仪器信息网APP
选仪器、听讲座、看资讯

化学发光的基本知识

  • 省部重点实验室
    2012/05/06
  • 私聊

化学发光

  • 化学发光的基本知识


    化学发光反应所以能用于分析测定,是因为化学发光强度(ICL)与化学反应速度(dc/dt)相关联,而一切影响反应速度的因素都可以作为建立测定方法的依据。
    化学发光反应一般可表示为:A+B → C*, C* → C+hv
    化学发光的反应既包括一个发光过程也包括了一个化学发光反应的过程,因此该发光反应的化学发光强度取决于化学反应的速率dc/dt和反应的化学发光量子效率( ΦCL ) ICL= ΦCLdc/dt.b6u4X!d(P5@-_
    式中ΦCL可表示为:ΦCL=ΦrΦf;
    Φr:生成激发态产物的量子产率,也就是每一个参加反应的分子产生的激发态;
    Φf :激发态产物分子的发光量子产率,也就是每一个激发态产生的光子数,对于一定的化学发光反应, 为一定值。
    由于化学发光测定易受化学反应条件,如pH值、离子强度、溶液组成、温度等的影响,影响反应速率或任意一个量子效率的因素都会改变发光强度。因此,在一定的化学反应条件下,通过测定化学发光强度就可以测定反应体系中某种物质的浓度。
    化学发光分析测定的物质对象可分为三类:第一类物质是化学发光反应中的的反应物;第二类物质是化学发光反应中的催化剂,增敏剂或抑制剂;第三类是偶合反应中反应物,催化剂,增敏剂等。这里所说的偶合反应其实就相当于前面提到的间接化学发光反应,它将一个化学发光反应与另一个或一系列反应进行偶合,只要这一个或一系列反应中的任何一种反应物或产物或催化剂(包括酶)能参与化学发光反应,就可以根据所产生的化学发光信号强度获得该反应中某一组分的量。通过标记方式利用这三类物质还可以来测定人们感兴区的其他物质。进一步扩大了化学发光分析的应用范围
    化学发光分析最初是以分立式进样化学发光仪作为研究手段,由于化学发光现象一般比较短暂且随时间变化较大,使用间歇式手工操作是较难取得良好的重现性,因此人们将流动注射技术引入到化学发光分析中。流动注射技术是hansen于1975年建立的,把一定体积的试样注入到流动试剂(载流)中,可以保证混合过程与反应时间的高度重现性,特别是在非平衡状态下高效率的完成试样的在线处理与测定。
    在化学发光分析中,化学反应器可以正面放置在接近光检测器的部位,因此检测器的仪接受较大分量的发射光子,从而提高了灵敏度,其灵敏度可达10-21mol,甚至可检测至单分子水平。化学发光分析的检测线并不受仪器的检测极限的限制,多数是受试剂的杂质污染以及由于浓度极低而带来的其他一些问题的限制。另外,由于化学激发作用具有电子激发态的均一性特点,通常其现行范围所展示的浓度区间较宽,可高达3~6个数量级。
    对于化学发光分析来说,由于激发能来源于化学反应,无须专门的激发光源以及相应的单色器和聚焦透镜等,所以仪器设备简单、廉价、易微型化。分析化学,论由于化学发光现象一般比较短暂,因此化学发光分析所要求的时间也较短,但其最大的缺点是选择性差。因为化学发光分析的测定大多是在相同条件下,沿用同一个化学发光反应进行的,因而选择性较差。如典型的鲁米诺-过氧化氢化学发光体系,就能被10多种无机离子和30多种有机物催化或者增敏,且均在pH8~11的碱性条件下完成。近年来,化学发光检测与色谱以及毛细管电泳等分离技术的联用,在很大程度上解决了化学发光分析选择性差的问题,扩大了化学发光分析的应用范围。
    为了提高化学发光分析法的选择性,将高灵敏度的化学发光检测技术与高效能、高分辨力的高效液相色谱或毛细管电泳以适当的方式相结合,集合2种技术的优势,为人们展示了一个分离效能高、检测先低、分析速度快的方法。%I/_8e*
    液相色谱化学发光检测仪主要包括分离柱、泵系统、混合器和化学发光检测器。柱后的反应和化学发光检测是这一联用方法成功的关键。需要注意的是,化学发光的最佳条件往往并不是分离的最佳条件,比如色谱分离金属离子对常用酸性的流动相,而金属离子与鲁米诺的化学发光反应多在pH>10时才有最强的发光强度,因此实际分析中要综合考虑各个方面的因素,选择合适的条件,使其既有利于分离又能保证灵敏、稳定的检测。|分析化学|化学分析|仪器分析|分析测试|色 发光在生物学领域也有着很多应用,主要简介如下:
    +关注 私聊
  • 省部重点实验室

