碳卫星

仪器信息网碳卫星专题为您整合碳卫星相关的最新文章,在碳卫星专题,您不仅可以免费浏览碳卫星的资讯, 同时您还可以浏览碳卫星的相关资料、解决方案,参与社区碳卫星话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

碳卫星相关的资讯

  • 卫星助力碳中和
    2021年9月14日,“吉林一号”卫星拍摄的内蒙古自治区景色卫星遥感正成为国际认可的新一代全球碳盘点方法——碳从哪里排放?减了多少碳?还有多少排放需要中和?相比传统方法,卫星遥感具有客观、连续、稳定、大范围和可重复观测等优点。迄今,日本、美国和中国已相继发射了具备大气二氧化碳浓度观测能力的卫星。2016年12月22日,我国首颗碳卫星、全球二氧化碳监测科学实验卫星在酒泉卫星发射基地发射升空并在轨运行,成为国际上第三颗温室气体监测卫星。随后,2018年5月9日,我国再次成功发射高分五号卫星,搭载的温室气体监测仪GMI的主要功能是定量监测二氧化碳和甲烷的全球浓度分布变化。今年4月,我国使用长征四号丙运载火箭成功发射大气环境监测卫星,以激光监测二氧化碳浓度变化;8月又成功发射“句芒号”卫星… … 仰望星空,这一颗颗卫星,成为助力碳中和的科技力量。“句芒号”上天2022年8月4日11时8分,我国在太原卫星发射中心使用长征四号乙遥四十运载火箭,成功将陆地生态系统碳监测卫星“句芒号”送入预定轨道。句芒,是我国古代民间神话中的木神、春神、东方之神,主管树木的发芽生长,象征对自然环境的敬畏与责任。卫星发射前,国家航天局新闻宣传中心与国家林业和草原局宣传中心、中国空间技术研究院等单位联合组织发起了陆地生态系统碳监测卫星征名活动。“句芒”“青绿”“寻木”“烛龙”“神农”… … 每一个网友投稿的名称和其背后的释义都饱含大家对绿色生态环境的渴望和对中华传统文化的喜爱。最终,“句芒”从近5000个投稿中脱颖而出。“句芒号”是世界首颗森林碳汇主被动联合观测的遥感卫星,能够实现对森林植被生物量、气溶胶分布、叶绿素荧光等的高精度定量遥感测量,进而计算出森林碳汇,即“森林植被吸收并存储的二氧化碳量”。过去,林业局要摸底森林碳汇,只能用传统的监测手段:森林调查员深入山林,依次测量每棵树的高度和树木胸径,再算出碳汇。这种测量数据更新不会很及时,通常一个季度更新一次。国家航天局公布的信息显示,“句芒号”卫星在轨运行后,可提高碳汇计量的效率和精度,转变传统的人工碳汇计量手段。“句芒号”卫星运行于高度为506公里、倾角97.4度的太阳同步轨道,通过综合遥感手段实现植被生物量、大气气溶胶、植被叶绿素荧光等要素的探测和测量,将广泛应用于陆地生态系统碳监测、国家重大生态工程监测评价、大气环境监测和气候变化中气溶胶作用研究等工作。2020年9月,我国在第75届联合国大会上正式提出,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。“句芒号”成功上天后,国家航天局表示,该卫星将为我国实现碳达峰、碳中和提供遥感力量,提高我国应对全球气候变化的话语权和主导权。准、全、细、精作为“句芒号”卫星的研制团队,航天科技集团五院表示,研制团队创新性地将天基测绘“激光雷达+光学相机”为代表的主被动联合观测手段应用到森林监测中。植被高度、植被面积、叶绿素荧光和大气PM2.5含量是计算森林碳汇能力的核心数据。为精准监测森林碳汇,“句芒号”卫星配置了多波束激光雷达、多角度多光谱相机、超光谱探测仪和多角度偏振成像仪等4种载荷,以支持获取上述数据,并确保数据“准、全、细、精”。为确保植被测高结果“准”,“句芒号”利用多波束激光雷达进行植被测高。这是一个抽样测量的过程,通过计算激光到树冠以及地面的时间差得出树木的高度,而卫星一次测量发射出激光的光束数量、频次决定着测量精度。为最大程度提升植被测高的数据精度,研制团队通过数据反演、仿真分析、应用测试,最终使植被测高精度大幅提升。为确保获取植被面积“全”,准确还原森林茂密程度,研制团队为卫星设计安装了5个多光谱相机,实现对地5角度立体观测。同时,为了避免植被阴、阳面光线影响,研制团队创新性提出月球定标方法,确保5角度成像光谱响应一致。实现这些能力后,5角度多光谱相机就能帮助“句芒号”绘制一幅“立体”植被分布图。叶绿素荧光制图是“句芒号”卫星实现高精度监测的重要环节。由于叶绿素荧光的能量非常小,仅有约0.5%到2%以荧光的形式发射出来,为提升叶绿素光谱探测精“细”程度,研制团队为“句芒号”卫星设计配置了超光谱探测仪,创新性使用了光栅分光原理,将光谱分辨率较传统探测仪提升了10倍,实现了国际首次0.3纳米精细探测,能够探测到人眼所看不到的太阳光明暗细微变化。为实现大气校正数据“精”,研制团队为“句芒号”卫星配置了偏振成像仪,支持35个角度监测大气PM2.5含量,获取大气横向PM2.5含量信息。此外,研制团队还增配了大气激光雷达,用于获取大气纵向PM2.5含量信息。一横一纵,就将数据结果由二维变成了三维立体信息,更加精准。