超光谱

仪器信息网超光谱专题为您整合超光谱相关的最新文章,在超光谱专题,您不仅可以免费浏览超光谱的资讯, 同时您还可以浏览超光谱的相关资料、解决方案,参与社区超光谱话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超光谱相关的资讯

  • 超微光学展示超微型光谱模组及微型光谱仪
    台湾超微光学参加了于2012年10月16-18日召开的2012北京国际光电产业博览会暨第十七届北京国际激光、光电子及光显示产品展览会(ILOPE 2012)。在此次展会上,超微光学展出了超微型光谱模组及微型光谱仪系列产品。 超微光学的系列超微型光谱模组有着微小的体积及相当低的设置成本,微型光谱仪同样具有此方面的优势,并具有宽光谱范围、高解析度及可编程微控制器,使用USB接口,无需外接电源,可同时连接多台光谱仪。
  • 超快光谱用于拓扑材料高压超快动力学研究
    近期,中科院合肥研究院固体所计算物理与量子材料研究部与广东大湾区空天信息研究院、中科院合肥研究院强磁场中心等团队合作,研究了高压下拓扑绝缘体 Sb2Te3 的电子和声子动力学,探索了压力对该材料电声耦合强度、相干声子以及热声子瓶颈等的影响。 相关结果发表在 Physical Review B 上,固体所博士后张凯为论文第一作者,苏付海研究员为通讯作者。超快光谱可以飞秒时间分辨率记录激发态演化过程,进而获得热电子冷却、电声子耦合、相干声子激发等动力学信息;金刚石对顶砧高压技术可连续调控材料的晶格和电子结构,实现不同量子态的抑制或诱导。超快光谱和金刚石对顶砧相结合,对于探寻和理解高压下电子拓扑相变、金属-绝缘体转变等重要物理现象和机制具有重要意义。近年来,固体所计算物理与量子材料研究部研究人员已研制出基于飞秒激光的近红外至太赫兹波段高压超快光谱系统,并利用该技术在石墨烯、砷化镓等材料的热电子动力学压力调控方面取得了一定进展 (Appl. Phys. Lett. 117, 101105 (2020);Phys. Rev. Lett. 126, 027402 (2021);Optics Express, 29, 14058 (2021))。在此基础之上,研究团队以经典拓扑绝缘体Sb2Te3为研究对象,着重探究电子拓扑转变过程中的超快动力学效应。借助高压下飞秒泵浦-探测光谱,测量了不同压力下瞬态反射光谱,获得了Sb2Te3的热电子弛豫时间、相干声学声子寿命等参数和压力的关系,并观察到伴随电子拓扑转变的热声子瓶颈压制效应(图1)。结合理论计算,发现其电子能态密度在电子拓扑转变之上迅速增大,从而为热电子和热声子提供更多的弛豫通道,有效提高电声耦合强度,减弱热声子瓶颈效应。由于超快光谱可探测偏离费米面或能带极值点的高能载流子弛豫过程,反映电子和声子结构的色散细节以及高频光学声子相关的电声子耦合,因而高压超快光谱能够清晰直观地表征材料的电子拓扑及晶体结构转变(图2)。该研究首次揭示了高压下Sb2Te3材料在电子拓扑转变及晶格结构相变过程中的非平衡态电子和声子动力学,深化了对该体系材料中电声子相互作用的理解,为高压下拓扑相变探测开辟了新途径。该工作得到了国家青年基金项目、面上项目和基金委国家重大科研仪器研制项目等的支持。文章链接:https://doi.org/10.1103/PhysRevB.105.195109。 图1. 不同压力下的Sb2Te3的飞秒泵浦-探测反射光谱以及相干声子寿命、快时间、热声子瓶颈效应随压力的变化趋势图2. 不同压力下Sb2Te3的飞秒泵浦-探测反射光谱。
  • 捕捉“最短”瞬间 超快光谱让微观世界越来越清晰 ——第十三届光谱网络会议超快光谱报告推荐
