色谱分离技术通俗说法

仪器信息网色谱分离技术通俗说法专题为您提供2024年最新色谱分离技术通俗说法价格报价、厂家品牌的相关信息, 包括色谱分离技术通俗说法参数、型号等,不管是国产,还是进口品牌的色谱分离技术通俗说法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱分离技术通俗说法相关的耗材配件、试剂标物,还有色谱分离技术通俗说法相关的最新资讯、资料,以及色谱分离技术通俗说法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

色谱分离技术通俗说法相关的厂商

  • 400-860-5168转4265
    “苏州汇通色谱分离纯化有限公司”是一家以自主知识产权技术和产品为核心,具有独立研发能力的高技术企业,主要以药厂、生物制品企业、高纯度化学制品企业、质量鉴定单位、大学、科学研究机构和生物技术公司为目标客户,提供高效、高选择性制备色谱分离柱产品;高纯度产品色谱纯化工程设计以及高纯度产品纯化服务。与市场上现存公司相比,本公司拥有高科技(特殊设计)的专利分离介质,高纯度色谱纯化工程设计核心能力,已发展高通量、高选择性、高分离效率的模块式分离系列产品及配套的相应方法;公司除为企业提供高性能的色谱分离柱系统系列产品外,还可以直接为企业提供复杂样品体系的纯品,为企业“工程化”提供一条龙服务;既结合色谱分离专家的理论与实践,为客户发展复杂样品体系的分离、分析、纯化制备方法和有效的工具,同时为市场提供色谱纯度的试剂级产品。
    留言咨询
  • 法国诺华赛(Novasep)是一家致力于生命科学产业下游分离纯化工艺解决方案的公司,基于其高效色谱分离技术及错流膜过滤技术等核心技术,诺华赛公司在医药、食品、生物工程、奶制品及淀粉深加工领域开发了一系列运行成本低,环保型的新型生产工艺,并已被全球五十多个国家的上千家公司采用, 客户范围覆盖了相关领域几乎所有的顶级生产商。公司主营产品: 工业液相制备色谱HiperSep,蛋白纯化制备色谱HiperSep Bio,中低压液相色谱LPLC,超滤膜TFF,抗体纯化Protein A,超临界流体色谱SuperSep SFC,模拟移动床Varicol SMB,动态压缩柱Prochrom DAC,手性分离 Chiral Separation,陶瓷膜
    留言咨询
  • 大连江申分离科学技术公司成立于1993年,位于美丽的北方明珠海滨城市——辽宁省大连市,是以高效液相色谱仪为主业,集科研开发、生产和销售为一体的股份合作制企业。公司集聚了一批高素质、高水平的杰出人才,广泛采用国内外高新技术成果,拥有自主知识产权的色谱仪器研究开发技术,在科研成果和产品水平上处于同行中的领先地位。 公司的主要产品包括:1、江申分离型高效液相色谱仪LC-10系列;2、江申制备型高效液相色谱仪LC-100系列;3、江申高效毛细管电泳仪HPCE-10;4、江申JS-3030/JS-5050通用色谱工作站;5、江申系列高效液相色谱柱及配件。其中高效液相色谱仪不仅吸收了当今世界液相色谱仪器制造业的先进技术,而且融入我们公司研究开发人员丰富的设计和制造经验,它可满足您科研及生产的严格要求。公司生产的江申高效液相色谱仪和系列色谱工作站性能稳定可靠,有很高的性能价格比。高效液相色谱仪经国家质量技术监督局有关部门的严格定型鉴定,获得国家《计量器具型式批准证书》和《制造计量器具许可证》。
    留言咨询