数据应用是重头2020年,《巴黎气候变化协定》通过五周年之际,联合国秘书长安东尼奥古特雷斯撰文呼吁:“每个国家、城市、金融机构和公司都应采取净零排放计划,从现在做起,走上实现这一目标的正确道路,即到2030年全球温室气体排放量比2010年的水平减少45%。”中国工程院院士、清华大学碳中和研究院院长贺克斌近日表示,截至2021年底,全球已有136个国家提出了碳中和承诺,这一范围覆盖了全球88%的二氧化碳排放、90%的GDP和85%的人口。不过,确定温室气体减排的情况,以及确定各国承诺的减排指标是否达到并不容易。有几个问题亟待弄清:大气中温室气体的总量是多少?属于人为排放的有多少?各个国家的排放量是多少?将每一项减碳措施的效果、剩余碳排放、如何实现碳中和等明确化,将每一项减排贡献真实透明地测算出来,就是碳盘点的具体任务。“在轨运行只是第一步,如何利用卫星遥感进行准确有效的监测、获取高质量数据、对数据进行科学解析以及数据产品的应用等环节才是重头戏。”中国科学院大气物理研究所碳中和研究中心副研究员杨东旭撰文称。2021年,中国科学院大气物理研究所基于我国第一颗碳卫星——全球二氧化碳监测科学实验卫星的观测数据,发布全球碳通量数据集,标志着我国已具备全球碳收支的空间定量监测能力,可以助力盘点各地碳收支核算。事实上,早在2017年,我国宣布新一代静止轨道气象卫星“风云四号”和首颗全球二氧化碳监测科学实验卫星的数据产品对全球用户免费开放,自那时起,我国成为继日本、美国之后,第三个可以提供碳卫星数据的国家。2021年7月16日,全国碳排放权交易在上海环境能源交易所股份有限公司正式开市。此前,我国已陆续启动七个碳交易试点,分别为深圳、上海、北京、广东、天津、湖北和重庆。“双碳”(碳达峰与碳中和的简称)成为全球热点后,碳交易随之升温。中投协咨询委绿创办公室副主任郭海飞称,2021年,全球主要碳市场交易额达到7600亿欧元,相比2020年增长164%。其中,欧盟排放交易体系以6830亿欧元占据全球交易额的约90%。就国内而言,“随着未来石化、化工、建材、钢铁、有色、造纸、航空、建筑等行业纳入到全球统一的碳交易市场,我国碳交易市场规模可能会超过数万亿元人民币。”郭海飞说。但市场不会一蹴而就。碳数据方案提供商行星数据CEO白纯钰公开表示,为了碳交易而购买碳数据的客户,很在意是否可以按照需求监测和分析交易的碳资产,比如最近三个月全国森林碳汇的整体变化情况——这需要卫星配套的数据反演软件快速处理各种需求。“国家队卫星的数据用户往往是国家级的科研单位,其需求主要瞄准更宏观的全球变化研究或国家层面需求,这和市场上的商业化应用很多时候并不完全匹配,这也导致没有发射能力的卫星数据应用公司即使拿到这类数据之后,可以施展的空间尚非常有限。”白纯钰称,伴随市场的成熟,对碳数据的需求必将更大,而卫星也将在实现“双碳”目标的进程中发挥更大作用。
  • 全球碳盘点,卫星来帮忙
    为什么要做碳盘点?将每一项减碳措施的效果明确化,把每一项减排措施的贡献算出来 以全球变暖为主要特征的气候变化已成为全球性环境问题,对全球可持续发展带来严峻挑战。目前,国际社会已逐步达成“温室气体减排是抑制全球增温最有效途径”这一共识。 目前,世界范围内已建设了节点遍布全球的温室气体地基观测网络,包括如世界气象组织组建的全球大气地面观测网(GAW)、美国、欧洲和加拿大等国家分别建立的温室气体观测网络以及我国由国家大气本底站、国家气候观象台和国家及省级应用气象观测站等组成的中国温室气体观测网等。通过这些观测网络,人们可以得到自然排放的温室气体状况。 但这对于“双碳”目标还远远不够。确定温室气体减排的情况,以及确定各国承诺的减排指标是否达到并不容易。有几个问题亟待弄清:大气中温室气体的总量是多少?属于人为排放的有多少?各个国家的排放量是多少?将每一项减碳措施的效果、剩余碳排放、如何实现碳中和等明确化,将每一项减排贡献真实透明地测算出来,就是碳盘点的具体任务。 在全球碳计划2020年报告中,人类活动、大气、陆地与海洋生态系统的碳收支结果,包括五方面内容,即大气中CO2浓度及增量、化石燃料和工业排放、土地利用变化碳排放、陆地生态系统碳汇和海洋生态系统碳汇等。 其中,人类活动碳排放是全球碳盘点的核心任务。为了探明人类工业活动产生的碳排放,还必须确定并区分陆地和海洋生态系统吸收和释放了多少CO2,需要监测火山爆发、森林砍伐、火灾等自然释放和土地利用变化排放的CO2等。碳中和目标以及全球碳盘点的现实压力,就是利用各种先进技术和方法,来监测大气CO2浓度的时空变化及其来源,高分辨、高精度估算全球碳通量。 为了准确评估世界各国的温室气体减排情况,提高我国碳排放量评估的主动权,维护我国在全球碳盘点中的核心利益,建立自主可控的全球温室气体监测体系势在必行。 这其中,卫星遥感技术能派上大用场。卫星碳盘点有多“火”?国际卫星对地观测委员会明确提出,将在2025年形成星座业务化运行,支撑2028年全球碳盘点 基于传统地面站点的观测数据,难以准确了解温室气体的源汇变化特征和机制。而卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,也正在成为新一代、国际认可的全球碳盘点方法。国际卫星对地观测委员会明确提出,将在2025年形成星座业务化运行,支撑2028年全球碳盘点。 迄今,国际上欧洲、日本、美国、加拿大和中国相继发射了具备大气CO2浓度观测能力的卫星。日本于2009年成功发射GOSAT卫星,这是第一颗专门用于大气温室气体CO2和CH4探测的卫星,至今运行良好,后续的GOSAT系列卫星则致力于实现更高精度、更强空间覆盖能力。美国在温室气体遥感探测方面走在国际前列——2021年12月,美国白宫发布了《美国空间优先框架》,明确美国将优先支持应对气候变化行动的卫星遥感计划,通过政府、私营和慈善机构之间的合作,利用地球观测数据支持美国和国际社会应对气候危机。 中国近年来在温室气体卫星遥感探测方面也是突飞猛进。2016年12月,首颗碳卫星发射,这是中国自主研制的全球大气二氧化碳观测实验卫星,其数据在全球大气CO2浓度、叶绿素荧光监测等方面取得系列重要成果。2018年5月,高分五号卫星成功发射,搭载的温室气体监测仪GMI的主要功能是定量监测CO2和CH4的全球浓度分布变化。 同时,我国还在不断酝酿新的卫星计划。未来计划发射的风云三号08星上搭载的高光谱温室气体监测仪,通过对近红外、短波红外谱段连续高精度、高光谱分辨率、高空间分辨率和高采样率观测,实现全球大气温室气体的高精度定量反演。2022年4月发射的大气环境监测卫星是国际首颗搭载CO2探测激光雷达的卫星。卫星还要掌握哪些“本领”?不仅能“看”,还要能“算” 当前卫星遥感可以探测大气CO2浓度,但是对于决策部门而言,更想了解大气CO2的来源并提取出其中来自人类活动排放的部分。这对卫星遥感系统而言是一项挑战。 利用卫星开展生态系统碳汇估算的方法主要分为三类:基于温室气体浓度探测的同化反演的“自上而下”方法、基于生态过程模型模拟的“自下而上”方法以及基于数据驱动的机器学习模型方法。然而,各种方法的碳源汇估算均存在不确定性。 总体来说,全球碳源汇的巨大不确定性既源于碳循环模式的理论和认知缺陷,又包括缺乏精细时空分辨率的观测数据。由国际地圈-生物圈计划、全球环境变化人文因素计划和世界气候研究计划共同发起了全球碳计划,其关键是准确量化全球碳循环格局和变率。我国于2010年启动的全球变化研究国家重大科学研究计划、2016年启动的国家重点研发计划“全球变化及应对”专项中,摸清生态系统碳循环均为核心任务之一。2017年立项的国家重点研发计划项目“全球生态系统碳循环关键参数立体观测与反演”,其核心任务是研制覆盖全球、参数完备、时空分辨率精细、连续一致的碳循环关键参数产品,共包含24种全球碳循环关键参数的长时间序列空间观测产品。这些丰富的碳循环关键参数产品,为陆地生态系统碳源汇的动态精细评价提供了重要基础数据。 除了提高观测数据质量与数量,还需考虑如何充分利用大量多源的观测资料,协同地面和遥感技术手段,降低模型不确定性,可以进一步提高模型估计陆地生态系统固碳速率准确性。 我们认为,全球碳同化系统是解决这一问题的有效途径。联合同化卫星和地面大气CO2浓度、站点通量数据、遥感地表参数等数据,同时优化生态系统和人为源碳通量是全球碳同化系统的发展趋势。2016年,南京大学发展了全球碳同化系统,能更好地揭示不同地区陆地碳汇的时空分布和年际变化,该系统已经具备了业务运行能力。 由于人为源碳排放和陆地生态系统碳通量混合,如何利用碳同化系统优化计算人为源碳排放,是科学家们力图解决的重要问题,也是实现碳中和目标的重要技术需求。发展区域高分辨率碳同化系统同化大气浓度观测数据,是进行人为源碳排放优化估算的有效手段。下一代碳卫星有多“高大上”?中国的碳卫星监测解决方案正在部署中 全球碳盘点不仅需要卫星遥感提供高时空分辨率大气CO2等观测数据,更需要通过观测系统与同化反演系统集成,提供高时空分辨率的大气CO2的溯源解析数据,如人为碳排放、生态系统碳源汇等。 尽管卫星探测能力得到了有效提高,但是任何单独一颗卫星都无法满足CO2和CH4全球探测的需求。根据科学目标将多颗卫星组成一个虚拟的卫星星座,开展多颗卫星组网观测是满足快速增长的全球业务化观测需求的有效途径。 同时,第二代碳卫星的核心目标是服务于全球碳盘点的清单校核,不仅要求卫星载荷系统提供宽幅、高分辨率、高精度的观测能力,还需要通过同化反演系统,监测碳通量,并区分和量化人为碳排放。 为了满足全球温室气体清单校核需求,对中国下一代碳卫星在温室气体清单校核需求目标、科学产品技术指标以及卫星组网观测能力需求方面提出了明确的要求,包括监测CO2、CH4、CO、NO2、SIF、气溶胶和N2O七种要素,并能达到较高精度;针对不同尺度设计了传感器相应的空间分辨率,在全球和热点区域分别对应2公里×2公里,0.5公里×0.5公里的空间分辨率,并且具有1天的时间分辨率,幅宽达1000公里,以满足观测需求。