,均应遵循这四个字。  在锂电池的正确使用方法中,锂电池充电方法是比较重要的,因为不正确的充电方法会引发安全问题,而放电与日常保养影响的仅仅是锂电池的使用寿命,锂电池本身也是一种耗材,无论我们采取什么办法也避免不了它之后的损耗,只是我们用正确的方法,延缓其衰老而已。  新能源汽车电池高低温循环测试在测试中,不论什么电池都需要正确使用,避免产生一些故障。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2018/09/201809041651055268_8627_3445897_3.jpg!w690x690.jpg[/img]

电池循环过程相关的资料

电池循环过程相关的资讯

  • 新材料让锂金属电池实现超长循环寿命
    在新能源材料领域,如何实现更高能量密度、更安全、更持久的锂金属电池,一直是科研界的一大难题。近日,云南大学材料与能源学院的郭洪教授团队设计了一种新型酰氨基功能化聚合物电解质,为锂金属电池的长寿命运行提供了有力保障。相关成果发表在国际期刊《能源与环境科学》上。在能源存储技术日新月异的今天,锂金属电池因其高能量密度和潜在的安全性提升,被视为未来电池技术的重要方向,其中固态电解质性能的优化尤为关键。传统聚合物电解质虽然具有界面接触性好、工业化生产潜力大等优点,但在实际应用中却面临着机械性能不足、锂离子(Li+)传输效率低、电极或电解质界面稳定性差等挑战。这些问题严重制约了锂金属电池的性能和寿命。酰氨基功能化材料设计示意图。 受访者供图针对这些挑战,郭洪教授团队提出了创新的分子设计策略,通过引入丰富的酰氨基位点,构建了一个独特的分层超分子网络,巧妙结合了永久化学交联和可逆氢键,使聚合物电解质在保持高度机械强度的同时,具备了优异的柔韧性。更重要的是,酰氨基位点的引入为锂离子提供了快速且可逆的传输通道,显著提升了电解质的离子传导性能。此外,整个聚合物基质的预去溶剂化效应也进一步促进了锂离子的传输效率,使其在电解质中的迁移更加迅速和均匀。除了优异的传输性能,这种新型聚合物电解质还能够在电极表面形成稳定的界面层,有效防止了锂枝晶的生成和界面副反应的发生。锂枝晶是锂金属电池中常见的问题,它们不仅会导致电池短路,还会加速电池的老化过程。因此,这种双重强化的界面稳定性对于提高电池的安全性和循环寿命至关重要。实验结果显示,采用这种新型电解质的锂金属电池,在循环测试中展现出了惊人的耐久性。在完整充放电情况下,磷酸铁锂正极搭配锂金属负极的电池经过850次循环后,容量保持率仍高达96.5%;而钴酸锂正极的电池则在300次循环后保持了96.8%的容量。据了解,这一新成果是对固态电解质设计的一次重大创新,证明其在实际应用中的巨大潜力,为解决锂金属电池面临的诸多挑战提供了新思路,也为未来开发更高性能、更长寿命的固态电池奠定了坚实的理论基础和材料基础,在电动汽车、储能系统等领域具有广阔的应用前景。
  • 大连化物所提出颗粒细化诱导提高钠/锂离子电池循环容量的新机制
    近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队和燕山大学唐永福教授团队合作,在钠/锂离子电池电极储能机理研究方面取得新进展。  近年来,钠离子电池作为研究热点得到了国内外广泛关注,取得了快速发展。研究发现,具有较高Na+储存性能和循环稳定性的电极材料,对于提高钠离子电池的能量密度和倍率性能十分重要。 本工作中,研究团队设计了一种珊瑚状的FeP复合材料,该材料可锚定FeP纳米颗粒,并将其均匀分散在氮(N)掺杂的三维(3D)碳骨架(FeP@NC)上。珊瑚状FeP@NC复合材料具有较短的电荷转移路径和较高的导电氮掺杂碳网络,可显著改善复合材料的电荷转移动力学。同时,由于FeP纳米颗粒周围具有高度连续的N掺杂碳骨架和弹性缓冲的石墨化碳层,基于FeP@NC复合材料的钠离子电池(SIB)表现出优异的倍率性能和循环性能,在10A/g下经10000次循环后其容量保持率为82.0%。  更为重要的是,针对循环过程中电池容量逐渐上升的现象,研究团队结合电化学研究和原位电镜表征分析,证实了一种独特的颗粒细化在循环过程中提高容量的作用机制,这种容量提升效果在小电流下表现得更为显著。研究表明,均匀分布在氮掺杂碳基体上的FeP纳米颗粒,在第一个循环中经历了细化-复合过程,经过数次循环后呈现出全区域细化的趋势,这种细化对周围的非晶碳产生强烈的吸附作用,引起复合材料石墨化度和界面磁化强度逐渐增加,为Na+的存储提供了更多的额外活性中心,进而提高了循环容量。这种容量提升机制也可以扩展到锂离子电池(LIBs)。研究发现,在10A/g下,经5000次循环后,基于FeP@NC复合材料的LIBs的容量保持率为90.3%,超过了已报道的FeP基复合材料的容量保持率。  该研究提出了一种在循环过程中经颗粒细化诱导提高电池容量的新策略,为设计高性能的SIBs/LIBS负极材料提供了新思路。  相关成果以“A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle-Refinement”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所DNL17博士研究生王灿沛。上述研究工作得到国家自然科学基金、中科院青年创新促进会等项目的资助。  文章链接:https://doi.org/10.1002/anie.202110177
  • 广东开发出超长循环寿命的柔性准固态碱性锌电池
    近日,广东省科学院化工研究所研究员曾炜团队开发出具有超长循环寿命的柔性准固态碱性锌电池。相关研究发表于Surfaces and Interfaces。曾炜为该论文通讯作者,郭欣颖为第一作者。   随着便携式电子产品和电动汽车的快速发展,对具有多功能、高性能、高安全性电池的需求越来越大。碱性镍锌电池具有成本低、安全、理论容量高(820 mAh/g)和易于组装等优点,成为学界研究热点。然而,镍锌电池的实际应用还存在着结构不稳定和循环稳定性差等问题。因此,设计和构造具有优良结构稳定性和电化学活性的镍基正极材料至关重要。 柔性准固态碱性锌电池的制备过程。研究团队 供图   研究人员通过简易浸泡导电聚合物封装二硫化三镍空心纳米棒结构实现高性能正极材料。浸泡导电聚合物涂层不仅可以为二硫化三镍纳米棒提供附着力,防止二硫化三镍在循环过程中从基底上脱落,还可以通过完整的导电途径促进电子转移。   此外,还设计了具有双网多孔结构的凝胶电解质,采用海藻酸钠对Zn2+的结合可以有效降低Zn2+溶解鞘中结合水分子的活性,抑制副反应和枝晶的产生,实现锌离子的均匀沉积,提高电池的循环稳定性。   该柔性准固态电池具有良好的可逆性,在8 mA cm-2时表现出1.06 mAh cm-2(276.04 mAh g-1)的高比容量。该电池还表现出优异的倍率性能为93.72%,在30 mA cm-2具有10000次以上的超长循环稳定性,容量保持率达88.96%。   据了解,该柔性准固态电池可应用于柔性电子设备,进一步拓宽了碱性锌电池的应用领域。   上述研究得到国家自然科学基金、广东省科学院建设国内一流研究机构行动专项资金等项目资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制