    人类一直在追求捕捉物体运动更快的画面,比如骏马疾驰,一直是令人赞叹的画面。然而,由于骏马奔跑时的速度实在太快,人类用肉眼很难捕捉到清晰的画面;再比如,一只小小的蜂鸟每秒可以拍打翅膀80次,然而对于人类来说只能感觉到嗡嗡的声音和模糊的翅膀动作…人类一直在探索自然界的瞬态过程,陆续达到毫秒量级、微秒量级、纳秒量级、皮秒和飞秒的时间分辨。纳秒量级约等于10的负9次方秒,皮秒约等于10的负12次方秒,飞秒等于10的负15次方秒。其中,观测分子的转动和振动过程、电子从激发态回到基态的弛豫过程,就需要皮秒到飞秒量级的时间分辨。更进一步,要观察电子甚至原子核内的运动过程,就需要时间分辨率进一步达到阿秒(10的负18次方级秒),甚至仄秒(相当于10的负21次方级秒)。回顾历史,诺贝尔奖的赋予更是加持了科学家对其的热爱。1999年,诺贝尔化学奖颁发给了致力于时间分辨率上的超快光谱探测技术的科学家;2023年,诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶三位科学家,以表彰他们在阿秒光脉冲方面作出的贡献。在阿秒研究中,我国科学家也取得了重大进展。据悉,2013年,中国科学院物理研究所魏志义课题组实现了160 as孤立阿秒脉冲测量实验结果,这是我国在阿秒科学领域的重大突破。随后,华中科技大学、国防科技大学和中国科学院西安光学精密机械研究所的研究团队也先后实现了阿秒激光脉冲的产生和测量……据了解,阿秒脉冲光技术是人类目前所掌握最快的时间尺度。它就像一把尺子,尺子刻度越细,可测量的精度就越精细。更重要的是,这为超快光谱探测技术提供了新的时间分辨率——依靠更快的速度,人类可以观测定格到更加清晰细小的微观世界。而所谓超快光谱探测技术,就是指利用脉冲激光器对样品进行激光刺激,并用激光对刺激后的样品进行探测,以研究样品在极短时间内的光物理、光化学和光生物反应的一种方法。超快光谱探测技术将人类自然科学的研究带入了一个更快的世界,已经成为研究物质激发态能级结构及弛豫过程的强有力工具,是研究反应动力学的科研利器,该测试技术近年在Nature、Science等国际顶刊上频频出现,已成为热点话题。那么,超快光谱目前的发展情况如何?可以解决哪些关键问题?有哪些最新的研究成果?2024年7月16-19日,由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国科学院物理研究所、中国遥感应用协会高光谱专业委员会、南通长三角智能感知研究院等协办的“第十三届光谱网络会议, 简称iCS2024”将拉开帷幕。会议期间,多位超快光谱相关专家将在云端开讲,超快光谱相关仪器技术及前沿应用不容错过。立即报名》》》中国科学院物理所 魏志义 研究员《超快激光及应用》(2024年7月16日开讲 点击报名)魏志义,中国科学院物理研究所研究员。1991年4月于中科院西安光机所获得博士毕业,1991年至1997年中山大学博士后并出站后留校工作。1997年5月调入中国科学院物理研究所,1999年晋升研究员。长期致力于超快激光技术及应用研究,曾先后在英国、香港、荷兰、日本等国家和地区合作研究,多项成果打破世界纪录,率先在国内开展了光学频率梳研究,首次在国内产生阿秒脉冲。迄今发表SCI论文400余篇,授权发明专利30余项,国际会议邀请报告100多次,作为第一完成人获国家技术发明二等奖(2018)及中国科学院科技进步二等奖(2000)、科技促进二等奖(2014)等奖项。是中国科学院青年科学家奖(2001)、国家杰出青年基金(2002)、胡刚复物理奖(2011)获得者。因在超高强度飞秒激光、超快光子学等研究方面的重要贡献,先后当选美国光学学会fellow及中国光学学会、中国光学工程学会会士。