这对载荷研制提出了非常苛刻的要求,如何在工程技术上平衡光谱分辨率、信噪比、空间分辨率与幅宽的制约关系存在巨大挑战。在碳卫星观测要素的遥感反演算法研究基础上,结合当前载荷工程研制能力,初步确定了下一代碳卫星载荷技术指标,包括设计了NO2、O2A,弱CO2、强CO2、CH4五个吸收带,波长范围在0.4纳米至2.385纳米之间,光谱分辨率最高能达到0.12纳米。 尽管下一代碳卫星比第一颗碳卫星有巨大的飞跃和进步,但卫星成像监测也受到轨道、天气等诸多因素的影响,无法实现连续动态观测且分辨率不高,仅凭卫星遥感难以取得满意效果。因此,必须结合地基监测、航空遥感等多源数据,才能实现点源、城市、国别尺度的温室气体排放的精确估算。目前,生态环境部、中国气象局、中国科学院等机构正在组织和实施大范围地基温室气体观测任务,已初步建成、并正在逐步完善国家温室气体观测网络,温室气体卫星星座与地基网络的协同,为中国碳达峰、碳中和行动成效的科学评估与碳排放核算提供了重大机遇。 科学家提出,为了实现面向碳盘点的卫星监测目标,需要优先部署如下7个方面任务:开展下一代碳卫星研发与运行,服务于全球和重点区域碳监测需求;针对中国下一代碳卫星及载荷指标特点,结合国内外多源卫星数据,开展高精度碳监测卫星遥感科学关键技术研究和共享产品研发;面向全球碳盘点的需求,开展高时空分辨率、高精度、高时效性的碳排放清单的卫星校验方法研究;面向重要点源目标碳排放卫星监测的需求,推进重要点源碳排放卫星监测技术;面向全球碳盘点和国家碳中和需求,发展高时空分辨率、高精度、长时间序列的全球生态系统碳通量监测技术;面向全球碳盘点和国家碳中和需求,发展高时空分辨率、高精度、长时间序列的全球土地利用碳排放监测技术;围绕全球碳盘点和国家碳中和战略对空间信息技术的需求,推进碳卫星科学计划项目集成与国际合作。 面向全球碳盘点和中国双碳目标需求,需要利用卫星遥感、大数据、碳同化等先进技术和方法,实现高时空分辨率、高精度、高时频的大气温室气体浓度监测,并提供高精度、高分辨率的人为源碳排放和生态系统碳源汇科学数据,阐明大气温室气体的来源、并有效区分与量化人为源和自然源的通量贡献,建立全球、国家和热点区域的温室气体排放的监测和验证支撑技术体系。
  • 监测碳排放--中国碳卫星获取首个全球碳通量数据集
    8月15日,记者从中国科学院大气物理研究所获悉,基于我国第一颗全球二氧化碳监测科学实验卫星中国碳卫星的大气二氧化碳含量观测数据,来自该所等单位的研究人员利用先进的碳通量计算系统,获取了中国碳卫星首个全球碳通量数据集。这是一个里程碑式的结果,标志着我国具备了全球碳收支的空间定量监测能力,是国际上继日本、美国之后的第三个具备该技术的国家。相关研究成果在线发表于《大气科学进展》杂志。 二氧化碳是地球大气的重要组成部分,因其会产生较强的温室效应,被认为是造成气候变化的关键原因。为减缓二氧化碳过度排放造成的气候变化,1992年以来,《联合国气候变化框架公约》逐步对各国碳排放状态加强约束。《巴黎协定》提出,2023年起,每五年进行一次全球盘点的计划,以评估各国的实际行动在减缓气候变化中的贡献。  “随着大气探测和模型模拟技术的飞速发展,通过大气二氧化碳浓度观测溯源碳排放的方法,被认为是评估温室气体减排成果的有效方法。”中科院大气所副研究员杨东旭说。  大气二氧化碳浓度测量法依赖于观测和模拟。在观测方面,卫星遥感由于特殊的观测地点和方式,可以在二氧化碳全球观测中发挥较大作用,特别是在全球覆盖高分辨率的观测上,能够做到看得广、看得清;而模拟则主要是通过大气输送模型,利用高性能计算机,模拟出大气二氧化碳传输过程和每一个时刻、每一个地方大气二氧化碳的含量。  为了观测大气中的二氧化碳浓度,日本于2009年成功发射了国际上第一颗温室气体专用探测卫星GOSAT,美国OCO-2紧随其后,于2014年发射升空。2016年12月22日,中国碳卫星在酒泉卫星发射基地成功发射升空并在轨运行,成为国际第三颗温室气体卫星,其目标是实现对全球大气二氧化碳浓度的高精度监测,为碳排放科学研究提供卫星资料。  “有了自己的碳卫星以后,对于某一个时刻、某一个地方的二氧化碳含量,我们会得到一个观测值和一个模拟值。这两个数据必然会存在差异。为了减小误差,我们会使用‘数据同化’法,得到最接近真实的数值。”杨东旭说。  这项研究中,研究人员将碳同化系统与全球化学输送模式相结合,成功同化卫星观测数值与模拟数值,得到了最接近真实情况的数值。研究结果表明,与先验通量相比,不确定度减少了30%—50%。  更重要的是,利用中国碳卫星观测资料,科研人员估算了2017年5月至2018年4月共12个月的全球陆地碳净通量。估算结果与利用日本GOSAT卫星和美国OCO-2卫星资料的估算结果大体一致。这表明我国首颗碳卫星具有了全球碳通量监测的能力。  对此,杨东旭表示,中国碳卫星是我国第一代温室气体监测专用卫星,实现了空间温室气体高精度监测的从无到有,迈开了重要且艰难的第一步。未来,我国将以碳卫星的研究成果为基础,研发新一代的温室气体监测卫星,服务于全球和我国双碳目标的实现。

