校正面积归一化法的标准

仪器信息网校正面积归一化法的标准专题为您提供2024年最新校正面积归一化法的标准价格报价、厂家品牌的相关信息, 包括校正面积归一化法的标准参数、型号等,不管是国产,还是进口品牌的校正面积归一化法的标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合校正面积归一化法的标准相关的耗材配件、试剂标物,还有校正面积归一化法的标准相关的最新资讯、资料,以及校正面积归一化法的标准相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

校正面积归一化法的标准相关的仪器

  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • NDVI测量仪可在近地面对冠层归一化植被指数(NDVI)进行长期定位监测。NDVI对绿色植被反应敏感,常被用于研究植被的生长状态。NDVI测量仪传感器制作工艺考究、坚固耐用,可在各种恶劣天气条件下正常工作;其体积小巧,安装简易方便;性价比高,可在多处布点。 工作原理NDVI是由冠层对近红外波长(810nm)的反射率与红光波长(650nm)的反射率之差比上两者之和计算得到,因此需同时安装向上和向下两个传感器来监测冠层对这两个波长的反射率。向上的NDVI传感器检测810nm和650nm的光照强度。测量结果代表了来自天空的入射光强度。传感器经过余弦校正,具有半球视场。安装时须保证视场内只有天空,没有冠层和其他地物。NDVI传感器也是检测810nm和650nm的光照强度。测量结果代表了来自冠层的反射光强度。传感器的视野范围被限定在30°以内,这种限定使得传感器可以准确朝向待测冠层。产品特点耗电量低性价比高支持SDI-12通讯协议自动测量、收集数据,校准信息保存在传感器内环氧树脂密封工艺,防水,耐受恶劣天气,可在野外长期布设若使用ZL6数据采集器,可通过互联网终端实现远程数据查看和下载应用领域单株植物或群落冠层的归一化植被指数(NDVI)动态监测监测植被返青、衰老和受胁迫状态冠层有效辐射截获量冠层生长物候监测冠层叶面积指数冠层生物量积累技术参数校准系数(灵敏度的倒数)逐个传感器校准,数据存储在固件中校准不确定性± 5 %波长范围红光检测器650 nm ± 5 nm;半峰宽(FWHM)65 nm;NIR检测器 810 nm ± 5 nm;半峰宽(FWHM)65 nm测量范围2倍全日照测量重复性 1 %长期漂移每年 2 %响应时间 0.6 s视场范围向上180°,向下30°方向(余弦)响应± 2 % @ 45°, ± 5 % @ 75° 天顶角温度响应 0.1 % 每 ℃输出SDI-12供电5.5 ~ 24 V DC外壳带有丙烯酸散射窗的阳极铝IP 防护IP68工作环境-40 ~ 70 ℃ 0 ~ 100 % RH尺寸S2-411-SS(向上):直径 30.5 mm, 高37 mmS2-412-SS(向下):直径 30.5 mm, 高34.5 m重量(包含5米缆线)140 g缆线5米屏蔽双绞线;TPR护套和不锈钢接口兼容数采(须另购)METER EM60 系列, ZL6 系列, ZSC, ProCheck, Campbell Scientific订购指南传感器: S2-411-SS向上半球视野传感器,S2-412-SS向下视场光阑传感器数采:ZL6数据采集器。另有PRI光化学反射指数传感器可选购。相关产品SRS-PRI 光化学反射指数测量仪产地与厂家:美国METER公司
    留言咨询
  • NDVI植被指数测定仪、植被指数测定仪、美国NDVI植被指数测定仪、进口植被指数测定仪、NDVI植物指数测定仪、农作物NDVI植被指数测定仪供应一、NDVI植被指数测定仪用途合理施用氮肥是农作物增产的重要手段。但是确定植物如何能最高效地利用氮肥,确定最佳施肥时机的方法花费很高,而且费时费力。CM1000NDVI测量仪通过测量归一化植被差异指数(NDVI)来获取氮利用率和氮肥需要量数据,可以帮助你快速、及时、高效的了解农作物的氮肥所需含量,准确掌握施肥时机。南京铭奥仪器设备有限公司中国总代理二、NDVI植被指数测定仪技术参数1、测量使用范围:植物叶片、草坪、农作物2、测量系统:反射660nm和840nm的光3、测量面积:圆锥形观察范围12-72“4、最小距离:30.5cm5、最大距离:72“以上6、感应器件:4个光电二极管7、测量单位:NDVI(0-1)8、测量间隔:2秒9、精度:±5%10、电源:2节AAA电池可测3000个数据左右
    留言咨询