色谱分离技术通俗说法相关的仪器

  • 仪器简介:作为Prominence UFLC系列的新成员,Prominence UFLCXR是以提高分析精度和可靠性为基础,兼备超快速分析和超高效分离的液相色谱仪。 Prominence UFLCXR系统耐压提高到66MPa(9,570psi),与高性能Shim-pack XR-ODS II系列色谱柱结合使用,缩短分析时间、提高分析效率、节省分析成本。为医药、化学、食品安全行业中极微量物质的分离检测提供可靠的支持。
    留言咨询
  • 最大限度地提高高分辨 LC 和 UHPLC 工作流程的分析效率,而不需要重新开发现有方法。例如,Thermo Scientific™ UltiMate™ 3000 快速分离双系统可将同一样品进样至 2 个流路和色谱柱中。该系统凭借两个完全集成的独立操作梯度泵和智能色谱柱切换功能,快速配置在线 SPE、并行或串联(UHP)LC,并进行反梯度操作和快速应用切换。快速分离系统完全支持更长的(长达 250 mm)亚 2 μm 粒径色谱柱技术,在默认情况下,还可以作为常规单流路系统使用。建议用途该系统推荐用于主要使用 UHPLC 兼容系统但仍需要运行传统 LC 方法的实验室。如果您计划提高样品通量并缩短从采集样品到出报告的时间,则快速分离双系统是您的最佳选择。快速分离双系统用户可以降低检测限,提高峰分辨率,延长色谱柱使用寿命,应用先进的 2D UHPLC 方法,并通过单个系统设置开发更强大的方法。并行运行反梯度的能力通过向分离后的喷雾器源提供一致的流动相混合物确保获得准确的结果,解决了基于雾化器的检测技术(例如,LC/ESI-MS 或电雾式检测)的固有挑战。重要功能/特色两台独立运行的三元梯度 UHPLC 泵(集成式模块)在高达 8 mL/min 流速下运行,支持高达 100 MPa(15000 psi/1000 bar)的压力,带来出众的色谱柱规格和粒径灵活性使用宽敞的共用柱温箱将色谱柱和样品保持在恒定的温度 (5 ℃–110 ℃)下, 从而提高了保留时间精度使用可共享的超低残留自动进样器,尽可能减少了样品之间的污染,从而获得更准确的结果(定量环和进样针始终保持在流路中)利用 Thermo Scientific™ Dionex™ Viper™ 手拧接头系统,在长时间内实现接近零死体积的最佳峰形采用 Thermo Scientific™ Dionex™ SmartFlow™ 技术确保流速精密准确,从而获得稳定的保留时间,强大的峰积分和可靠的化合物识别利用 Thermo Scientific™ Dionex™ SpinFlow™ 技术,通过可调整的梯度延迟体积优化混合效率Chromeleon CDS 软件让操作变得容易通过 Thermo Scientific™ Dionex™ Chromeleon™ CDS 版本 6.x 和 7.x 实现集成式服务和验证监控利用 Chromeleon CDS 版本 6.x 和 7.x 实现自动系统启动、待机和关闭兼容 Chromeleon 7.x eWorkflow 解决方案和高级报告功能选择适合您应用的配置适用于多功能梯度方法的两台 3 溶剂通道泵 (DGP-3600RS)含集成 6 通道脱气装置的溶剂架(SRD-3600)恒温或非恒温自动进样器 (WPS-3000TRS/WPS-3000RS)最多含两个现场可升级色谱柱切换阀的恒温柱温箱(TCC-3000RS)。各种阀芯可供选择二极管阵列,多波长,可变波长,荧光,电雾式,示差或质谱检测器基于 Viper 手紧式系统技术的解决方案/应用套件可用于在线 SPE、并行(UHP)LC、串联(UHP)LC、反梯度操作和快速应用切换馏分收集器 (AFC-3000)Chromeleon 7.2 软件包(独立、联网、远程数据处理和/或控制)