碳卫星相关的方案

  • 使用Agilent 490 微型气相色谱沼气分析仪分析沼气中的一氧化碳
    沼气是一种可再生且可持续的能源,在全球范围内引起极大关注。该应用简报展示了利用Agilent 490 微型气相色谱沼气分析仪分析沼气及相关样品。根据沼气的组成提供了两种配置:Agilent 490 微型气相色谱沼气分析仪和增强型Agilent 490 微型气相色谱沼气分析仪,前者用于分析纯净沼气,后者则适用于分析混合有其他烃类气体(如天然气或液化石油气(LPG))的沼气
  • 微纳卫星电热等离子体微推进器羽流特性测试中的低气压精确控制方法
    针对各种微纳卫星电热等离子体微推进器,以口袋火箭这种工作在0.1~10torr低气压范围内的微推进器为例,分析了不同工质气体和不同低气压对羽流特征所产生的影响,说明了低气压精确控制的重要性。关于推进器低气压精确控制这一技术问题,本文详细介绍了具体实施方法,进行了考核试验,试验结果证明低气压控制波动度可以达到± 1%以内。最终本文对测试方法进行了优化,提出了更实用化的全量程低气压精确控制技术方案。
  • 微型注塑机维修工作的核心
    微型注塑机是将热塑性塑料利用塑料成型模具制成各种形状的塑料制品的主要成型设备。微型注塑机能够把塑料在机筒加热、并通过机筒螺杆旋转,把塑料混合、向前推移输送,同时将其翻动、压缩、直至塑化溶融;然后,借助螺杆前移的推动,迫使熔态通过喷嘴进入模具行腔,经冷却固化后成为一定形状和尺寸精度的制品,这种设备即为微型注塑机,简称为注塑机。  微型注塑机是一种全部动力都由电力供给的加工注塑机。可以将热塑性塑料注射成型并加工成各种模具。微型注塑机是化工材料合成加工过程中常用的一种机器。微型注塑机通常由注射系统、合模系统、液压传达动系统、电气控制系统、润滑系统、加热及冷却系统、安全监测系统等组成。  微型注塑机工作原理:  微型注塑机的工作原理与打针用的注射器相似,它是借助螺杆(或柱塞)的推力,将已塑化好的熔融状态(即粘流态)的塑料注射入闭合好的模腔内,经固化定型后取得制品的工艺过程。注射成型是一个循环的过程,每一周期主要包括:定量加料—熔融塑化—施压注射—充模冷却—启模取件。取出塑件后又再闭模,进行下一个循环。  微型注塑机维修工作的核心是故障的判断和故障的处置,涉及知识面广,复杂水平大,具有一定的深度。既要有机械设备维修基础知识,又要有液压维修基础知识,也要有电气维修基础知识。  维修工作者首先必须了解和掌握微型注塑机的操作说明书中的内容,熟悉和掌握微型注塑机的机械部件、电路,连接微型注塑机在正常工作时机械、电路的工作过程,了解和掌握电气元器件检查和维修使用方法。清楚正常工作状态与不正常工作状态,以避免费时的误判断和误拆卸。  维修工作必需了解设备的操作方法及要有一些注塑成型基础知识,并且会正确使用微型注塑机。若不知道操作微型注塑机,检修工作是非常困难的判断故障也可能不可靠。微型注塑机中电路板及电气元器件临时受高温、环境、时间等因素影响,器件工作点偏移,元器件的老化水平,都是属于正常范围。  所以,调试微型注塑机也是维修工作中必不可少的基本功之一。解注微型注塑机的工作顺序,调试注塑机电子电路、液压油路是十分重要的环节。  维修工作要做到准确、可靠和及时,必须对各类型注塑机的使用说明书中内容加以研究和掌握,微型注塑机一般维修过程中,维修思路通常是电路—油路—机械部件动作。而调校工作又反过来进行。

碳卫星相关的论坛

  • 大气科学之气象观测==卫星探测的分辨率

    卫星探测定义:利用星载仪器进行地球大气遥感和空间探测  卫星探测的分辨率:是指卫星仪器能区分两个物体的最小距离。表示卫星探测分辨率通常有三个参数:① 空间分辨率:这是指卫星在某一瞬时观测到地球的最小面积,这最小面积又称象元(或象素)。从卫星到这最小面积间构成的空间立体角称瞬时视场。卫星的空间分辨率与卫星的高度有关,卫星高度越高,分辨率越低,而且与卫星视角有关,视角越倾斜,观测面积越大,分辨率就差。 http://www.kepu.net.cn/gb/earth/weather/observe/images/obs009_0301_pic.jpg卫星探测的视场和分辨率② 灰度分辨率:在卫星云图上,如果两个邻接瞬时视场内目标物的反照率或温度相等,则其色调一样,无法区别它们。但是当这两个瞬时视场目标物的反照率或温度有差异,并达到一定数值时,这两个视场就可以被分辨,这个能分辨的最小温度差或反照率差异称做灰度分辨率。③ 时间分辨率:指卫星对某一观测区域进行一次观测的时间间隔。静止气象卫星对固定区域每隔半小时进行一次观测,具有很高的时间分辨率。