校正面积归一化法的标准相关的方案

  • 气相色谱法测定工业用甲基叔丁基醚纯度及杂质含量
    对于工业用甲基叔丁基醚而言,其合成工艺复杂,杂质种类较多,其纯度及杂质含量测定要求严格,对分析仪器灵敏及稳定性极具考验。福立仪器采用GC9720Plus气相色谱仪,参考《SH/T 1550-2012业用甲基叔丁基醚(MTBE)纯度及杂质的测定 气相色谱法》中两种方案,分别对两组甲基叔丁基醚相关样本(样本来源于该标准起草单位)进行测定,以校正面积归一化法测定纯度。
  • 利用安捷伦 Seahorse XF成像和归一化系统对XF数据进行归一化
    任何实验都需要数据归一化才能得出有效结论,尤其是涉及样品数量差异时。对于使用安捷伦 Seahorse XF 技术的实时细胞代谢分析,每孔细胞数是数据归一化普遍接受的参考值。该值可以通过细胞计数直接评估,也可通过测量生物分子(如总蛋白或基因组 DNA)间接评估。安捷伦 Seahorse XF 成像和归一化系统集成了 XF 技术与Cytation 1/5 细胞成像多模式酶标仪 (BioTek Instruments,Inc)。在此配置中,Cytation 1/5 由全新安捷伦 Seahorse XF 成像和细胞计数软件控制,该软件为基于显微图像的细胞计数提供了简单且经过验证的自动化解决方案。该一站式解决方案包括 1) 原位注入可渗透细胞膜的核染色化合物(即 Hoechst 33342),2) 针对 XF 分析优化的自动化成像和细胞计数,以及 3) 在 Wave 软件中将图像和细胞计数同步到 XF结果文件中。该解决方案为 XF 分析仪用户提供了一种高效可靠的归一化方法以及无缝式快速工作流程。
  • 博勒飞粘度计在晶体硅太阳能电池正面银浆料的应用
    导电浆料通过丝网印刷的方式印刷在硅基片上,其中使用的正面银浆技术要求是在获得最大的受光面积情况下导电性要好,最大程度地把硅片产生的电能输出来,这就要求银浆的丝网印刷精度要好,影响丝网印刷精度的因素主要有浆料粘度、细度、触变性、流平性等方面。其中很重要得两个特性:浆料粘度和触变性,用 BROOKFIELD HBDV-3TCP 流变仪去测定。

校正面积归一化法的标准相关的论坛

  • 校正面积归一化法

    今天做新方法的时候发现岛津软件的组分表向导中有一个校正面积归一化法,这个有哪位版友用过吗?和面积归一化法的区别在哪?使用的是什么校正呢?