    留言咨询
  • 建议用途 对于想要实现超群 UHPLC 技术、但仍然需要在四元系统上保持已建立的 LC 方法的实验室而言,本款 UltiMate 3000 快速分离四元系统是一种极佳的选择。它同时适于配合极高分辨率色谱柱和传统色谱柱使用,粒径范围从亚 2 μm 到 10 μm 。它可以处理的分离范围从 2 mm 内径柱到小规模半制备或纯化实验。典型应用领域为药物开发、学术研究、高通量质控、化学品开发和苛刻质谱分析工作流程中所用的快速但具有高分辨率的方法。强烈推荐将 UltiMate 3000 快速分离四元系统用于使用了传统 3-5 μm 或 UHPLC 亚 2 μm 粒径色谱柱的方法中。这些方法为了实现更好的流动相灵活性(例如多溶剂、长时间柱清洗、三元或四元梯度以及方法开发)可以接受中等速度的梯度反应。确保优秀的色谱分析性能高达 8 mL/min 的流速,支持高达 100 MPa (15000 psi/1000 bar) 的反压,灵活适用于各种柱规格和柱粒径。利用范围为从 5°C 到 110°C 的柱加热和冷却(流动相预加热器和附带柱后冷却器)来管理反压并微调分辨率利用 Thermo Scientific™ Dionex™ Viper™ 手拧接头系统,在长时间内实现接近零死体积的最佳峰形。(推荐)采用超低残留自动进样器(进样环和进样针永久保留在流路中)最大程度减少样品之间的交叉污染,带来更加精确的结果利用 Thermo Scientific™ Dionex™ SmartFlow™ 技术,获得精准的流速,实现稳定的保留时间、可靠的峰积分以及可靠的鉴定利用 Thermo Scientific™ Dionex™ SpinFlow 技术,让您通过可调整的梯度延迟体积优化混合效率。放心地在不同系统之间转换方法:UltiMate 3000 快速分离四元系统在设计上与标准四元系统具有相同的系统延迟体积Chromeleon CDS 软件让操作变得容易通过 Thermo Scientific™ Dionex™ Chromeleon™ CDS 版本 6.x 和 7.x 实现集成式服务和验证监控利用 Chromeleon CDS 版本 6.x 和 7.x 实现自动系统启动、待机和关闭兼容 Chromeleon 7.x eWorkflow 解决方案和高级报告功能选择适合您应用的配置配备集成式四通道脱气机的四溶剂通道四元泵(LPG-3400RS)适用于大号流动相瓶的宽敞溶剂架 (SR-3000)恒温或非恒温自动进样器 (WPS-3000TSL/WPS-3000SL)恒温柱温箱,具有多达两个可现场升级的柱交换阀(TCC-3000RS)二极管阵列、多波长、可变波长、荧光、荷电气溶胶、示差或质谱检测器馏分收集器 (AFC-3000)Chromeleon 7.2 CDS 软件包(独立、联网、远程数据处理和/或控制)
    留言咨询