  • 欧洲金属球卫星将检验爱因斯坦广义相对论

    原文地址:http://tech.sina.com.cn/geo/other/news/2012-02-15/07441096.shtmlhttp://i2.sinaimg.cn/IT/2012/0215/U2727P2DT20120215074149.jpg新浪环球地理讯 北京时间2月15日消息,据美国国家地理网站报道,2月13日,欧洲织女星火箭首次发射成功。其上面搭载了一颗旨在验证爱因斯坦广义相对论的低成本探测卫星,尽管其耗资很少,但据称其探测精度将比此前美国宇航局进行的该项研究高出几乎100倍。  在2000年年中,在经过超过40年的艰苦研发之后,由美国斯坦福大学领衔研制的耗资8亿美元的“引力探测器B”卫星探测到了“惯性系拖曳效应”(Frame dragging)。这是一种爱因斯坦的理论中所预言的现象,即由于地球的自转导致周遭的时空结构随之发生扭曲的效应。但是由于技术上的问题,美国宇航局的探测计划只达到了大约20%的精度。  而此次这一由意大利领衔研制的新型卫星仅仅耗资1000万美元,却将有望大大改进观测的精度。伊戈纳兹尔·塞佛利尼(Ignazio Ciufolini)来自意大利萨兰托大学,他是此次探测项目的负责人,他说:“如果我们能达到1%的精度——我很自信我们可以达到,那么我们将能够将之前引力探测器B的探测精度提升一个数量级。”  这颗探测卫星名为“激光相对论卫星”,缩写为“LARES”,它搭载在织女星火箭上,于法属圭亚那当地时间7:00(北京时间当日18:00)发射升空。现在这颗卫星已经开始在轨工作,它将在未来数年内连续发回有关惯性系拖曳效应的测量数据。  阿兰·康斯坦拉基(Alan Kostelecky)是一名来自美国印第安纳大学的理论物理学家,他说:“如果LARES卫星能够达成其观测精度,这将可以对相对论进行非常好的验证。”  帮助验证相对论的金属球  LARES基本上就是一个圆球,其主体是一个坚固的金属球,用钨金属制成,重362公斤,直径仅有35.5厘米。这个圆球的外部镶嵌了很多反射器,以便当它在太空飞行时地面的激光追踪网络能够跟踪其在轨道上的精确位置,精度可达毫米级。  探测器的运行轨道和地球赤道之间存在一个夹角。根据爱因斯坦理论的计算,塞佛利尼的小组认为地球自转产生的惯性系拖曳效应将会让卫星的轨道产生轻微进动。这是由于卫星被随地球自转扭曲的时空带动产生的效应。  在一年的时间内,这种效应预计将导致卫星运行轨道倾角出现大约千万分之一的误差,也就是说大约经过1000万年后,由惯性系拖曳效应导致的误差将可以致使卫星的运行轨道围绕地球整个翻转一圈。除了角度之外,在一年内卫星的位置也将出现大约4米的误差,这一误差可以由地面激光测量监视系统精确地测出,其误差将小于1%。  不能停止对广义相对论的检验  LARES卫星的大质量特点让它对地球的大气拖拽效应不敏感,由于它运行在距离地面1450公里的高轨道上,这里的大气拖拽效应本身也非常微弱。并且这一高密度球体卫星受到太阳光压的影响也非常微小,几乎可以忽略不计。  其它因素,如地球本身并非一个理想球体,实际上导致的卫星进动幅度更大,大约3年左右就可以让卫星运行轨道偏移一周。但是研究人员将会使用各种数据分析手段,并参考之前各项任务的数据,从而从这些背景数据中筛选出由于惯性系拖曳效应导致的误差值。  爱因斯坦的广义相对论或许仍将通过本轮测试。但科学家们相信广义相对论最终必定会失效,但是是在非常微观的尺度上,在这一尺度上量子理论开始发挥作用。当然,在科学上很多事情仍然是无法做出非常肯定的断言的。  塞佛利尼说:“在过去的100年里,爱因斯坦的广义相对论已经经受住了无数的实验检验,但是这一切并不是就意味着我们应当停止这样的检验。”(晨风)

