导电薄膜

仪器信息网导电薄膜专题为您整合导电薄膜相关的最新文章,在导电薄膜专题,您不仅可以免费浏览导电薄膜的资讯, 同时您还可以浏览导电薄膜的相关资料、解决方案,参与社区导电薄膜话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

导电薄膜相关的耗材

  • 基于SiO2/Si晶片的双层CVD石墨烯薄膜(4片装)
    基于SiO2/Si晶片的双层CVD石墨烯薄膜将两层单层CVD石墨烯膜转移 到285nm p掺杂的SiO 2 / Si晶片上 尺寸:1cmx1cm 4片将每个石墨烯膜连续转移到晶片上我们的石墨烯薄膜的厚度和质量由拉曼光谱控制该产品的石墨烯覆盖率约为98%石墨烯薄膜是连续的,具有小孔和有机残留物每个石墨烯薄膜主要是单层(超过95%),偶尔有少量多层(低于5%的双层)由于没有A-B堆叠顺序。石墨烯薄膜彼此随机取向。薄层电阻:215-700Ω/平方硅/二氧化硅晶圆的特性:氧化层厚度:285nm颜色:紫罗兰色晶圆厚度:525微米电阻率:0.001-0.005欧姆 - 厘米型号/掺杂剂:P /硼方向:100 前表面:抛光背面:蚀刻应用:石墨烯电子和晶体管导电涂料航空航天工业应用支持金属催化剂微执行器MEMS和NEMS化学和生物传感器基于石墨烯的多功能材料石墨烯研究
  • AlN薄膜
    产品名称:氮化铝(AlN)薄膜 产品简介:AllN Epitxial范本saphhire提出了氢化物气相外延(HVPE)的方法。氮化铝薄膜又是成本效益的方法,用来取代氮化铝单晶衬底。科晶真诚欢迎您的垂询!技术参数:尺寸 dia50.8mm±1mm蓝宝石衬底取向 c轴(0001)±1.0deg衬底: Al2O3 SiC GaN薄膜厚度:10-5000nm导电类型: 半绝缘型位错密度:XRD FWHM of 0002500arcsec XRD FWHM of 10-121500arcsec 有效面积:80%抛光:单抛光 产品规格: 氮化铝(蓝宝石衬底):dia2"*1500nm±10% 注:可根据客户需求定制特殊的方向和尺寸。标准包装:1000级超净室,100级超净袋或单片盒封装
  • TUBALL® INK透明导电膜改质剂
    TUBALL?INK透明导电膜改质剂 透明导电薄膜(TCFs) 被用作触摸屏、液晶显示器、太阳能电池和有机发光二极管的透明电极制造。OCSiAl的透明导电膜技术达到表面电阻110 奥姆/平方,透明度90%。我们的透明导电膜的优势是高产能的技术,低成本和导电纳米碳管薄膜的耐机械性能。TUBALL?透明导电薄膜具有以下关键的优势:? 适合于大批量生产。生产在室温下,不用真空沉积? 导电涂层优异附着性适合大部分种类的基材? 每平方公尺添加6mg的TUBALL,使透明导电膜的透明度可以达到89%,电阻达到110 OHM/SQ。TCF with TUBALL. SEM image. OCSiAl, 2014. OCSiAl在展会上展示了配备TUBALL?的透明加热器包装规格:250ml