    第1楼2012/05/06

    1 血浆和血清的化学发光
    亚铁离子催化的化学发光自由基启动的脂质过氧化 (L PO) 是一个链式反应过程。反应过程中产生脂自由基 (R - ) 、烷氧自由基 (RO - ) 、共轭二烯和脂过氧化自由基 (ROO - ) 等中间产物。 ROO - 自反应会产生激发的烷氧自由基 (RO 3 ) 和单线态氧 (O 2 ) ,其回到基态时产生发光。因此,把 Fe 2 + 盐加入含有脂肪的系统中,如细胞膜、线粒体、微粒体、血浆、组织匀浆、尿液等,可产生化学发光。许多实验研究对加入 Fe 2 + 盐的不同疾病患者血浆和血清的化学发光进行的测量表明,与正常健康人相比,腹腔器官局部缺血、肢端闭合性局部缺血、血氧含量下降以及出血、手术性休克病人血浆和血清的发光强度降低。 与此相反,风湿性关节炎、阑尾炎、胆囊炎、胰腺炎等炎性疾病患者血浆和血清的发光强度升高。 降低和升高的幅度与疾病的严重程度有关。 可以看出,利用此方法有可能对非典型的心肌梗塞和腹腔器官炎性疾病做出区别诊断。
    2血浆脂蛋白的化学发光
    有研究提出,以分离的血浆脂蛋白悬液作为系统模型可以研究不同物质对系统过氧化的调节机制。在分离的血浆脂蛋白悬液中加入胆固醇,温育一定时间后在加入 Fe 2 + 盐,测量化学发光,发现胆固醇能使系统的发光强度降低。分析认为,这可能是由于类固醇的存在抑制了系统的过氧化。对实验性胆固醇过多血症家兔和动脉粥样硬化早期病人进行的测量发现,载脂蛋白 APO – B 。在 Fe 2 + 存在条件下的发光强度出现了增长。同样的现象在肝硬化和慢性肝炎患者身上也被发现。
    3尿液的化学发光
    利用尿液的化学发光可以研究肾脏功能的变化。将 Fe 2 + 盐加入尿液中,测量其化学发光,发现肾功能不足者尿液的发光强度降低。与正常健康人相比,阑尾炎患者尿液的发光强度则有不同程度的提高。利用这一方法可以评估肾脏的排泄及收缩功能。
    4物质抗氧化活性的测定
    利用发光测量技术可以评价某些生物组织和体液的抗氧化活性。以某一稳定的发光系统为模型,如脂肪体、线粒体、卵黄脂蛋白等,将待测的抗氧化物质加入该系统,然后加入 Fe 2 + 盐,测量其化学发光。 根据系统化学发光被抑制的程度可以评价物质的抗氧化活性。 利用这一方法进行的研究证明,不同疾病患者血浆和血清的抗氧化活性是不同的。

0
    +关注 私聊
  • 省部重点实验室

    第2楼2012/05/06

    化学发光研究的热点方向
    直接化学发光反应是当前化学发光分析研究的一个重要方向,人们通常通过大量试验筛选氧化反应及反应介质来证明某种有机药物、农药是否具有化学发光特性。
    以化学发光试剂标记核酸,运用化学发光分析进行核酸分子杂交分析是化学发光分析的前沿,其发展将为基因工程、基因诊断和治疗提供有效的检测手段。分析通常进行化学发光分析都是在现有化学发光试剂的基础上开展研究,而新型化学发光试剂的开发性研究较少,此领域还有研究空间。
    金属配合物,特别是钌等过渡金属配合物在化学发光分析中的作用正逐渐受到人们的重视。比如钌(Ⅱ)-联吡啶常用作电致化学发光试剂

0
    +关注 私聊
  • ericwong

    第3楼2012/05/07

    基本原理、应用介绍,相信大家对化学发光的认识又会增进一步

0
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...