华东师范大学精密光谱科学与技术国家重点实验室 陈缙泉 教授《利用时间分辨手性光谱表征伴随激发态电子和能量传递过程中的手性产生和放大过程》(2024年7月17日上午开讲 点击报名)陈缙泉教授,本科毕业于南京大学,博士毕业于Ohio State University,毕业后分别在Montana State University 和Emory University开展博士后工作,2015年加入华东师范大学精密光谱科学与技术国家重点实验室。主要研究方向是发展高灵敏的多维时间分辨瞬态光谱技术,利用该技术研究生物大分子与功能染料分子中激发态动力学过程,重点关注分子体系中电荷/能量转移、系间穿越、电子自旋轨道耦合等过程的关联和相关过程的调控,并开发和设计新型的光动力学疗法药物,近年来工作已在 Science, Journal of the American Chemical Society, Angewandte Chemie International Edition, Chem等国际一流期刊发表,目前共发表论文130余篇。近5年主持了多项国家基金委面上项目和国家自然科学基金重大研发计划重点项目,入选2016年国家高层次人才计划,2019年上海市青年科技启明星计划。【摘要】手性的产生、传递和放大可视为手性物质与外界的一种能量交换方式,该方式一方面直接受其构型或构象影响,另一方面又与电子自旋翻转、电-磁场相互作用、电子/能量转移等物理过程息息相关。对于手性产生、传递、放大和调控的物理机制和规律的研究正由传统的宏观稳态层面深入到新兴的微观瞬态层面,理论研究还有待深入,实验研究还有待突破。为了解析分子和超分子体系中手性的产生和传递机理,该课题组研发了飞秒时间分辨圆二色吸收光谱(fs-TRCD)和飞秒-纳秒圆偏振发射光谱(TR-CPL)技术,实现了分子体系激发态手性产生和传递过程的精密测量。基于实验结果,发现和总结了分辨分子体系基态和激发态手性的光谱学方法,并阐明了不同分子体系中CPL产生和传递的物理机制,为后续多层次手性分子材料的精准构筑奠定了理论基础。中国科学院物理研究所 陈海龙 研究员《飞秒宽带瞬态荧光光谱仪及其应用》(2024年7月17日上午开讲 点击报名)陈海龙,中国科学院物理研究所研究员,博士生导师。2006年本科毕业于北京大学物理学院,2011年于中科院物理研究所获得光学博士学位,随后进入美国莱斯大学化学系从事博士后研究。2016年加入中科院物理研究所软物质物理实验室任副研究员,2022年起任中科院物理研究所研究员。主要研究方向为发展和建立多种先进超快光谱技术,并用以探索各类低维光电材料、纳米半导体光催化材料以及光合膜蛋白等体系内各种超快光转换动力学过程。在国际/国内核心期刊上发表论文100余篇。【摘要】基于非共线光参量放大原理的飞秒时间分辨瞬态荧光光谱仪具备高时间分辨、高增益、宽测量带宽以及低探测极限等诸多优点,是研究各类光化学及光物理等超快动力学过程的一个重要测量手段。参量超荧光环(即真空量子噪声参量放大信号)的强度涨落是非共线光参量放大飞秒瞬态荧光光谱仪的主要噪声来源,并因此极大限制其对微弱瞬态荧光信号的检测能力。他们将传统的荧光点状非共线光参量放大的光学构型升级为环状的锥形参量放大构型,即利用整个参量荧光环进行荧光放大。基于量子噪声涨落空间独立性的特点,新的光学构型可以将量子噪声进行全环空间平均以极大提高瞬态荧光光谱测量的信噪比。利用此技术,他们实现了对叶绿素分子激发态以及多种光合蛋白体系瞬态荧光光谱的实验观测,并以此揭示了其中的能量转移、电荷分离、振动冷却等多种超快动力学过程。振电(苏州)医疗科技有限公司 首席执行官/CEO 王璞 《超高灵敏瞬态吸收在分子互作上的应用》(2024年7月17日上午开讲 点击报名)王璞,博士,现任北京航空航天大学生物与医学工程学院特聘教授、生物医学高精尖中心研究员,博士生导师,入选第十四批国家海外青年人才项目。王璞本科毕业于复旦大学物理系,2009-2014年博士就读于普渡大学生物医学工程学院,师从于非线性成像专家程继新教授。博士期间主要工作是生物光子学医疗器械的开发以及非线性显微镜的开发与应用。