  • 校正面积归一化法的做法

    有谁知道做校正面积归一化法时,待测气体的配比方法吗?请各位达人赐教。试样按体积比怎么换算?谢谢

校正面积归一化法的标准相关的耗材

  • 校正用标准样品
    校正用标准样品沃特世提供用于脂溶性和水溶性GPC/SEC分离的校正用标准品。标准品既有按单个分子量供应的单个标准品,也有按分子量范围供应的由多个标准品组成的套装。有如下三类:1、脂溶性校正标准品2、水溶性校正标准品3、ReadyCal聚乙烯标准品脂溶性标准样品套件描述 数量/分子量* 数量/部件号聚苯乙烯套件, 4 x 10 2 /10 g, 5.3 x 10 2 /10 g, 9.5 x 10 2 /10 g, WAT011588低-中等分子量 2.8 x 10 3 /5 g, 6.4 x 10 3 /5 g, 1 x 10 4 /5 g, 1.7 x 10 4 /5 g, 4.3 x 10 4 /5 g, 1.1 x 10 5 /5 g, 1.8 x 10 5 /5 g聚苯乙烯套件, 4.3 x 10 5 /5 g, 7.8 x 10 5 /5 g, 1.3 x 10 6 /1 g, WAT011610中等-高分子量 2.8 x 10 6 /1 g, 3.6 x 10 6 /1 g, 4.3 x 10 6 /1 g, 5.2 x 10 6 /1 g, 6.2 x 10 6 /1 g, 8.4 x 10 6 /1 g, 2 x 10 7 /1 g聚苯乙烯套件, 5.8 x 10 2 , 9.5 x 10 2 , 1.2 x 10 3 , 1.8 x 10 3 , 500mg/每个SL-105 2.47 x 10 3 , 3.77 x 10 3 , 5.1 x 10 3 , 7.6 x 10 3 , WAT034208 1.25 x 10 4 , 1.7 x 10 4聚苯乙烯套件, 1.2 x 10 3 , 3.25 x 10 3 , 1.02 x 10 4 , 2.8 x 10 4 , 500mg/每个 SM-105 6.8 x 10 4 , 1.95 x 10 5 , 4.9 x 10 5 , 1.08 x 10 6 , WAT034209 1.75 x 10 6 , 2.75 x 10 6聚苯乙烯套件, 4.5 x 10 5 , 1.27 x 10 6 , 2.3 x 10 6 , 3.26 x 10 6 , 500mg/每个SH-75 4.34 x 10 6 , 8 x 10 6 , 1.5 x 10 7 WAT034210聚甲基丙烯酸甲 2.4 x 10 3 , 9.5 x 10 3 , 3.1 x 10 4 , 500mg/每个酯,中分子量套 5.2 x 10 4 , 1 x 10 5 , 1.7 x 10 5 , 2.7 x 10 5 , WAT035706件 4.91 x 10 5 , 7.3 x 10 5 , 1 x 10 6聚甲基丙烯酸甲 1 x 10 3 , 1.7 x 10 3 , 2.5 x 10 3 , 500mg/每个酯,低分子量套 3.5 x 10 3 , 5 x 10 3 , 7 x 10 3 , 1 x 10 4 , WAT035707件 1.3 x 10 4 , 2 x 10 4 , 3 x 10 4聚丁二烯套件 1 x 10 3 , 3 x 10 3 , 7 x 10 3 , 1 x 10 4 , 3 x 10 4 , 500mg/每个 7 x 10 4 , 1 x 10 5 , 3 x 10 5 , 7 x 10 5 , 1.1 x 10 6 WAT035709聚异戊二烯套件 1 x 10 3 , 3 x 10 3 , 1 x 10 4 , 3 x 10 4 , 7 x 104 , 500mg/每个 1 x 10 5 , 3 x 10 5 , 5 x 10 5 , 1 x 10 6 , 3 x 10 6 WAT035708水溶性标准样品套件描述 数量/分子量* 数量/部件号支链淀粉 5.8 x 10 3 , 1.22 x 10 4 , 2.37 x 10 4 , 1 x 10 5 , 200mg /每个(pullulan) 1.86 x 10 5 , 3.8 x 10 5 , 8.53 x 10 5 WAT034207葡聚糖(Dextran) 5 x 10 3 , 1.2 x 10 4 , 2.4 x 10 4 , 4.8 x 10 4 , 500mg/每个套件 1.48 x 10 5 , 2.73 x 10 5 , 4.1 x 10 5 , 7.5 x 10 5 WAT054392聚氧化乙烯 2.4 x 10 4 , 4 x 10 4 , 8 x 10 4 , 1.6 x 10 5 , 500mg/每个(PEO)套件 3.4 x 10 5 , 5.7 x 10 5 , 8.5 x 10 5 WAT011572聚乙二醇 1 x 10 2 , 2 x 10 2 , 4 x 10 2 , 6 x 10 2 , 1 x 10 3 , 1gram/每个(PEG)套件 1.5 x 10 3 , 4.3 x 10 3 , 7 x 10 3 , 1.3 x 10 4 , 2.2 WAT035711 x10 4聚丙烯酸套件 1 x 10 3 , 3 x 10 3 , 7 x 103 , 1.5 x 10 4 , 3 x 10 4 250mg/每个 ,7 x 10 4 , 1 x 10 5 , 3 x 10 5 , 7 x 10 5 , 1 x 10 6 WAT035714 脂溶性聚苯乙烯(PS)标准物(单标 )近似分子量范围LS** GPC 重量 部件号— 4 x 10 2 10 g WAT011590— 5.3 x 10 2 10 g