色谱分离技术通俗说法相关的资讯

  • SUPELCO色谱分离和样品前处理新技术讲座
    SUPELCO色谱分离和样品前处理新技术讲座 9月13日,北京 9月14日,广州 9月15日,上海 主办方:Sigma-Aldrich(China)西格玛奥德里奇中国 色谱分离和样品前处理技术,已经被越来越多地应用在实验室分析检测中,尤其是食品、药品、生物、化学及地质能源等领域。然而当今很多色谱分析检测工作者提出的问题是:有没有可能不添加昂贵的仪器,却可获得更加快速而高效的HPLC分离?对于像生物体液、组织、食品和农产品、油脂和油,这类复杂而困难的样品,怎样才能使得样品前处理变得方便、快捷和有效? 来自SUPELCO的色谱分离和样品前处理技术新技术讲座将为您提供解决之道。Sigma-Aldrich集团旗下著名品牌SUPELCO公司,多年来积极在色谱分离和样品前处理技术上研发创新, 积累了大量的应用和实践经验,此次讲座是SUPELCO创新技术全球巡讲的一部分。特邀了来自美国SUPELCO总部的技术专家亲临授课,介绍SUPELCO在色谱分离和样品前处理研究上的最新成果,希望对广大中国色谱分析工作者的实际分析检测有所帮助! 课程收益: 免费公开讲座,美国SUPELCO公司技术专家亲授 创新的产品和技术帮助您解决实际问题 有机会直接与我们SUPELCO总部技术专家讨论您的分析需求 讲座将列举大量您感兴趣的应用 课程讲授人: Michael Ye Sigma-Aldrich/Supelco公司样品前处理技术研发部经理 William Campbell Sigma-Aldrich/Supelco公司HPLC技术研发部经理 讲座内容: Topic 1: HPLC & LC-MS: Techniques to improve Speed, Resolution and Sensitivity without Investing in Capital Equipment HPLC 及 LC-MS:创新的熔融核填料技术可提高色谱分离速度、分辨率和灵敏度,而无须资本投入更新仪器。 Topic 2: Sample Prep for Chromatography: Sorbents, Devices and Techniques to Improve Sensitivity, Specificity and Throughput 色谱样品前处理:创新的吸附剂、装置和技术,大大提高复杂样品前处理的灵敏度、特异性和通量 报名联系方式: 马蕊华, 西格玛奥德里奇(上海) 贸易有限公司, 电话: 021-61415566-8105, 13761381210, 传真: 021-61415569, email: ruihua.ma@sial.com
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟沃特世科技(上海)有限公司实验中心对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 诚邀参加——东曹色谱分离纯化技术研讨会
    随着2017年初《“十三五”生物产业发展规划》的发布,中国的生物技术产业迎来新的快速发展阶段。其中生物医药产业将重点发展生物技术药物等多个创新药物品类,推动医疗向精准医疗和个性化医疗发展。如何加快研发项目进展,提高产品质量是生物医药研发和生产企业关注的焦点。东曹(上海)生物科技有限公司(TOSOH)将于近期在武汉、成都和上海举办技术应用研讨会,围绕生物医药(单克隆抗体、ADC药物等)在研发或生产中所涉及的HPLC分析分离及中低压层析纯化技术展开介绍及讨论,助力中国生物医药产业的技术进步。 【会议主题】单克隆抗体HPLC分析领域的最新技术介绍;TSKgel色谱柱在生物样品分析实验中条件优化与应用举例;抗体药物在中低压层析技术方面的最新话题。 【会议日程】城市时间地点武汉11月28日(周二)9:00-13:00武汉华美达光谷大酒店成都11月29日(周三)9:00-13:00四川锦江宾馆上海12月1日(周五) 9:00-13:00博雅酒店 【报名方式】请致电东曹公司:021-34610856-212或发送邮件:info@tosoh.com.cn (标题注明:技术研讨会报名)名额有限,请尽早报名参加。 本次参会免费,安排自助午餐及茶歇,会后更有精彩抽奖环节,期待您的参与! 关于东曹东曹集团生命科学事业部是全球知名的液相色谱仪器耗材和工业层析填料产品供应商。其产品包括EcoSEC系列凝胶渗透色谱仪、离子色谱仪、TSKgel高效液相色谱柱、TSKgel高压层析填料、TOYOPEARL中低压层析填料、TOYOPEARL PAK、TOYOSCREEN层析工艺方法筛选用预装柱。广泛应用于蛋白、多肽、多糖、寡聚糖、DNA、低聚核苷酸、抗生素、合成高分子、天然产物和其他小分子量化合物的分析、分离及纯化工作中。东曹(上海)生物科技有限公司作为东曹集团在中国的全资子公司,秉承东曹集团通过化学创新、实现幸福、回报社会的理念,为中国客户提供优质的产品和完善的服务。