已发表SCI论文20余篇,专利5项。王璞以第一或通讯作者在Nature Photonics,Science Advances,Light:Science & Applications, Nano letters等领域内一流期刊均有发表。王璞曾主持开展多项美国小企业创新奖励基金(SBIR/STTR award),并代领团队完成多项科研转化工作。其中包括相干拉曼显微镜的产业化,光声成像在乳腺以及心血管的器械转化等等。目前王璞教授主要研究工作为非线性拉曼显微镜的开发以及在先进材料、单细胞代谢的表征方案,以及光致超声器件在生物医学中的应用。同时担任振电(苏州)医疗科技有限公司CEO,致力于开发推广最先进的分子光谱成像技术。【摘要】蛋白分子互作检测是研究蛋白质与其它分子之间相互作用的一系列技术和方法。这些方法能够揭示适体分子如何结合并影响蛋白质。微尺度热泳(MST)是一种基于热泳现象的溶液中分子亲和性定量检测方法,通常所需样本量小,检测通量大,速度快,且样品处理步骤简单,但依赖于荧光标记或蛋白自发荧光来检测温度梯度下的浓度变化。中国人民大学化学与生命资源学院讲师王豪毅 博士《时间分辨光谱助力光合作用三重态光保护研究》(2024年7月17日上午开讲 点击报名)王豪毅,2013年于华东理工大学获得理学学士学位,2018年于中国人民大学获得理学博士学位。2018-2020年于中国科学院物理研究所从事博士后研究工作,2021-2023年于中国人民大学从事博士后研究工作,2023年任职中国人民大学化学与生命资源学院。主要从事自然光合作用体系超快激发态动力学行为,人工光合体系光电转换机理研究,关注超快激光光谱技术和方法。【摘要】光合作用是地球生命体中最为重要的生物化学反应,从微观层面揭示高效光合作用的物化反应机制,是光转换领域的重要课题。高等植物和藻类光合作用体系中捕光复合物II(LHCII)三聚体在猝灭过剩能量过程中扮演重要角色,其中的核心色素分子为叶绿素和类胡萝卜素。叶绿素单重态(1Chl*)经系间窜越转换到叶绿素三重态(3Chl*)的量子效率高于60%,而3Chl*敏化产生单线态氧1O2的效率接近于100%。所以,通过3Chl*向类胡萝卜素分子(Car)传能成为高等植物和藻类重要的光保护策略。本报告将讲解时间分辨光谱助力光合体系3Chl*特征的观测结果,此部分3Chl*会被O2猝灭形成活性氧物种(ROS),而此类ROS可作为生物适应性进化的信号分子而发挥正向作用。进一步揭示高等植物菠菜与海洋绿藻假根羽藻中,蛋白结构、色素组成与相应类胡萝卜素三重态3Car*猝灭性质的内在关联,并深入探究了相应3Car*猝灭受O2可及性的影响。为进一步认识3Car*光保护机制并深入理解光合生物光保护生理功能提供新认识。作为应用最广泛的仪器类别之一,光谱仪器及技术的发展一直备受业界的关注。特别值得一提的是,随着科技的发展,相关光谱新技术、新应用层出不穷,特别是拉曼、近红外、LIBS、太赫兹、高光谱,以及超快光谱、微型光谱等一直备受关注。不仅如此,现场快检、过程监控、实验室高通量分析在实践中的作用也越来越凸显。与此同时,随着大数据时代的到来,光谱技术与人工智能的结合也已经成为推动各行各业发展的强大引擎,开启一个全新的智能光谱时代!可以说,兼具实用和前沿,全球百亿光谱市场酝酿着无限的生机和活力。由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国科学院物理研究所、中国遥感应用协会高光谱专业委员会、南通长三角智能感知研究院等协办的“第十三届光谱网络会议, 简称iCS2024)”将于2024年7月16-19日召开。点击立即报名,免费参会》》》报名链接:https://www.instrument.com.cn/webinar/meetings/ics2024/