WAT011592— 9.5 x 10 2 10 g WAT0115942.8 x 103 2.8 x 10 3 5 g WAT0115966.2 x 103 6.4 x 10 3 5 g WAT0115981.03 x 104 1.01 x 10 4 5 g WAT0116001.67 x 104 1.73 x 10 4 5 g WAT0116024.39 x 104 4.30 x 10 4 5 g WAT0116041.07 x 105 1.06 x 10 5 5 g WAT0116061.86 x 105 1.84 x 10 5 5 g WAT0116084.22 x 105 4.27 x 10 5 5 g WAT0116127.75 x 105 7.91 x 10 5 5 g WAT0116141.26 x 106 1.30 x 10 6 1 g WAT0116162.86 x106 2.80 x 10 6 1 g WAT0116183.84 x 106 3.61 x 10 6 1 g WAT0116204.48 x 106 4.27 x 10 6 1 g WAT0116225.48 x 106 5.20 x 10 6 1 g WAT0116246.77 x 106 6.20 x 10 6 1 g WAT0116268.42 x 106 — 1 g WAT0116282.0 x 107 — 1 g WAT011630** 光散射( Light scattering)聚氧化乙烯(PEO)水溶性标准样品近似分子量范围LS** GPC 重量 部件号2.5 x 10 4 2.4 x 10 4 0.5 g WAT0115744.0 x 10 4 4.0 x 10 4 0.5 g WAT0115767.3 x 10 4 7.9 x 10 4 0.5 g WAT0115781.5 x 10 5 1.6 x 10 5 0.5 g WAT0115802.8 x 10 5 3.4 x 10 5 0.5 g WAT0115826.6 x 10 5 5.7 x 10 5 0.5 g WAT0115848.5 x 10 5 8.5 x 10 5 0.5 g WAT011586** 光散射( Light scattering)ReadyCal聚苯乙烯标准样品30个自动进样样品瓶-每瓶含有4个聚苯乙烯标准样品,每套包括三个不同的分子量范围,每个分子量范围的标样有10组。只需向瓶中加入溶剂,静置2小时后,轻轻摇动,即可放到自动进样器进行分析。每一套都配有详细的使用说明。类型 标准 近似分子量范围 部件号ReadyCal, 4 mL自动进样样品瓶 12 4 x 10 2 , 2 x 10 6 WAT058930ReadyCal, 2 mL自动进样样品瓶 12 4 x 10 2 , 2 x 10 6 WAT058931
  • ASTM 校正标准件 6.07501.010
    ASTM 校正标准件订货号: 6.07501.010ASTM 标准的 50:50 (v:v) 甲苯/乙腈,用于校正 Mira M-3 光谱仪的波数轴。
  • 大面积光源
    仪器简介:大面积模拟器采用特殊的设计进行模拟日光辐射环境测试需求。 可靠的系统性能精确再现了太阳光谱(全辐射),系统基本组成:辐射单元,电源,以及控制系统。应用领域: 材料老化研究;增强紫外和日光照射下,涂料,纺织品以及塑料的颜色牢固程度和材料稳定性测试涂料,涂层长期紫外照射测试;技术参数:电源: 为了获得最好的性能,灯泡采用电子电源供电。电子电源或EPS-Modul采用方波电流对灯泡进行驱动。这样可以减少辐射调控至+/-1%以下, 即便功率输入发生变化的时候, 还可对强度进行控制和以及提供稳定的功率输出。另外,它可以提供最佳灯泡控制环境,这样就可以最大程度延长金属卤化物灯寿命。 控制系统: 系统的操作由专用计算机执行。菜单式软件用于系统的配置以及操作。系统输出以及设置可以保存,以便下次调用。保存的文件可以作为一个复杂的日光模拟测试程序一部分,顺序执行。在无缝操作界面,PC使用我们的软件可以与测试设备主控计算机相连,软件提供简单的操作以及快速测试设置,对测试设备进行最大负荷使用。 定位系统: 为了能让系统有效模拟各种自然日光条件,通常系统采用一个机械定位系统。这使得日光排列可以随轴而动,进而适应各种测试设置要求或模拟自然日光日周期变化。对于位置的控制可以采取手动按钮或者集成到软件系统进行自动控制。定位系统通常根据应用和测试设备的不同而不同。我们可以根据不同客户要求设计最合适的系统。 系统需要定制以达到客户测试目的。考虑到系统设计的机动性以及能够适应多种设置要求,系统采用模块化设计。对于不同尺寸的Radiation Unit,EPS-Moduls,以及Radiation Unit mounting systems,以及软件的灵活性,我们会设计出最经济的解决方案来满足日光模拟应用要求。 测试标准: 我们的系统设计符合多种测试方法规定, 比如:DIN 75220, “汽车部件在日光模拟环境中的老化”, Society of Automotive Engineers (SAE-汽车工程师学会) methods, MIL-STD-810, EPA 以及其他方法。作为模拟器产业的领军生产商。我们经常作为顾问参与测试标准的制定 。我们已经开发出了多种电源以及灯泡来适应多种应用要求。主要特点:采用专门的金属卤化物灯用作辐射源。金属卤化物灯可产生类似与连续光谱的高密多线光谱。与特殊的滤光片相结合,金属卤化物灯系统光谱分布非常接近自然日光(CIE85)。除了加速退化测试应用,不同特性的滤光片可以用于其他应用。结合反射镜,滤光片以及灯箱可以产生高辐射效率和高空间均匀性。

