仪器信息网APP
选仪器、听讲座、看资讯

【讨论】高硅样品对氩气的要求更高?

  • chemchenxj
    2011/01/14
  • 私聊

直读光谱

  • 最近我在做中低合金钢时发现了一个奇怪的现象,
    同一台仪器有的样品激发正常,凝聚放电,激发点有金属光泽,周围黑圈正常;
    而有的样品激发很不正常,扩散放电,表面无侵蚀,明显的白点,
    重新磨样,激发很多次,还是如此,现象比较奇怪。

    首先怀疑的是氩气质量,但同一台仪器对于不同的样品激发点相差这么明显,还是有点搞不明白
    比对样品成分时发现,激发点为白点的样品有一个相同的特性:硅含量较大(Si为1.5%~1.9%)
    又选了几块硅含量比较高的样品进行分析,依旧是白点,而选择硅含量低于0.5%的样品,激发点均正常
    原因似乎找到了,高硅的样品不易激发,对氩气的要求更高,重新换了一瓶液氩,冲洗过后,所有样品激发均正常,OK

    查找资料发现“样品中如含有易氧化的元素如硅,铝,碳, 铬等含量高时生成稳定化合物,往往导致扩散放电”
    高硅的样品为什么不易激发呢?
    难道是熔点较高的物质,当其含量也高时就不易激发了?
    除了硅钢、铸铁等硅、碳元素含量高外,还有哪些元素比较难测量,欢迎各位大侠讨论

    分享一个常见材料的熔点(℃)(网上搜索拼凑的,不一定准确)

    金刚石3550 钨3410钼2622铌2468 钒1919
    铬1855铂1772 钛1668 纯铁1535 钴1495
    镍 1452硅1410
    钡1285锰1245铜1083
    金1064 银:962钙839铝660 镁649
    锑630 锌419.5 铅327铋271锡:232

    各种钢:1300~1400 各种铸铁:1200左右
    铸钢 1425 低碳钢 1400-1500 灰铸铁1200 黄铜 950 青铜 995

  • 该帖子已被管理者-设置为精华,下面是奖励记录:
  • 该帖子已被版主-mlb2003加3积分,加2经验;加分理由:鼓励讨论!
    +关注 私聊
  • wccd

    第1楼2011/01/16

    应助达人

    硅是半导体, 纯硅不导电, 硅要导电必须要有附加条件, 这也许是硅含量偏高在激发时影响激发点的原因.

0
    +关注 私聊
  • yushushi

    第2楼2011/01/17

    我们把纯硅放在激发台上激发去做Si谱线的描迹啊,,,实际看来是可以激发的,,,而且并不是很困难。当然这里说的“纯”还是有限度的,,,凡事没有“绝对”。从样品的激发点上看,,比一般的Al的激发点要深,,,


    另外,即使样品本身的电阻很大(半导体?),电业总是要对地放出去的,而且通路一般仍然会选择样品,除非是对极板放电了(你们把极板拆下来看看,,反面激发孔周围是否有明显的刚刚被激发过的痕迹(最好换新极板试试),如果通路依然为样品,那是不是从别的方面考虑下,,如组织结构之类的,,,或者Si在Al中是以什么形式存在的?单质或化合物?它组成的固态结构是什么样的?(化学键)含量高到一定滞后,,这些化学结构是否会产生变化,,,或量变产生质变的原因呢?引起扩散放电的原因,,其中一部分就是样品组织结构。

0
    +关注 私聊
  • yushushi

    第3楼2011/01/17

    我在网上找了找,,找到个帖子,,转过来大家看看有没有用。
    一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。
    6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:
    在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。
    在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择
    6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。
    另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。