色谱分离技术通俗说法相关的方案

色谱分离技术通俗说法相关的资料

色谱分离技术通俗说法相关的试剂

色谱分离技术通俗说法相关的论坛

  • 【资料】逆流色谱技术在抗生素分离纯化中的应用

    一. 逆流色谱技术简介现代逆流色谱技术起源于上世纪50年代的逆流分溶法(Counter Current Distribution, CCD),它利用不同物质在所选择的两相溶剂中的分配系数不同而通过多次逆流分溶对物质进行分离。它采用数百个分离管进行操作,每一次操作后,上层液体被转移至盛有新的下层溶剂的分离管中,而往原分离管中加入新的上层溶剂,看起来好似两相的液体以相反的方向流动,故称为逆流分溶法。逆流分溶法存在许多缺点,如使用易破碎的玻璃仪器,分离时间长,需要连续稀释样品等。但与液相色谱相比,它无需固体作固定相,从而避免了因此而带来的一系列问题。因此,在CCD基础上发展起来的逆流色谱(Counter Current Chromatography, CCC)在采用了与液相色谱相似的连续洗脱、检测和分布收集技术后从上世纪70年代开始得到迅速的发展,并在天然和合成化合物的分离纯化中发挥了日益重要的作用。上世纪70年代出现的液滴逆流色谱(Droplet Counter Current Chromatography, DCCC)使流动相形成液滴,通过作为固定相的液柱而达到分离纯化的目的。其装置主要由输液部分、检测收集部分和玻璃管液柱部分(300-500根60cm X 1.8mm的玻璃管)组成。由于流动相形成液滴,在细的玻璃管中与液体固定相有效地接触,摩擦不断形成新的表面,促进溶质在两相溶剂中的分配,所以分离效果好,而且不产生乳化现象。对于易氧化的物质,还可用氮气驱动流动相。采用DCCC分离纯化了许多包括中草药和抗生素在内的天然产物如柴胡皂甙和短杆菌肽, 短杆菌酪素和四环素等。液滴逆流色谱解决了操作自动化的问题,但仍存在分离时间长,使用易破碎的玻璃管,分离度还不高等问题。逆流色谱技术的重大突破出现在上世纪80年代,根据被分离混合物的理化特性,选择二元或多元的两相溶剂体系,以上相或下相为固定相,将其注满色谱柱后使色谱柱作特定的高速旋转运动,并用由此产生的离心力场支撑柱内的液体固定相,然后以另相为流动相,携带溶解的混合物由输入泵推入色谱柱,穿过两个液相对流的管柱,各组分根据在两相中的分配系数不同而得到分离。根据离心力场的不同可将现代逆流色谱分为离心分配色谱(Centrifugal Partition Chromatography, CPC),也称盘管行星离心色谱(Coil Planet Centrifuge, CPC)和高速逆流色谱(High Speed Counter Current Chromatography, HSCCC),前者属流体静力平衡系统,色谱柱由一系列刻在圆盘或圆筒内的导管相联的柱体组成,通过单轴旋转产生恒定的重力场,两个旋转密封的接口分别连接流动相的进口和出口;后者属流体动力平衡系统,由聚四氟乙烯软管绕制成的色谱柱除绕离心轴旋转外,还围绕自轴旋转,产生变化的重力场,并采用无旋转密封的连接方式。分离时两相液体被剧烈振动的离心力场依其界面特征被甩成极细的微粒,样品各组分在两相微粒的表面上分配并在微粒振荡与对流的环境中有效传递,相当于把通常的溶剂萃取高效(13次/秒以上)、自动、连续地予以完成。泡沫逆流色谱(Foam Counter Current Chromatography, Foam CCC)技术是在HSCCC的基础上发展起来的。使用时,氮气和流动相同时从相反方向注入管柱中形成气体和流动相的逆流,然后从盘管中部注入的混合物根据形成泡沫的能力得到分离,易形成泡沫的的组分随[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]被洗脱收集在泡沫流出部分,而其它组分则随流动相流出。在盘管行星离心色谱基础上还发展了交叉轴盘管行星离心色谱(Cross-axis Coil Planet Centrifuge, X-axis CPC),这种仪器在使用中产生一种行星式运动,使得盘管支架在围绕离心中轴转动(公转)的同时还沿着自己的水平方向轴旋转(自转),使得部分的离心力矢量作用于盘管的半径方向,以防止因两相乳化而降低固定相保留率的现象出现。因此,X-axis CPC大大稳定了固定相的保留率,特别适用于大量制备性分离纯化。现代逆流色谱技术为化合物的分离纯化提供了一个新的手段,与HPLC等液-固色谱技术比较,由于分离原理不同,二者间存在很强的互补性。