校正面积归一化法的标准相关的资料

校正面积归一化法的标准相关的资讯

  • 【BLT小课堂】蛋白归一化在Western Blot中的应用
    蛋白归一化在Western Blot中的应用 在Western Blot(WB)实验中,归一化是实验数据处理的关键步骤。WB实验常设计不同的内部对照或检查点,对样本或者实验中的偏差进行监控、修正。在WB中的偏差通常来自蛋白样本浓度不均、凝胶上样不一致或转膜不完全。这些不一致性可以通过凝胶和膜的可见光或荧光标记法监控,用泳道总蛋白或内参蛋白(比如GAPDH、β-tubulin、β-actin或cyclophilin B)进行归一化校正, 来保证实验结果的可靠性。那么泳道总蛋白校正和内参蛋白校正有什么不同呢?内参蛋白校正使用内参蛋白校正是目前比较成熟的一种手段。具体校正方法就是在各蛋白样品中选一种表达量保持一致的蛋白作为内参蛋白(一般是管家基因),将每个样品目的蛋白含量与内参蛋白含量相除,得到每个样品目的蛋白的相对含量。再进行样品与样品之间的比较。例:当前有三份蛋白样品S1、S2、S3,选择的内参基因为Control,需要检测目的蛋白Test在这三份样品中的相对表达量。经过电泳、转膜、封闭、孵育、清洗等一系列实验操作后,获得一张蛋白印迹膜。用GelView 6000 Pro全自动化学发光成像系统或GelView 6000Plus智能图像工作站进行显影成像,获得的发光图。如图1所示:图1BioAnaly分析软件具有蛋白归一化分析功能,可以直接输出蛋白归一化结果,不需要进行额外的操作,方便快捷,如图2所示: 图2最终得到实验结果如图3所示:图3如果仅看三个样品中目的蛋白的灰度值(如图3中蓝色数据条所示),会发现其发光强度基本一致。此时并不能判断目的蛋白的含量一致,因为内参蛋白的灰度值相差较大(如图3中橙色数据条所示),因此还需要通过内参蛋白进行校正,将内参蛋白的灰度值归一化,可得到三个样品中目的蛋白的真实灰度值,该结果才能比较准确地反映目的蛋白的含量。计算结果如图4所示:图4通过内参蛋白校正后发现待测蛋白在三个样品中的相对表达量呈梯度上升趋势。泳道总蛋白校正总蛋白校正是一种新兴的实验策略。具体校正方法就是直接测量样品中总蛋白的含量(通过非特异性蛋白染料对泳道中所有蛋白进行染色测定),将每个样品目的蛋白含量与总蛋白含量相除,得到每个样品目的蛋白的相对含量。再进行样品与样品之间的比较。例:当前有四份蛋白样品S1、S2、S3、S4,需要检测目的蛋白Test在这四份样品中的相对表达量(本次实验中使用的非特异性荧光染料,可以对所有蛋白进行染色;二抗为FITC荧光标记)。经过电泳、转膜、封闭、孵育、清洗等一系列实验操作后,获得一张蛋白印迹膜。用GelView 6000Plus智能图像工作站的荧光模块进行荧光成像,结果如图5所示,泳道内所有蛋白均产生荧光,荧光强度可以代表样品总蛋白的含量:图5通过分析软件BioAnaly计算灰度值,得到实验数据,如图6所示:图6使用475nm的蓝光(不同荧光染料所需波长参照试剂的使用说明)激发目的蛋白Test,结果如图7所示:图7通过分析软件BioAnaly计算发光强度,得到实验数据,如图8所示:图8从上图可以看出,目的蛋白在S3中的发光强度最大,接近S2的2.5倍。然而经过蛋白归一化后,结果,如图9所示:图9我们不难发现目的蛋白在四份样品中表达量基本一致,所以我们说蛋白归一化是必须的。相应的,BioAnaly分析软件也可以直接对总蛋白进行归一化分析。两种方法的对比内参蛋白校正优点1、发展时间久,技术成熟;2、成本低,不需要额外的染色;缺点1、需要根据不同的组织选择不同的内参蛋白,以保证样品间的一致性;2、内参蛋白大小与目的蛋白大小相差5KD以上,防止发光时互相干扰;3、内参蛋白与目的蛋白表达量不能相差过大,防止内参蛋白曝光过度;4、需要证明内参蛋白本身的表达量在各样品间保持一致;总蛋白校正优点1、适用于任何组织样本;2、具有更好的说服力,投稿更方便;缺点1、染料具有一定的线性范围,需要一定程度上控制上样量;2、每次都需要对整张膜进行染色,试剂使用量大;