超光谱相关的方案

  • 超纯铝的直读光谱分析
    在铝合金行业,有一个特殊的需求,那就是分析含量在 99.99 至 99.999%的超纯铝。随着发射光谱分析技术的发展,尤其是电流控制光源(CCS)和时间分解光谱(TRS)技术的应用,ARL 4460 使这种超纯铝的分析成为可能。
  • 光纤光谱仪在超快测量领域的应用
    使用超快激光进行瞬态吸收光谱测试有许多不同的方法,基本上依据泵浦探针。该方法需要两束激光同时激发分析物并测量吸光度。首先,高强度的泵浦激光激发样品中的部分分子到更高的能级,从而改变了分子的居数差,降低了跃迁的吸收系数。然后,通过低强度的探针激光通测量样品吸收。通过计算有无泵浦激光时探针激光的吸收差值,就可以确定吸收的变化。然后根据泵浦脉冲与探针脉冲的不同延迟时间系统重复此过程,测量发射探针脉冲能量的变化,如图2所示。从这些数据,我们现在可以建立能级跃迁动力学的图像,并确定自发寿命和其他瞬态效应。
  • 对基于纳米天线的异常反射超表面进行宽谱段微区角分辨光谱表征
    ARMS 在超表面及纳米天线研究中的应用。相比于传统的光学元件,超表面能够在亚波长尺度的表面创建相位面。通过超表面的设计,可以实现偏振转换、异常反射以及完美吸收等诸多功能,为超薄纳米光致偏振元件的发展铺平了道路,如异常光偏转器、透镜、波片、全息图、涡旋光束发生器、光波导器件等。

超光谱相关的论坛

  • 中国科学技术大学等单位成功研制超光谱三维靶向成像仪

    中国科学技术大学刘诚教授牵头,中国科学院合肥物质科学研究院、安徽大学、广东省广州生态环境监测中心站等单位参与,自主研制同时具备多组分污染气体垂直成像、水平成像和污染源靶向成像遥感功能的[b]超光谱三维靶向成像仪[/b],荣获2023年第二届“金燧奖”中国光电仪器品牌榜金奖。该奖项由中国光学工程学会、中国计量科学研究院主办,重点评选出中国自主研发、制造、生产的高端光电仪器。超光谱污染气体三维靶向成像仪的垂直成像遥感功能实现了臭氧及前体物无盲区垂直廓线的同步观测,在臭氧污染敏感性的垂直演化规律识别、污染物高空传输和垂直交换影响研究中广泛应用;水平成像遥感能够将排放热点高值区范围从卫星遥感和地面原位监测的公里级缩小到百米级尺度;排放源成像遥感可将排放责任锁定到米级尺度的污染排口,实现排放通量的动态监测。团队研究成果打破了我国超光谱污染气体地基遥感对欧美核心部件和关键技术的依赖,相关成果发表在Earth-Science Reviews、Remote Sensing of Environment、Science Bulletin、Engineering等国内外期刊上,截至目前已授权发明专利4项,实用新型专利1项。超光谱污染气体三维靶向成像装备被生态环境部卫星环境应用中心、中国气象科学研究院等20余家政府部门和企业用于大气环境立体监测,为中国国际进口博览会、成都大运会等国家重大活动的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量保障提供支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