  • 中国2016年将发射两颗具备温室气体探测能力卫星

    中 国气象局国家卫星气象中心将在2016年发射的风云三号气象卫星D星上将搭载温室气体探测仪器;同时,由国家科技部立项研制的中国二氧化碳监测卫星已于去年7月转入初样研制阶段,也计划于2016年发射。  这就意味着,2016年,中国将发射两颗具备温室气体探测能力的卫星。  国家卫星气象中心主任杨军日前向新华社记者透露了这一信息。  “国家气象卫星中心完成了地面应用系统初步设计,正着力开展相关产品的科学算法研究。”杨军说,与此同时,风云三号气象卫星温室气体监测仪和二氧化碳监测卫星的研制工作也在有序推进中。  综合利用风云气象卫星和国内外其他卫星开展气候变化监测和分析,被列入2014年中国气象局应对气候变化重点工作。  23日在纽约举办的联合国气候峰会上,中国国务院副总理张高丽以中国国家主席习近平特使身份与会。他在讲话中指出,中国将尽快提出2020年后应对气候变化行动目标,碳排放强度要显著下降,非化石能源比重要显著提高,森林蓄积量要显著增加,努力争取二氧化碳排放总量尽早达到峰值。  如何减少碳排放,承担起共同而有区别的责任,成为中国政府致力目标。中国在发展中国家中最早制定实施应对气候变化国家方案,近期又出台《国家应对气候变化规划》,确保实现2020年碳排放强度比2005年下降40%-45%的目标。  2007年开始,国家卫星气象中心卫星气象研究所副所长张兴赢在国内率先着手研究卫星温室气体探测仪的指标。当时全球尚未有任何一颗专门用于温室气体探测的卫星在轨运行,但美国和日本已经在立项研制专门的温室气体探测卫星。  2010年,中国气象局推动论证立项了风云三号气象卫星温室气体探测仪器,计划搭载在中国风云三号气象卫星的第四颗星上。  “目前我们已经发射了风云三号的A、B、C三颗卫星,计划第四颗卫星,也就是风云三号D星搭载温室气体监测仪器,预计2016年发射。”张兴赢说。  国际上,日本于2009年初在全球率先发射成功第一颗专门的温室气体观测卫星,同期美国发射专门的二氧化碳观测卫星失败。  “日本温室气体卫星上天后,其实还存在不少问题,探测的精度一开始还达不到要求。”张兴赢指出,目前大气中的二氧化碳含量大约是400ppm,必须把探测精度误差控制在1%以内,也就是4ppm以内才有科学探索的价值。  中国第四颗风云三号气象卫星上即将搭载的温室气体探测仪器,与日本的温室气体卫星比较相似,但对一些细节的技术指标进行了优化,将实现100公里探测一个点,并且增设一个一氧化碳的探测通道。  “因为碳循环中除了二氧化碳和甲烷,一氧化碳也是非常重要的成分。”张兴赢说,目前,日本正在规划的第二颗温室气体观测卫星,指标里也增加了一氧化碳探测通道。  今年7月,美国再次发射碳观测卫星,目前正在在轨测试阶段。张兴赢指出,其观测目标与日本温室气体卫星不完全一样。  “美国的卫星只有一个专门的二氧化碳探测仪器,是个小卫星,这个仪器可以把观测点做得很小,1-2公里,但是全球的覆盖需要半年左右;卫星具备灵活的姿态调整,可以实现对某个热点地区长时间的驻足观测,因此对热点地区的碳排放研究很有意义。”他说。  中国将于2016年发射的二氧化碳监测卫星,基本目标与美国的碳卫星一致。  “2016年,中国两颗具备温室气体探测能力的卫星都将发射升空,可以实现全球覆盖和高精度热点探测的互补。”张兴赢指出,此举对中国未来开展碳排放研究和应对气候变化至关重要,也将大大增强中国在国际气候变化谈判中的话语权。