  • 中石化参与国际标准化工作取得实质突破
    从今年6月21日至25日召开的美国材料与测试协会(ASTM International) “D02-石油产品和润滑油和D16-芳烃及相关化学品技术委员会的标准工作会议”中获悉,中国石化在参与国际标准的制定工作中取得了实质性的突破。由中国石化上海石油化工研究院负责起草的ASTM D7504-09标准顺利发布, “精对苯二甲酸(PTA)系列标准”的起草动议获得技术委员会批准,标准制定工作正式启动 上海石油化工研究院的张育红高级工程师获得了ASTM D16委员会颁发的“标准起草杰出服务奖”,同时当选为D16.02分技术委员会主席。   成立于1898年的ASTM International是著名的国际性标准制定组织,ASTM标准是目前最具权威性的国际标准之一,已被125个国家的技术法规引用,并在国际贸易质量条款的制定中起到重要的标准依据作用。上海石油化工研究院于2005年5月正式加入ASTM分技术委员会组织,并代表中国石化参与了多项石化产品的ASTM标准化活动,取得了重要进展。今年颁布的ASTM D7504-09标准“气相色谱有效碳数法测定单环芳烃纯度和杂质的标准试验方法”是重要的芳烃产品标准,该标准于2008年6月完成起草,采用了先进的有效碳数校正面积归一化法,使芳烃产品的测试操作更为简便,测试误差大大降低,受到了有关标准专家的积极评价,被多项产品标准引用。本次会议决定将根据该标准对其他芳烃产品标准进行修订或替代,并拓展该标准的应用范围。   制定“工业精对苯二甲酸ASTM系列标准”对化工及化纤行业具有非常重要的意义,精对苯二甲酸(PTA)作为生产聚酯及下游产品重要原料,全球产量和贸易量巨大,但迄今为止还没有关于PTA的国际标准颁布,给PTA产品生产和贸易带来了极大不便。我国作为聚酯大国,主导制定PTA国际标准无疑对支撑我国相关产业发展起到非常重要的作用。2007年6月,上海石油化工研究院首次提出了建议起草“工业精对苯二甲酸(PTA)ASTM系列标准”动议,并通过两年来的技术准备,形成了标准起草的思路和方案,经D16委员会讨论决定成立PTA工作组,由中国石化负责率先开展PTA系列标准的其中两项单项标准的起草工作, 并首次推举来自中国石化的技术人员担任分技术委员会主席,负责芳烃氧化物类产品标准的技术管理工作,重点负责推进PTA系列标准的起草工作。全套PTA标准完成后将包括近10项产品及方法标准,将成为D16委员会中最为重要的系列标准之一。   标准化工作是企业竞争力提升的重要标志之一,上海石油化工研究院作为全国化学标准化技术委员会石化分会秘书处的承担单位和石化基本有机原料标准的归口单位,为我国的石油化工国标、企标的制标和采标等标准化工作做出了突出的贡献。目前及今后,上海石油化工研究院将工作目标拓展到国际标准化领域,通过参与国际标准化的系列工作,跟踪和研究国际石油化工新技术和新产品的发展趋势,为中国石化生产经营的战略发展提供标准化技术支撑 同时加强与生产企业和销售单位的紧密结合,为企业生产和产品销售提供服务,并力争将中国自主的优势技术及产品转化为国际标准,为增强企业国际竞争力,实现中国石化发展的战略目标作出更大贡献。
  • 【标准解读】氩气吸附静态容量法测定石墨烯粉体比表面积