它无需固体作固定相,不存在固体对样品组分的吸附、玷污、变性、失活、拖尾等现象,能实现很高的回收率,节省昂贵的材料消耗和溶剂消耗(HPLC的1/10以下),运行使用的后续投入较低。逆流色谱在无需更换不同极性的色谱柱情况下,通过提高极性溶剂或非极性溶剂比例的方法,可以实现流动相从弱极性到强极性或相反的转化。由于色谱柱容积大,无填料,柱内空间全部是有效空间,因此,样品负载能力强,制备量大,重现性好。实验室规模的盘管总体积为100mL的逆流色谱仪一次可分离0.5-2克的粗品,而3000mL容量的制备型逆流色谱仪一次可分离15-60克的粗品。但是,与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和高效液相色谱等相比,逆流色谱的分离效率即理论塔板数还不高(一般在1000以下),一次分离所需时间还较长(以小时计),因此,还不宜用于组成复杂的混合物的全谱分离分析。逆流色谱技术在基本原理以及溶剂系统选择等方面还有待于进一步的普及、研究、开发与应用。目前,HSCCC等技术在生物化学、医药学、农业、环境、材料、化工、海洋生物以及无机离子等众多领域已得到成功应用,1996年美国出版的《High-Speed Countercurrent Chromatography》一书被选编为著名的分析化学丛书第132卷,2000年9月在英国Brunel大学召开了逆流色谱技术第一届国际学术会议,每年一度的国际分析化学与应用光谱学学术会议上,都设有CCC的专题组,“Journal of Chromatography” ,“Journal of Liquid Chromatography” 等重要学术刊物都有这一技术的论文发表。我国在CCC技术及其应用研究方面与国际发展同步,1980年研制出了我国第一台逆流色谱仪,并用于国产抗敌素成分的分离与分析检定,发表了一大批用HSCCC等分离制备中草药和茶叶等天然产物活性成分的论文,引起国际同行的瞩目,2002年在北京召开了逆流色谱技术的第二届国际学术会议。但是,在逆流色谱技术应用于抗生素的分离纯化方面,我国与国际上发展趋势相比还存在很大差距,相关论文甚少,因此,在我国开展高速逆流色谱技术分离纯化抗生素的工作有着广阔的应用和发展前景。二. 溶剂选择无论是用HPLC或CCC技术分离混合物,分离度(Rs)是一个很重要的参数,如下图所示,在HPLC中,提高分离度是通过使峰形变窄的方法达到的,而在CCC或CPC中,则是通过改进选择性来实现的,这种选择性主要取决于样品在两相溶剂中的分配系数。因此,溶剂系统的选择在CCC技术中尤为重要。 选择溶剂时要考虑到样品的极性、溶解度、电荷态和形成复合物的能力等,溶剂体系的沉降时间应小于30秒,以得到满意的固定相保留率。测定方法如下,各取2毫升平衡后的上相和下相液体移入一个5毫升的刻度玻璃管中,密封上下摇动5次后静置于水平面上并测定两相分层的时间即沉降时间。样品的分配系数K值(K=上相中样品浓度/下相中样品浓度,可由HPLC方法得出)最好在1左右,一般在0.2到2之间。以上相作固定相时为例,若K《《1,样品很快随流动相流出,达不到分离效果;若K》》1,样品出峰时间拉长,形成宽峰。由于CCC的理论塔板数在800左右,因此要得到高的分离度,样品各组分间的分离因子( , 各组分的K值之比)应大于1.5。此外,两相溶剂的体积应尽量相同以避免溶剂的浪费,溶剂最好挥发性强,这样完成操作后只要将洗脱液浓缩即可得到纯样品。 选择溶剂体系时,首先选出一个能使样品全部溶解的溶剂体系,然后调整各溶剂的比例使得被分离各组分满足K值和 值的要求,以提高分离度。可以采用相图来研究改变某一相的组成对另一相组成的影响,Sø rensen等人对近百种三元溶剂相图研究后,总结归纳出三类溶剂体系:乙酸乙酯—正丁醇—水(EtOAc—BuOH—H2O),适用于极性弱的样品;水—二甲亚砜—四氢呋喃(H2O—DMSO—THF),适用于极性强的难溶性样品如两性霉素B;氯仿—甲醇—水(CHCl3—MeOH—H2O),适用于大部分样品。此后又发展了其它通用的多元溶剂体系如正戊烷—乙酸乙酯—甲醇—水(Heptane—EtOAc—MeOH—H2O)体系和正戊烷—甲醇—甲基叔丁基醚—甘醇二甲醚—水(Heptane—MeOH—MtBE—Glyme—水)体系等。常用溶剂体系的选择可参考表1,首先根据样品的理化特性选出最佳溶剂,然后在左右两栏中再选择相应的数种溶剂,以组成选择性最好的多元溶剂体系。