0
    +关注 私聊
  • yushushi

    第4楼2011/01/17

    这篇帖子后面还有些内容,,但是估计和本问题无关了,处于尊重原作者,在这里继续发完。
    2.杂质元素的影响
    ①铁,铁是铝合金中的主要杂质元素,在6063合金中,国家标准中规定不大于0.35,如果生产中用一级工业铝锭,一般铁含量可控制在0.25以下,但如果为了降低生产成本,大量使用回收废铝或等外铝,铁就根容易超标。Fe在铝中的存在形态有两种,一种是针状(或称片状)结构的β相(Al9Fe2Si2),一种为粒状结构的α相(Al12Fe3Si),不同的相结构,对铝合金有不同的影响,片状结构的β相要比粒状结构α相破坏性大的多,β相可使铝型材表面粗糙、机械性能、抗蚀性能变差,氧化后的型材表面发青,光泽下降,着色后得不到纯正色调,因此,铁含量必须加以控制。
    为了减少铁的有害影响可采取如下措施。
    a)熔炼、铸造用所有工具在使用前涂涮涂料,尽可能减少铁溶人铝液。
    b)细化晶粒,使铁相变细,变小,减少其有害作用。
    c)加入适量的锶,使β相转变成α相,减少其有害作用。
    d)对废杂料细心挑选,尽可能的减少铁丝、铁钉、铁屑等杂物进入熔铝炉造成铁含量升高。
    ②其它杂质元素
    其它杂质元素在电解铝锭中都很少,远远低于国家标准,在使用回收废杂铝时就可能超过标准;在生产中,不但要控制每个元素不能超标,而且要控制杂质元素总量也不能超标,当单个元素含量不超标,但总量超标时,这些杂质元素同样对型材质量有很大影响。特别需要提出强调的是,实践证明,锌含量到0.05时(国标中不大于0.1)型材氧化后表面就出现白色斑点,因此锌含量要控制到0.05以下。 三.6063铝合金的熔炼 1.控制好熔炼温度
    铝合金熔炼是生产优质铸棒的最重要工艺环节之一,若工艺控制不当,会在铸捧中产生夹渣、气孔,晶粒粗大,羽毛晶等多种铸造缺陷,因此必须严加控制。
    6063铝合金的熔炼温度控制在750-760℃之间为佳,过低会增大夹渣的产生,过高会增大吸氢、氧化、氮化烧损。研究表明,铝液中氢气的溶解度在760℃以上急剧上升,当热减少吸氢的途径还有许多,如烘干溶炼炉和熔炼工具,防止使用熔剂受潮变质等。但熔炼温度是最敏感因素之一,过离的熔炼温度不但浪费能源,增加成本,而且是造成气孔,晶粒粗大,羽毛晶等缺陷的直接成因。
    2.选用优良的熔剂和适当的精炼工艺
    熔剂是铝合金熔炼中使用的重要辅助材料,目前市场上所售熔剂中主要成份为氯化物,氟化物,其中氯化物吸水性强,容易受潮,因此,熔剂的生产中必须烘干所用原料,彻底除去水份,包装要密封,运输、保管中要防止破损,还要注意生产日期,如保管日期过长,同样会发生吸潮现象,在6063铝合金的熔炼中,使用的除渣剂、精炼剂、覆盖剂等熔剂如果吸潮,都会使铝液产生不同程度的吸氢。
    选择好的精炼剂,选择合适的精练工艺也是非常重要的,目前6063铝合金的精炼绝大多数采用喷粉精炼,这种精炼方法能使精炼剂与铝液充分接触,可使精炼剂发挥最大效能。虽然这个特点是显而易见的,但是精炼工艺也必须注意,否则得不到应有效果,喷粉精炼中所用氮气压力以小为好,能满足吹出粉剂为佳,精炼中如果使用的氮气不是高纯氯(99.99%N2),吹入铝液的氮气越多,氟气中的水份使铝液产生的氧化和吸氢越多。另外,氟气压力高,侣液产生的翻卷波浪大,增大产生氧化夹渣的可能性。如果精炼中使用的是高纯氮,精炼压力大,产生的气泡大,大气泡在铝液中的浮力大,气泡迅速上浮,在铝液中的停留时间短,除氢效果并不好,浪费氮气,增加成本。因此氮气应少用,精炼剂应多用,多用精炼剂只有好处,没有坏处。喷粉精炼的工艺要点是用尽可能少的气体,喷进铝液尽可能多的精炼剂。
    3.晶粒细化
    晶粒细化是铝合金熔铸中晕重要的工艺之一,也是解决气孔、晶粒粗大、光亮晶、羽毛晶、裂纹等铸造缺陷的最有效措施之一。在合金铸造中,均是非平衡结晶,所有的杂质元素(当然也包括合金元素)绝大部分集中分布在晶界,晶粒越小,晶界面积就越大,杂质元素(或合金元素)的均匀度就越高。对杂质元素而言,均匀度高,可减少它的有害作用,甚至将少量杂质元素的有害变为有益;对合金元素面言,均匀度高,可发挥合金元素更大的合金化艘能,达到充分利用资源的目的。
    细化晶粒、增大晶界面积、增大元素均匀度的作用可通过下面的计算加以说明。
    假设金属块1与2有同样的体积V,均由立方体晶粒构成,金属块1的晶粒边长为2a,2的边长为a,那么金属块1的晶界面积为: 金属块2的晶界面积为: 金属块2的晶界面积是金属块1的2倍。