导电薄膜相关的仪器

  • 【ITO薄膜测厚仪 电池薄膜厚度测定仪 接触式薄膜厚度测试仪】ITO薄膜是一种n型半导体材料,具有高的导电率、高的可见光透过率、高的机械硬度和良好的化学稳定性。它是液晶显示器(LCD)、等离子显示器(PDP)、电致发光显示器 (EL/OLED)、触摸屏(TouchPanel)、太阳能电池以及其他电子仪表的透明电极最常用的薄膜材料。ITO薄膜是一种很薄的金属薄膜,在透明导电薄膜方面得到普遍的应用,具有广阔的前景。但薄膜的厚度是否均匀直接关系到企业的生产成本控制,所以对ITO薄膜厚度的高精度测量,是企业必须重视的检测项目之一。Labthink兰光研发生产的CHY-C2A测厚仪,采用机械接触式测量方式,严格符合标准要求,有效保证了测试的规范性和准确性。专业适用于量程范围内的塑料薄膜、薄片、隔膜、纸张、箔片、硅片等各种材料的厚度精确测量。设备分辨率高达0.1微米,配置的自动进样系统,使用户可自行设置进样步距、测量点数和进样速度,大大提高了薄膜厚度测试效率。 技术特征: 负荷量程:0~2 mm(常规)     0~6 mm;12 mm (可选)分辨率:0.1 μm测量速度:10 次/min (可调)测量压力:17.5±1 KPa(薄膜);50±1 KPa(纸张)接触面积:50 mm2(薄膜);200 mm2(纸张)     注:薄膜、纸张任选一种;非标可定制电源:220VAC 50Hz / 120VAC 60Hz外形尺寸:461mm(L)×334mm(W)×357mm(H)净重:32kg 以上【ITO薄膜测厚仪 电池薄膜厚度测定仪 接触式薄膜厚度测试仪】信息由济南兰光机电技术有限公司发布,如欲了解更详细信息,欢迎致电0531-85068566垂询!
    留言咨询
  • EddyCus TF map 2525 薄膜电阻和薄膜厚度测试仪 方阻测试仪 薄膜电阻测试仪TF lab系列产品是一款适合实验室研发或成品检测使用的薄膜面电阻(方块电阻)及薄膜厚度测量的仪器。特点非接触成像高解析度成像(25 至1,000,000 点)缺陷成像封装层的地图参数薄膜电阻(欧姆/平方)金属层厚度(nm、μm)金属基板厚度(nm、μm)各向异性缺陷完整性评定应用建筑玻璃(LowE)触摸屏和平板显示器OLED和LED应用智能玻璃的应用透明防静电铝箔光伏半导体除冰和加热应用电池和燃料电池包装材料材料金属薄膜和栅格导电氧化物纳米线膜石墨烯、CNT(碳纳米管)、石墨打印薄膜导电聚合物(PEDOT:PSS)其他导电薄膜及材料规格参数测量技术:非接触式涡流传感器基板:例如:薄膜、玻璃、晶圆,等等最大扫描面积:10 inch / 254 x 254 mm(根据要求可以更大)边缘效应修正/排除:对于标准尺寸,排除2 mm的边缘最大样品厚度/传感器间隙:2 / 5 / 10 / 25 mm(由最厚的样本确定)薄膜电阻的范围:低 0.0001 - 10 Ohm / sq 2 至 8 % 精度标准 1 - 1,000 Ohm / sq 2 至 8 % 精度高 10 - 10,000 Ohm / sq 4 至 8 % 精度金属膜的厚度测量(例如:铝、铜):2 nm - 2 mm (与薄膜电阻一致)扫描间距:1 / 2 / 5 / 10 mm (根据要求的其它尺寸)每单位时间内测量点(二次形):5分钟内10,000个测量点30分钟内1,000,000 个测量点扫描时间:4 inch / 100 x 100 mm,在0.5至5分钟内(1-10mm 间距)8 inch / 200 x 200 mm,在1.5至15分钟内(1-10mm 间距)装置尺寸(宽/厚/深):549 x 236 x 786(836) mm / 23.6 x 9.05 x 31.5 inch重量: 27 kg可用特色:薄膜电阻成像各向异性电阻传感器
    留言咨询
  • Si上镀Al薄膜 400-860-5168转2205
    产品名称:Si上镀Al薄膜(Aluminum?Film?on?Silicon?Wafer)常规尺寸:dia 4" ±0.5 mm x 0.525 ±0.025 mm 技术参数:Al薄膜厚度:3um薄膜电阻率:2.65 micro ohm-cm薄膜结晶:Weak (111) - oriented poly-crystals薄膜表面粗糙度:4.87 nm and 10 nmSi导电类型:N型Si电阻率:0.005?ohm-cm?;1-10ohm-cm?Si晶向:100±0.5°抛光情况:单抛 标准包装:1000级超净室100级超净袋真空包装或单片盒装
    留言咨询