色谱分离技术通俗说法相关的耗材

  • 寡核苷酸分离技术
    寡核苷酸分离技术合成寡核苷酸和DNA片段被应用于迅速发展的应用领域,包括作为主体或杂交探针用于治疗性制剂。沃特世寡核苷酸分离技术(OST:Oligonucleotide Separation Technology)基于BEH杂化颗粒的反相色谱柱,以及Gen-Pak离子交换柱,应对各种高分辨分析与实验室规模分离挑战所需,包括涉及各种DNA和RNA品种。沃特世OST色谱柱装有键合了C 18 的第二代杂化技术BEH颗粒。对去三苯甲基(detritylated,或称脱保护)的合成寡核苷酸样品的分离,基于成熟的离子对反相色谱法。沃特世提供1.7 μm UPLC颗粒或2.5 μm HPLC颗粒,装填以各种不同色谱柱规格,从而灵活满足各种实验室规模分离或分析的不同需求,并能实现异乎寻常的样品分辨率和卓越的色谱柱使用寿命。此外,沃特世的制造和质控测试程序,有助于确保批次之间与柱之间的性能的一致性,而无论应用的难度有多高。1、分离效率相当于或优于PAGE、CGE、或离子交换HPLC方法2、可从去三苯甲基(脱保护)的全长产物中分辨出失败序列3、可放大的柱规格,满足实验室规模的分离需求4、超长的色谱柱使用寿命,降低单次分析或分离成本5、经MassPREP OST标准品质控测试,帮助确保性能稳定对寡核苷酸混合物具有异乎寻常的高分辨率ACQUITY UPLC OST C 18 ,1.7 μm色谱柱(设计专用于ACQUITY UPLC系统)和XBridge OST C 18 ,2.5 μm色谱柱,能完全适用于离子对反相色谱法分析和纯化去三苯甲基寡核苷酸的需求。如图所示(右图),使用沃特世UPLC技术所进行的分离,具有与毛细管凝胶电泳(CGE)相媲美的组分分辨率,而且分析时间显著缩短。由于使用亚2 μm BEH技术颗粒提高了分辨力,因而有可能对大寡核苷酸序列进行分离(如将N与N-1分开)。此外,使用沃特世OST色谱柱配合质谱联用技术以及对质谱兼容的洗脱剂,有可能对与失败序列的色谱分离开的目标寡核苷酸产物的分子量特征进行定量分析。分离15-60mer去三苯甲基寡脱氧胸苷序列组(Detritylated Oligodeoxythymidine Ladder)分离去三苯甲基寡脱氧胸苷序列组,比较毛细管凝胶电泳(CGE)与离子对反相色谱方法的分离效果纯化单链RNA干扰RNA寡核苷酸的UPLC/MS分析RNA干扰(RNAi)机制的发现现在被广泛用于静默目标基因表达,这推动了对小分子干扰RNA(siRNA)分析的需求。为满足对20-25个核苷酸的小分子干扰RNA(siRNA)进行耐用的、快速的、灵敏的分析的需求,沃特世开发了一个UPLC/MS方法,运用了UPLC OST色谱柱和Synapt HDMS质谱仪。采集准确质量可对5’-截断寡聚体(寡核苷酸合成过程所产生的失败序列)以及其它一些杂质峰进行分配。质谱图中的质量的每个峰均使用MaxEnt 1软件进行去卷积化。图2给出了推测性的5’-端失败产物。对寡核苷酸母体的几乎完整序列均进行了解释。质谱分析还显示除了目标21-mer RNAi序列以外,还存在一个额外的尿苷单核苷酸。对一个21mer的RNA进行LC/MS分析不同离子对试剂对不同寡核苷酸序列分离的影响杰出的柱寿命在这些苛刻的分离条件下,填充以BEH技术颗粒的沃特世OST色谱柱显示出引人注目的柱寿命,同时还具有并保持卓越的分离性能。而在相同的苛刻分离条件下,传统硅胶基质色谱柱的使用寿命显著缩短。分离5-25mer去三甲苯基(脱保护)寡脱氧胸苷序列——进样1000针柱分辨率没有任何变化寡核苷酸分离技术(OST)柱产品一览表产品描述 粒径 孔径 柱规格 部件号ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 50 mm 186003949ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 100 mm 186003950ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 150 mm 186005516ACQUITY UPLC OST C 18 方法验证包** 1.7 μm 135 2.1x 100 mm 186004898ACQUITY UPLC OST C 18 定制柱* 1.7 μm 135 定制 186003951XBridge OST C 18 2.5 μm 135 2.1 x 50 mm 186003952XBridge OST C 18 2.5 μm 135 4.6 x 50 mm 186003953XBridge OST C 18 2.5 μm 135 10 x 50 mm 186003954XBridge OST C 18 方法验证包** 2.5 μm 135 4.6 x 50 mm 186004906XBridge OST C 18 定制柱 2.5 μm 135 定制 186003955* 用于配合沃特世UPLC系统使用**来自于不同批次填料所装填的三根色谱柱可放大的DNA与RNAi分离,良好的产品回收率研究基因静默、或用于基因敲除时,需要高纯度寡核苷酸。