    氩气吸附静态容量法是用氩气(Ar)作为吸附质,在液氩温度下用物理吸附仪测试粉体样品BET吸附比表面积,并采用多点法对检测数据进行分析处理的测量方法。氮气吸附BET法是测试固态物质比表面积的常用方法,用氮气(N2)作为吸附质,当N2在固态吸附剂表面的吸附行为符合理想的经典物理吸附模型时适用。若被测样品对N2分子存在特定吸附,则会造成比表面积测试结果的准确性、可靠性差。石墨烯是一类典型的二维碳纳米材料,具有优异的电、热和机械性能,在锂离子电池、集成电路、5G通信、新型显示等电热应用领域展现出广阔的产业应用前景。石墨烯粉体是我国商业化石墨烯产品的主要类型,由大量“石墨烯纳米片”组成,在锂离子电池电极材料、导电液、导热膜、重防腐涂料等产业领域已实现规模应用。石墨烯粉体的比表面积是影响其应用性能的关键特性参数之一,比表面积的准确可靠测定有利于石墨烯粉体的生产控制,进行应用性能调控。本标准给出了用氩气吸附静态容量法对产业化石墨烯粉体的比表面积进行准确测定的标准化测试分析方法,从很大程度上完善和补充国内现有石墨烯粉体测试方法标准的不足,可用于产业化石墨烯粉体的规格评价和质量控制,为推动石墨烯产业的高质量发展提供了标准技术支撑,具有重要的实用价值。一、背景对于固态样品比表面积的测定,业内通常依据国家标准GB/T 19587-2017/ISO 9277:2010《气体吸附BET方法测定固态物质比表面积》,但产业领域内根据此标准以N2作为吸附质测定石墨烯粉体的比表面积时,不同检测实验室间无法获得良好一致的检测结果,甚至在同一实验室对同一样品进行检测时,结果重复性也较差。国家标准指导性技术文件GB/Z 38062-2019《纳米技术 石墨烯材料比表面积的测试 亚甲基蓝吸附法》是针对石墨烯粉体的比表面积测试而制定的标准测定方法,但此文件中给出的测试样品需在液体中分散制样,试样处理过程复杂,影响因素繁多,从而造成实验过程的可控性及检测结果的重复性、复现性较差。本标准采用氩气吸附静态容量法来测定石墨烯粉体的比表面积,该方法具有简单、快速、准确的特点,能够有效地评估石墨烯粉体的表面性质。二、制定过程本标准涉及的技术和产业领域广泛,因此集合了国内相关领域的一批权威代表性的科研院所、检测分析平台、石墨烯粉体生产/应用企业、分析仪器厂家等产、学、研、用机构通力合作完成。牵头单位为国家纳米科学中心,共同起草单位有中国计量科学研究院、广州特种承压设备检测研究院、贝士德仪器科技(北京)有限公司、北京石墨烯研究院、青岛华高墨烯科技股份有限公司、冶金工业信息标准研究院、北京低碳清洁能源研究院、浙江师范大学、泰州飞荣达新材料科技有限公司、中国科学院山西煤炭化学研究所。起草工作组历时3年对标准技术内容的可靠性进行了充分的实验验证,深入考察了不同类型石墨烯粉体的均匀性、稳定性,样品预处理方式、准确称重和转移、脱气处理温度和时间、吸附气体选择、测试程序、石墨烯粉体是否含有微孔及如何处理、测试数据选取和分析处理等关键技术点,确保标准的技术内容具备科学性、可操作性和广泛适用性。三、适用范围本标准适用于具有Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm~50 nm之间)吸附等温线的石墨烯粉体的比表面积测定。含有少量微孔、吸附等温线呈现出Ⅱ型和Ⅰ型相结合或Ⅳ型和Ⅰ型相结合的石墨烯粉体比表面积测定也适用。本标准描述的方法,其他类型的碳基纳米材料,如碳纳米管、碳纤维、多孔炭等比表面积的测定也可参照使用。四、主要内容本标准技术内容涵盖氩气吸附静态容量法测定石墨烯粉体比表面积的全流程,针对石墨烯粉体比表面积测定过程中的取样、称重、样品脱气处理温度和时间、测试程序设置以及比表面积计算给出了指引和规定,并在附录中给出了不同气体吸附质、不同类型石墨烯的比表面积测试实例及吸附热研究。术语和定义:包括不同类型石墨烯粉体、比表面积、气体吸附技术核心术语。