超光谱相关的资料

超光谱相关的仪器

  • 超快光谱超快光谱探测技术被认为是自量子力学诞生以来,能够在相应非常短的时间尺度内探索微观量子性质的最有利工具之一,在研究超导材料的机理、非平衡物理及新奇量子态的诱导、量子态的外场调控等方面同样具有重要作用。很多新材料的研发需要借助超快光谱探测技术手段进行,如半导体磁性材料、超导体、绝缘体、复杂材料、太阳能电池等。在生物科学领域,NA、RNA等生物大分子在光激发后的反应过程和动力学过程,生物大分子的结构和生理机能探索,生物医学领域的基因工程等研究也需要超快光谱探测技术。显微超快光谱可以在微观尺度上探测样品的超快分子动力学过程,例如二维材料中边缘态动力学,载流子分布及扩散,光催化材料中的催化热点研究等等。卓立汉光的超快光谱测试系统,根据用户需求基于RTS显微系统,灵活搭建飞秒激光器、条纹相机、荧光寿命成像、飞秒瞬态吸收成像等超快模块,为超快化学及激发态动力学理论研究以及超快化学、物理和生物等交叉学科的研究提供更全面的数据支撑。超快光谱测试系统特点基于飞秒/皮秒激光器搭建,利用高能超短脉冲激发分子内部的动力学过程,监测过程中释放的超快荧光及瞬态吸收信号。激发光源可以自由切换,荧光显微系统使用高精度样品位移台,实现荧光寿命成像及荧光强度成像。条纹相机、光谱仪、显微镜构成联合诊断系统,提供超快空间-强度-时间分辨参数。飞秒瞬态吸收成像部分基于宽场显微镜搭建,可进行高通量快速成像。 超快光谱测试系统技术参数 荧光寿命成像光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-10μs空间分辨率≤1μm@100X物镜@405nm皮秒脉冲激光器条纹相机光谱测量范围200-900nm时间分辨率≤5ps, (最小档位时间范围+光谱仪光路系统)测量时间窗口范围500ps-100us(十档可选)工作模式静态模式,高频同步模式以及低频触发模式系统光谱分辨率0.2nm@1200g/mm单次成谱范围≥100nm@ 150g/mm宽场飞秒瞬态吸收成像成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景测量模式点泵浦+宽场探测(载流子迁移)宽场泵浦+宽场探测(载流子分布)仪器工作模式反射/散射新型二维材料中的边缘物理态研究(飞秒瞬态吸收成像系统)二维WS2中激子分布情况,激子寿命研究。从图中可以看出,二维WS2材料中多层的边缘具有更高激子密度和更长激子寿命。 ASE超快发光过程监测(条纹相机) 钙钛矿样品中的放大自发辐射(Ampl i f i ed Spontaneous Emission,ASE)发光过程研究。条纹相机可以监测到随着激光功率逐渐增大,样品从单纯的荧光发射(左图)变成荧光与ASE混合发光(中图),最后到只有ASE发光(右图)的全部过程。 钙钛矿荧光寿命成像(荧光寿命成像系统)钙钛矿样品不同寿命组分的寿命成像和相对振幅成像图。从图中可以看到两个寿命组分及其相对含量在样品中的分布情况。
    留言咨询
  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • 超光谱校准光源 400-860-5168转1980
    Spectra-UT 超光谱校准光源Spectra-UT 超光谱校准光源提供了卓越的光谱匹配分辨率。 Spectra-UT 超光谱校准光源使用连续谱光源和多色仪技术,可对生成的光谱波形提供精确的控制。 Spectra-UT 超光谱校准光源可以精确地再现复杂的光谱特征,从而实现对标准光源以及自然或合成光源和发射源的高分辨率光谱模拟。Spectra-UT 超光谱校准光源是一种适用于平场校正的均匀光源,并可以兼容光导管和准直器输出,用于样品的特殊光谱照明。 Spectra-UT 超光谱校准光源能够通过一种复杂的光谱匹配算法,在可见光区域产生近乎完美的任意目标光谱波形。它可以模拟约 10 nm 半高全宽度的光谱,宽谱可见光光谱和复杂的光谱形状。 特性&bull 可控可变光输出等级&bull 快速切换和设置时间&bull 数字性能反馈&bull 用户友好的软件界面优势&bull 出色的可编程高分辨率光谱输出&bull 在可见光范围内无限的光谱复现&bull 精确模拟OLED、MicroLED和LED显示屏光谱&bull 模拟RGB和宽谱背光光谱&bull 再现室内照明条件&bull 光谱纯正,避免在多色成像中出现通道串扰&bull 通过集成QTH校准灯和光谱仪实现可溯源校准 应用 &bull 色度计和分光光度计校准 &bull 校正三刺激值色匹配误差&bull 比较和区分仪器性能&bull 测试滤光和未滤光的光学传感器响应&bull 优化显示色彩还原性
    留言咨询

超光谱相关的耗材

  • 斯派超 油料光谱仪专用石墨盘电极
    品牌:斯派超科技/Spectro Scientific英文名称:Spectro Scientific Inc. Graphite Disc 型号规格:500个/盒 货号:M97008产品简介:斯派超科技的石墨盘电极美国原装进口,纯度高,品质保证。配合斯派超油料光谱仪使用,帮助您得出精准的油液检测结果。我司耗材库存充足,欢迎致电询价!温馨提示:请务必从斯派超购买正规耗材,否则我司将不予提供技术支持。
  • 斯派超油料光谱仪电极修整刀片
    斯派超油料光谱仪削电极器专用刀片
  • 斯派超 油料光谱仪专用石墨棒电极
    品牌:斯派超科技/Spectro Scientific英文名称:Spectro Scientific Inc. Graphite Rod 型号规格:50根/盒 货号:M97009产品简介:斯派超科技的石墨棒电极美国原装进口,纯度高,品质保证。配合斯派超油料光谱仪使用,帮助您得出精准的油液检测结果。我司耗材库存充足,欢迎致电询价!温馨提示:请务必从斯派超购买正规耗材,否则我司将不予提供技术支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制