    由此可见合金晶粒直径减小一倍,晶界面积就要增大—倍,晶界单位面积上的杂质元素将减少一倍。
    在6063铝合金的生产中,对磨砂料来说,由于要通过腐蚀使型材产生均匀砂面,那么合金元素及杂质元素的均匀分布就显得尤为重要。晶粒越细,合金元素(杂质元素)的分布越均匀,腐蚀后得到的砂面就越均匀。 四.6063铝合金的浇铸 1.选择合理的浇铸温度
    合理的浇铸温度也是生产出优质铝棒的重要因素,温度过低,易产生夹渣、针孔等铸造缺陷。温度过高,易产生晶粒粗大、羽毛晶等铸造缺陷。
    做了晶粒细化处理后的6063铝合金液,铸造温度可适当提高,一般可控制在720-740℃之间,这是因为:①铝液经晶粒细化处理后变粘,容易凝固结晶。②铝棒在铸造中结晶前沿有一个液固两相过度带,较高的铸造温度有较窄的过度带,过度带窄有利于结晶前沿排出的气体逸出,当然温度不可过高,过高的铸造温度会缩短晶粒细化剂的有效时间,使晶粒变得相对较大。
    2.有条件时,充分预热,烘干流槽、分流盘等浇铸系统,防止水分与铝液反应造成吸氢。
    3.铸造中,尽可能的避免铝液的紊流和翻卷,不要轻易用工具搅动流槽及分流盘中的铝液,让铝液在表面氧化膜的保护下平稳流人结晶器结晶,这是因为工具搅动铝液和液流翻卷都会使铝液表面氧化膜破裂,造成新的氧化,同时将氧化膜卷入铝液。经研究表明,氧化膜有极强的吸附能力,它含有2%的水份,当氧化膜卷入铝液后,氧化膜中的水份与铝液反应,造成吸氢和夹渣。
    4.对铝液进行过滤,过滤是除去铝液中非金属夹渣最有效的方法,在6063铝合金的铸造中,一般用多层玻璃丝布过滤或陶瓷过滤板过滤,无论是采取何种过滤方法,为了保证铝液能正常的过滤,铝液在过滤前应除去表面浮渣,因为表面浮渣易堵塞过滤材料的过滤网孔,使过滤不能正常进行,除去铝液表面浮渣的最简单方法是在流槽中设置一挡渣板,使铝液在过滤前除去浮渣。 五.6063铝合金的均化处理 1.非平衡结晶
    如图三所示,是由A、B两种元素构成的二元相图的一部分,成份为F的合金凝固结晶,当温度下降到T1时,固相平衡成份应为G,实际成份为G’,这是因为在铸造生产中,冷却凝固速度快,合金元素的扩散速度小于结晶速度,即固相成份不是按CD变化,而是按CD’变化,从而产生了晶粒内化学成份的不平衡现象,造成了非平衡结晶。
    2.非平衡结晶产生的问题
    铸造生产出的铝合金棒其内部组织存在两方面的问题:①晶粒间存在铸造应力;②非平衡结晶引起的晶粒内化学成份的不平衡。由于这两个问题的存在,会使挤压变得困难,同时,挤压出的产品在机械性能、表面处理性能方面都有所下降。因此,铝棒在挤压前必须进行均匀化处理,消除铸造应力和晶粒内化学成份不平衡。
    3.均匀化处理
    均匀化处理就是铝棒在高温(低于过烧温度)下通过保温,消除铸造应力和晶粒内化学成份不平衡的热处理。Al-Mg-Si系列的合金过烧温度应该是595℃,但由于杂质元素的存在,实际的6063铝合金不是三元系,而是一个多元系,因此,实际的过烧温度要比595℃低一些,6063铝合金的均匀化温度可选在530-550℃之间,温度高,可缩短保温时间,节约能源,提高炉子的生产率。
    4.晶粒大小对均匀化处理的影响
    由于固体原子之间的结合力很大,均匀化处理是在高温下合金元素从晶界(或边沿)扩散到晶内的过程,这个过程是很慢的。容易理解,粗大晶粒的均化时间要比细晶粒的均匀化时间长得多,因而晶粒越细,均匀化时间就越短。
    5.均匀化处理的节能措施
    均匀化处理需要在高温下通过较长时间保温,对能源需求大,处理成本高,因此,目前绝大多数型材厂对铝棒未进行均匀化处理。其最重要的原因就是均匀化处理需要较高成本所致。降低均匀化处理成本的主要措施有:
    ①细化晶粒
    细化晶粒可有效的缩短保温时间,晶粒越细越好。
    ②加长铝棒加热炉,按均匀化和挤压温度分段控制,满足不同工艺要求。这一工艺主要好处是:
    a)不增加均匀化处理炉。
    b)充分利用铝捧均匀化后的热能,避免挤压时再次加热铝棒。
    c)铝捧加热保温时间长,内外温度均匀,有利于挤压和随后的热处理。
    综上所述,生产出优质6063铝合金铸棒,首先是根据生产的型材选择合理的成分,其次是严格控制熔炼温度、浇铸温度,做好晶粒细化处理、合金液的精炼、过滤等工艺措施,细心操作,避免氧化膜的破裂与卷入。最后,对铝棒进行均匀化处理,这样就可生产出优质铝棒,为生产优质型材提供一个可靠的物质基础。