XBridge OST C 18 色谱柱,具有极高分辨率,其柱规格设计用于满足实验室规模的分离需求,是纯化去三苯甲基(脱保护)寡核苷酸的首选色谱柱。如下表所示,XBridge OST C 18 色谱柱规格和操作流速的选择,主要取决于合成反应混合物的规模大小。我们建议根据寡核苷酸样品的载量选择适当的色谱柱规格,这样可使组分分辨率最大化,使目标产物与不要的失败序列分离开得到最大回收率。柱规格 大概样品载量** mg*** 流速2.1 x 50 mm 0.04 μmoles 0.2 mg 0.2 mL/min4.6 x 50 mm 0.20 μmoles 1.0 mg 1.0 mL/min10 x 50 mm 1.00 μmoles 4.5 mg 4.5 mL/min19 x 50 mm* 4.00 μmoles 16.0 mg 16.0 mL/min30 x 50 mm* 9.00 μmoles 40.0 mg 40.0 mL/min50 x 50 mm* 25.00 μmoles 110.0 mg 110.0 mL/min* OST订制柱** 所列数值仅为约值,且取决于寡核苷酸的长度、碱基组成、以及所采用的“切取中心”的馏分收集方法。*** 按平均寡核苷酸分子量及合成产率估算将siRNA Duplex与其相关杂质分离开
  • 糖苷分离技术
    糖苷分离技术(GST:Glycan Separation Technology)糖蛋白分析涉及确认复杂的N-和O-端结构,它们通常由相似的和重复的糖片段组成。使用配有荧光检测的亲水作用色谱(HILIC:Hydrophilic-Interaction Chromatography)是受到广泛认可的可靠技术,能够在糖苷被荧光标记衍生化后对它们进行有效的分离和定量。ACQUITY UPLC BEHGlycan色谱柱,专门设计并经过QC测试,为一系列糖苷结构提供在更短时间内进行卓越的UPLC组份分离的能力。再配合ACQUITY UPLC系统,就能帮助用户更快的得到正确的答案。沃特世ACQUITY UPLC BEH Glycan色谱柱,设计用于HILIC模式分离2-氨基苯甲酰胺(2-AB)标记糖苷。该色谱柱的化学性质与我们所推荐的UPLC仪器条件,能够使用一个二元梯度同时分离中性糖苷和带电糖苷。2-AB标记寡糖的保留性取决于该分子的亲水性。该色谱柱的高分辨能力部分来自其小粒径、1.7 μm的多孔填料。色谱柱的化学稳定性和机械稳定性则受益于沃特世的亚乙基桥杂化颗粒技术(BEH)组成和配体键合技术,这有助于确保批次间稳定一致的性能。1、与现有的基于HPLC的方法相比,在更短的时间内实现组份分离度的提高2、配合ACQUITY UPLC系统与荧光检测器时效果最佳3、基于沃特世BEH颗粒和键合技术,可实现对标记糖苷的稳定、可重现的分离4、用相关标记糖苷标准品进行质控测试,以确保稳定的批次间的重现性ACQUITY UPLC BEH Glycan色谱柱分离2-AB标记人IgG糖苷ACQUITY UPLC BEH Glycan色谱柱分离2-AB标记葡聚糖序列ACQUITY UPLC BEH Glycan柱产品描述 柱规格 粒径 部件号ACQUITY UPLC BEH Glycan 2.1 x 50 mm 1.7 μm 186004740ACQUITY UPLC BEH Glycan 2.1 x 100 mm 1.7 μm 186004741ACQUITY UPLC BEH Glycan 2.1 x 150 mm 1.7 μm 186004742ACQUITY UPLC BEH Glycan VanGuard 预柱 — 1.7 μm 186004739ACQUITY UPLC BEH Glycan方法验证包* 2.1 x 100 mm 1.7 μm 186004907*三根柱来自不同的填料批次注意:ACQUITY UPLC BEH Glycan, 1.7μm柱,设计用于ACQUITY UPLC系统。只有具备低系统死体积和低检测器谱带扩散的ACQUITY UPLC系统,才能实现ACQUITY UPLC BEH Glycan柱所装填的1.7μm颗粒的色谱优势。
  • 肽分离技术方法验证包
    肽分离技术方法肽分离技术方法验证包**(UPLC和HPLC柱)产品描述粒径柱内径柱长部件号ACQUITYUPLCBEH130C181.7um2.1mm100mm186004896ACQUITYUPLCBEH300C181.7um2.1mm100mm186004897XBridgeBEH130C181.7um2.1mm150mm186006517XBridgeBEH300C181.7um2.1mm150mm186006516XBridgeBEH130C183.5um4.6mm100mm186004904XBridgeBEH300C183.5um4.6mm100mm186004905
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制