一般原理:扼要介绍了氩气吸附静态容量法测量原理:以氩气为吸附质,在液氩温度(87.3 K)下通过静态容量法测量平衡状态下氩气分子的吸附等温线,采用BET多点法进行数据分析,获得石墨烯粉体样品的吸附量与比表面积。本文件应用范围包括Ⅱ型(分散的、无孔或大孔)和Ⅳ型(介孔,孔径2 nm~50 nm之间)吸附等温线以及II型和I型相结合或Ⅳ型和I型相结合的吸附等温线。氩气吸附静态容量法检测示意图(图1)、不同类型的吸附等温线图(图2)附下。取样和称重:取样量应大于样品的最小取样量,并根据仪器说明书综合考虑取样量。取样量宜使总表面积处于10 m2~120 m2范围。表观密度较大的样品可直接取样;表观密度小、易飘洒的样品,宜震实后取样,且选用较大体积的测试样品管。称重时需对精密电子天平进行校准,并注意气体回填、环境温度变化等因素的影响。标准中给出了如何称取不同类型石墨烯粉体的推荐操作。脱气条件和测试程序:测定前,应通过脱气除去样品表面的物理吸附物质,同时要避免表面发生不可逆的变化。脱气温度应低于样品的热分解温度,用热重分析法确定合适脱气温度。脱气时间由样品管内的真空度决定,推荐在脱气温度下样品管内的真空度最终达到≤1 Pa。标准中给出了如何确定脱气温度和时间、详细的测试程序和应满足的要求,以及不同类型测试样品的数据点选取原则和注意事项等。实验数据处理:详细给出了基于BET多点物理吸附法计算比表面积的方法和要求,及测试样品分别在含微孔、不含微孔情况时,如何对测试数据进行处理和分析。检测报告:基于测试过程和测试结果,安全要求给出检测报告并对测试结果进行不确定度分析。测试实例:附录中详尽给出了具有典型代表性的不同类型石墨烯粉体的测试实例,并展示了用不同吸附质气体(氩气、氮气、氧气、二氧化碳、氪气)顺序进行吸附时,测试样品所表现出的吸附行为差异,实验数据明确表明某些石墨烯粉体测试样品对N2分子存在特定吸附情况。通过研究不同类型石墨烯粉体吸附N2和Ar时的吸附热差异,进一步验证了石墨烯粉体存在对氮气的特异性吸附行为的存在,表明了选择Ar作为吸附质采取氩气吸附静态容量法测定石墨烯粉体比表面积的必要性。五、理论依据浅释在石墨烯粉体测试样品均匀性、稳定性满足测试要求的前提下,用氮气吸附BET法测量石墨烯粉体比表面积的准确性、可靠性较差的原因在于N2存在特定吸附行为:由不同生产厂家、不同生产工艺的产业化石墨烯粉体,通常不可避免的含有片层内缺陷、片径边缘位错、晶界等,从而造成处于特定位点上的碳原子活跃程度存在明显差异。此外不同表面改性生产工艺也会造成石墨烯粉体样品表面功能基团(如-OH)的差异。用具有四极矩的N2分子作为吸附质,会与石墨烯粉体中的活跃碳原子或极性吸附基团间形成特定吸附,使得形成不符合理想经典物理吸附模型的分子排列取向,造成多点吸附曲线的线性相关性较差,导致比表面积测试结果的准确性、可靠性也较差。氩气分子是单原子气体分子,电子已完全配对且不存在任何成键轨道,通常认为其不具有化学活性。氩气分子不存在四极矩,作为吸附质在石墨烯粉体材料表面吸附时,对样品表面结构或官能团的敏感性低,其吸附行为符合理想经典物理吸附模型,所以在液氩温度下进行比表面积测定时,可用经典BET理论进行计算。由于氩气与氮气的极化率和分子尺寸极为相似,他们的非特定吸附性质也极为相似,在非极性吸附剂上,氮的吸附热和氩的吸附热几乎相等。本标准用不同类型、不同表面修饰、不同极性的石墨烯粉体样品进行详细的试验验证,证实了采用Ar作为吸附质测定石墨烯粉体比表面积的科学性和合理性。本文作者: 刘忍肖 教授级高工;国家纳米科学中心 中科院纳米标准与检测重点实验室Email: liurx@nanoctr.cn 闫晓英 工程师; 国家纳米科学中心 技术发展部Email:yanxy@nanoctr.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制