0
    +关注 私聊
  • chemchenxj

    第5楼2011/01/18

    谢谢楼上两位的回答,我自己分析的原因有两个
    1、硅是非金属元素,金属元素容易凝聚放电,而非金属元素容易引起扩散放电
    2、硅的熔点较高,相对不易激发
    当硅的含量变高时,这种影响因素会变的很明显

0
  • 该帖子已被管理者-设置为精华,下面是奖励记录:加5积分,加5声望
    +关注 私聊
  • yushushi

    第6楼2011/01/18

    用金属和非金属来区分是否会出现问题呢?金属的导电性是好的,,,但是某些非金属的导电性也很好啊,,比如C,,,,,我曾经应用户的要求,用直读光谱激发过纯石墨的样品,,,激发点确定为凝聚放电的点,,,,虽然实际发光分析用直读是有问题的,,但就放电激发来说,从激发点上,,说明不了非金属元素相对于金属元素更容易产生扩散放电。

0
    +关注 私聊
  • lwdg3000

    第7楼2011/01/24

    分析硅含量比较高的样品时,按一般的激发时间是不可以的。由于硅不是金属元素,容易造成扩散放电,激发的样品结果不好。氩气不好是一个方面,另一个方面就是要调整激发的时间。把激发的时间加长,效果会很好。

0
    +关注 私聊
  • 老头

    第8楼2011/03/09

    高铝要求氩气更纯!!老头

0
    +关注 私聊
  • zal410

    第9楼2011/03/10

    谢谢专家提供的资料,之前一直想找6063的铸造资料,但是没有找到。我记得元素电离的难以成度在元素周期表上可以表现出来,因为不能用电脑上网无法上传图片,不能上网真痛苦,手机上太麻烦了,电离的难以程度可以做为一个参考依据

0
    +关注 私聊
  • trumpzzk

    第13楼2011/03/10

    看起来你的工作做了很多,但是你把问题想复杂了,这个问题早在30、40年前就讨论过,权威的说法是硅含量高会导致在高温下与碳形成SiC,而SiC是熔点很高而不容易激发的。其实,根本原因不在这里,主要是硅含量高后,样品中硅酸盐晶粒含量增高,而硅酸盐其实就是夹杂物,激发时导致激发管道变粗,电流密度减小,激发能量下降。我们做过的试样硅含量达到5%,激发效果依然很好,主要是将其中的硅酸盐晶粒降低,为达到这一目的,你可以通过提高取样温度来实现。为验证这一事实,你可以在金相显微镜下观察低硅钢和高硅钢中硅酸盐晶粒的含量,比较后你什么都明白了。

    chemchenxj(chemchenxj) 发表:

    最近我在做中低合金钢时发现了一个奇怪的现象,
    同一台仪器有的样品激发正常,凝聚放电,激发点有金属光泽,周围黑圈正常;
    而有的样品激发很不正常,扩散放电,表面无侵蚀,明显的白点,
    重新磨样,激发很多次,还是如此,现象比较奇怪。

    首先怀疑的是氩气质量,但同一台仪器对于不同的样品激发点相差这么明显,还是有点搞不明白
    比对样品成分时发现,激发点为白点的样品有一个相同的特性:硅含量较大(Si为1.5%~1.9%)
    又选了几块硅含量比较高的样品进行分析,依旧是白点,而选择硅含量低于0.5%的样品,激发点均正常
    原因似乎找到了,高硅的样品不易激发,对氩气的要求更高,重新换了一瓶液氩,冲洗过后,所有样品激发均正常,OK

    查找资料发现“样品中如含有易氧化的元素如硅,铝,碳, 铬等含量高时生成稳定化合物,往往导致扩散放电”
    高硅的样品为什么不易激发呢?
    难道是熔点较高的物质,当其含量也高时就不易激发了?
    除了硅钢、铸铁等硅、碳元素含量高外,还有哪些元素比较难测量,欢迎各位大侠讨论

    分享一个常见材料的熔点(℃)(网上搜索拼凑的,不一定准确)

    金刚石3550 钨3410钼2622铌2468 钒1919
    铬1855铂1772 钛1668 纯铁1535 钴1495
    镍 1452硅1410
    钡1285锰1245铜1083
    金1064 银:962钙839铝660 镁649
    锑630 锌419.5 铅327铋271锡:232

    各种钢:1300~1400 各种铸铁:1200左右
    铸钢 1425 低碳钢 1400-1500 灰铸铁1200 黄铜 950 青铜 995

0
  • 该帖子已被管理者-设置为精华,下面是奖励记录:加5积分,加5声望
查看更多
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...