碳卫星相关的资料

碳卫星相关的仪器

  • 产品简介 Aethlabs继AE51单波段微型黑碳仪之后,又新推出了microAeth系列多波段微型黑碳仪,该系列仪器结构紧凑,是实时测量、手持式的紫外-红外五波段微型黑碳仪。内有采样滤带自动更换系统,仪器配有内置泵,流量控制、数据存储、电池、GPS、卫星自动校时、加速度计、高度计、气压计和温湿度传感器,提供Wi-Fi和低功耗蓝牙无线通讯。光谱测量提供不同含碳颗粒成分的光吸收信息,有助于区分不同燃烧源,如柴油、生物质燃烧等。支持用双点位补偿方法订正过载效应。应用领域 人体暴露监测健康效应职业安全连续实时监测移动监测航测、垂直廓线主要特点五波段光吸收法测量双点位同步采集测量,并对过载效应进行补偿修正,使测量更加准确同时获得GPS、加速度、高度、气压和温湿度等信息便携式、尺寸小、重量轻适用于航测及气球观测,用于垂直梯度上黑碳浓度的获得采用电池供电时,运行时间长达24小时(5分钟平均,100mL/min) 技术参数测量波段:880nm,625nm,528nm,470nm,375nm,测量周期:1秒,5秒,10秒,30秒,60秒,300秒流量:50,100,150L/min可选。
    留言咨询
  • DS卫星信标 400-860-5168转3571
    SeaTag系列卫星信标,是美国NOAA资助的SBIR项目的一部分,为了满足两个最基本的需求:信标设计上的提高及信标费用的降低。在SeaTag信标出现之前,弹出式的卫星信标成本高昂,限制了其大量的应用。SeaTag信标进行了创新性的改进,存储式太阳能够供电系统,超高的内存能力可以存储数百万组探头读数数据,防积垢聚乙烯外壳,是您进行海洋动物追踪标记的高性价比选择。这些优势帮助您完成更多先进的生物追踪研究工作,可以解答更多的相关领域问题。依托于我们在水下技术领域的丰富经验及广阔的产品线,保证了SeaTag系列卫星信标的技术先进、价格低廉。模块化的设计理念,海量的设计文库巩固了所有的产品,使我们具有极强的创新能力,不断设计出满足用户需求的新一代卫星信标。可靠性是我们的核心竞争力。SeaTag系列卫星信标代表了此领域的持续创新,使您摆脱了昂贵的信标使用费用的困境,帮助您的科研工作上升到新的水平。不同型号的信标有其独特的特点,满足您的多样化需求。SeaTag-MOD信标的性能(磁性感应,本体移动,游泳及突然加速等)远超过其它公司的信标产品,如miniPAT 或 X-Tag,费用却远远低于它们。SeaTag-GEO信标体积小巧,适用于进行生物迁移研究,是进行宽边界研究的最经济的弹出式信标,也是此领域最小巧的信标。SeaTag系列信标,采用太阳能供电,提供更为持久的数据传输能力;配备磁力计,提高测定位置数据的精度;标签无需脱离标记的动物,即可随时传输数据。标签类型SeaTag-GEOSeaTag-GEO(一款弹出式卫星档案信标),是一款追踪海洋野生动物的理想信标。通过ARGOS卫星进行数据通讯,提供整个监测过程中的位置、时间和温度信息。SeaTag-LOGSeaTag-LOG是一款微型档案信标,具有许多独特特征和传感器,使其不同于其它的地理定位信标。其主要目的依旧是地理定位,但它会以高精度信息告知我们动物的行为路线。SeaTag-MODSeaTag-MOD信标,装配了与SeaTag-GEO相同的探头包(三维磁力计、温度探头及太阳能电池系统)。SeaTag-MOD信标还装配了三维加速度计、精确的深度探头及MicroSD卡(可以存储超过一百万组的探头读数数据)、Argos发射器、低浮力浮体及用户可替换的释放部。SeaTag-SAMSeaTag-SAM是第一款专为生物存量评估及死亡率研究进行设计及优化的弹出式卫星信标,其对于商业物种及竞争策略物种(如Bill鱼及金枪鱼等)研究很有意义。此信标价格低廉适用于大规模应用,其操作相当简单。SeaTag-3DSeaTag-3D信标,建立在我们模块化产品线基础之上,可以使用SeaTag-GEO 和 SeaTag-MOD标签上的组件。这种模块化设计降低了每个标签的费用,提高了标签硬件及获取数据的可靠性。SeaTag-3D信标装配了三维磁力计用于获取精确的地理位置信息,环绕式太阳能板用于经度估算及能源供给。另外,此信标装配有温度及深度传感器。SeaTag-TT不同于传统的电池供电标签或可充电的太阳能电池标签,SeaTag-TT信标没有限定的使用寿命。SeaTag-TT标签的任何部件不会随着时间的流逝而老化(除非暴露于紫外照射环境中),其顶部装配有两个小的坚固的太阳能板,内部配有可以储存能量的电容包。AirTagAirTag-13是我们推出的第一款鸟类标签,其重量只有十几克。我们目前正在寻找早期的使用者。早期使用者类似于Beta版的试用者。这些试用者将驱动标签的最初发展并决定标签未来的发展方向。目前13克版本的标签尺寸为51mm L x 21mm W x 16.5mm H。最初的标签仅发射短促的Argos位置信息。标签装配有两个坚固的太阳能板,一个小的电容包,以及几个安装孔。这使得标签可以通过线束或环氧树脂绑缚于鸟类的身体上。SeaTag-GEO信标SeaTag-GEO 弹出式卫星信标,是用于商业或非商业物种迁徙研究的理想工具。它是目前市场上最小的弹出式卫星信标。其重量仅为40g,可以用于体重小如1kg的海洋动物。其也是最经济的PSAT可用信标。这意味着,同等的预算,你可以购买数量4-5倍于其它标签的设备,进行更大范围的研究,获取更为详尽的数据。尽管其体积很小,价格低廉,但SeaTag-GEO弹出式卫星信标能提供给您更精确、更可靠的位置数据。由于PSAT标签费用的大幅降低,GEO可以为你提供一个替代传统塑料ID标签的更经济的选择。您可以获得更详尽的关于目标动物迁徙、栖息方面的数据。
    留言咨询
  • 微型探针腔室 400-860-5168转1730
    产品介绍:微型探针腔室是一种适用于检测分析材料的电学和光学特性的独特装置. 它的优势是可实现原位测量在各种环境下(如真空,温度,气体导入,湿度,光照射......)的电学和光学性能. 探针腔室操作简单方便.它可与其他检测仪器连用(如,IV测试源表、LCR表、拉曼光谱仪、AFM 、XRD ......).非常适合高校,研究所,企业研发用.产品应用:- IV测试- 光电流扫描- OPV,钙钛矿光伏电池- OLED,钙钛矿LED- 热电材料的特性- 晶体管,二极管,LED........测试- 薄膜材料的导热系数测量- 相变材料的电学/光学特性(金属氧化物、忆阻器等)- MEMS/NEMS的特性- 与拉曼光谱连用- 霍尔效应测试- 二维材料特性测试- ........主要客户:华中科技大学,武汉大学,西湖大学,陕西师范大学,中国科学技术大学......
    留言咨询

碳卫星相关的耗材

  • 碳钢微型针
    碳钢微型针: 直径0.35mm,30mm,镀镍
  • 碳钢微型针
    碳钢微型针: 直径0.35mm,30mm,镀镍
  • 手动多功能微型探针台
    手动多功能微型探针台是一款手动多功能探针台,可用于4' ' 晶圆或4“x6.5”印刷电路板。为用户提供了价格低廉而功能强大的选择。手动多功能微型探针台特点它的重量轻,非常灵活多用,非常方便用户转移或携带出去实验,可手动从前部操作,没有阻挡物,用户可以增加显微镜方便探针定位。磁性安装面方便定位手动多功能微型探针台应用可用于晶圆测量,也可用于毫米波,微波测量,差分探针,单探针,RF的PCB测量师,汽车以及手持式测量。可以用在实验,办公室,还可以用在其它地方。可以为用户定制用于特别应用,比如多孔连接器,PCBA等手动多功能微型探针台参数尺寸:22x9x 8英寸重量:4.5Kg

碳卫星相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制