导电薄膜相关的方案

  • Ag-ITO-Ag多层导电薄膜的光学性能研究
    Ag/ITO/Ag导电薄膜的光学性质决定着透反射式LCD的性能, 其光学性能的评价尤为重要。因此,利用UH4150对Ag/ITO/Ag导电薄膜的光学性质进行了评价
  • 利用导电探针原子力显微镜(CP-AFM)测量碳纳米管薄膜导电性
    导电性测量是一种有效的方法, 可用来描述某些特殊应用中材料的特性与行为,从能量存储和能量转换元件,到分子元件电路以及纳米级半导体元件。导电探针原子力显微镜(CP-AFM)是其中一种相当有用的技术,它可以提供精确的纳米级测量和先进材料如CNTs膜的导电性的相对分布图。在过去的十年中,几种检测被引入来研究这些材料,然而,绝大多数只能测量有限的电性范围。在这项研究中,配备CP-AFM的Park NX20被用来研究具有广泛导电性的3种不同的材料。实验所得数据清晰地证明了,这项技术借由整合对数型电流放大器于系统中,可利用来测量不同导电材料的典型表征,以及提供薄膜材料的导电率空间解析图。
  • 天津兰力科:ZRNx快离子导体薄膜的制备及其Cr掺杂性能的研究
    全固态电致变色器件的实用化研究一直是该领域的研究热点。电致变色器件全固态化的关键是采用合适的快离子导体(有时亦称固体电解质)作为器件的离子传导层。目前,用于电致变色器件的快离子导体仍以固态聚合物电解质为主,然而,聚合物电解质存在易老化、机械强度差、工业化生产难度较大等缺点。无机快离子导体是最有希望用于全固态电致变色器件的离子导体材料。本实验室前期研究结果表明,在合适的工艺参数下制备的 ZrNx薄膜具有高的透过率、良好的热稳定性、耐磨性和化学稳定性,适合于作为电致变色器件的离子导体层。 到目前为止,制备离子导体薄膜最常用的方法有溶胶-凝胶法、真空蒸发法、化学气相沉积法和溅射沉积法等,其中磁控溅射以沉积速率高、基片温升低、膜层均匀性及附着力好、工艺参数易控制等优点而日益成为制备离子导体薄膜的理想工艺方法。 因此本文以纯锆靶及纯铬靶为靶材,采用反应磁控溅射工艺在 WO3/ITO/Glass基片上沉积 ZrNx薄膜和 ZrNx:Cr 薄膜,通过紫外-可见分光光度计、循环伏安法、交流阻抗法、X 射线衍射仪、热场发射扫描电镜以及扫描隧道显微镜等测试分析方法,研究了制备工艺参数以及 Cr 掺杂对 ZrNx薄膜离子导电性能和结构的影响 。研究结果表明:采用射频反应磁控溅射工艺制备的 ZrNx薄膜和 ZrNx:Cr 薄膜均为非晶态结构,溅射功率和氮气分量等工艺参数对薄膜的离子导电性能有较大影响,选择合适的氮分量和溅射功率有助于提高 ZrNx薄膜的离子导电性能,在本实验的条件下,原位沉积 ZrNx薄膜的可见光透过率大于 75%,ZrNx/WO3/ITO/Glass器件的光学调节范围最大可达 57%以上,在离子传导过程中表现出良好的离子导电性能。 掺杂后的 ZrNx:Cr 薄膜,晶态趋势大于未掺杂的 ZrNx薄膜,结构的变化导致ZrNx:Cr 薄 膜 的 离 子 传 导 性 能 有 所 下 降 , 电 化 学 窗 口 变 小 , 从 而 使ZrNx/WO3/ITO/Glass 器件的光学调节范围缩小。

导电薄膜相关的论坛

导电薄膜相关的资料

导电薄膜相关的资讯

  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style=" text-indent: 2em " 透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。 /p p style=" text-indent: 2em " 因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。 /p p style=" text-indent: 2em " 最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。& nbsp /p p style=" text-indent: 2em text-align: center " span style=" text-align: center text-indent: 0em " img src=" http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title=" 1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(127, 127, 127) font-size: 14px " 图1. 单根分散、具有碳焊结构的SWCNT网络。 /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (A)典型TEM照片;(B)单根SWCNT的百分含量统计; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。 /span /p p style=" text-indent: 2em " 通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。 /p p style=" text-indent: 2em " 研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title=" 2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " 图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。 /span /p p style=" text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " (A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。 /span /p p style=" text-indent: 2em " 该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。 /p
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制