数据剖析

仪器信息网数据剖析专题为您整合数据剖析相关的最新文章,在数据剖析专题,您不仅可以免费浏览数据剖析的资讯, 同时您还可以浏览数据剖析的相关资料、解决方案,参与社区数据剖析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

数据剖析相关的资讯

  • AES/XPS/SIMS/GD-OES(MS)深度剖析定量分析
    溅射深度剖析作为表面分析的常规技术,被广泛应用于膜层结构元素成分随深度变化的表征,但由于溅射、样品粗糙度以及测量信号来源于距样品表面不同的深度等因素的影响,使得测量的深度谱与原始的膜层结构比较可能会有较大的畸变。对测量深度谱数据进行定量分析,不仅可以确定样品的膜层结构,还可以获得其界面粗糙度、元素间的互扩散系数、元素的溅射速率、以及溅射深度分辨率等定量信息。报告讨论了多晶样品深度剖析中溅射诱导粗糙度产生的原因及消除的方法。并以4Si(15nm)/Al(15nm) AES、XPS和ToF-SIMS,以及60Si(3.7nm)/B4C(0.3nm)/Mo(3.0nm) 脉冲-射频-GDOES等深度谱为例,讨论了溅射诱导粗糙度对测量深度谱的影响及其相应的定量分析。同时还提出了将TV正则化与MRI深度分辨率函数结合,对深度谱数据进行反卷积定量分析的新方法,并应用于8Ni(25nm)/Cr(25nm) AES、60Si(3.5nm)/Mo(3.5nm) 脉冲-射频-GDOE和ToF-SIMS深度谱的定量分析,获得的膜层结构与HR-TEM的测量结果相吻合。点击查看视频回放王江涌,博士,教授,1984年武汉大学理论物理专业学士;1989年四川大学原子与分子物理专业硕士;1997年南非自由州大学表面物理专业博士;1998-2001年美国堪萨斯州立大学物理系研究助理;2001-2009年德国马普金属研究所高级研究员;2009年起任汕头大学物理系教授。从事表面分析工作近三十年,在薄膜相变及深度剖析定量分析领域做出了诸多创新性工作。发表英文专著2部,论文150余篇(SCI 110余篇)。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》等期刊编委、评委。
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 岛津云学院丨携手行业专家多角度剖析当前热点
    本周岛津云学院继续携手行业专家,为大家奉上直播云课堂系列直播。涉及食品安全行业、公安司法行业、环境化工行业及医药行业,多角度剖析当前热点,期待您的参与~ “复工复产保卫战”系列专题——农残检测能力提升篇 近期,多项食品相关法规陆续实施,为让广大用户在特殊时期也能做到与时俱进、高效解决检测难题,岛津将开启“复工复产保卫战”系列专题网络研讨会。 本期重点聚焦农药残留检测,岛津食品安全行业专家将为您梳理农残检测技术难点;解读近期农药残留相关法规(GB 2763-2019)及细则(2020国家食品安全监督抽检实施细则 )变化动态;介绍岛津全方位应对农药检测方案。手机观看:扫描上图二维码电脑或其他平板观看https://live.polyv.cn/watch/1073755 岛津全自动生物样品液质分析系统在吸毒人员生物样品检测中的应用——隔离病毒、安全保障 CLAM-2030是基于岛津在凝血分析临床检测系统领域所积累的丰富经验所开发,仅需将采血管放置到指定位置,系统可自动执行从样品预处理到LCMS分析的全程操作。通过全自动操作系统实现可靠的数据采集,免除了耗时的手动前处理和日常审查工作设置的需要,降低操作中的感染风险,进一步改善研究或业务流程的效率。手机观看:扫描上图二维码电脑或其他平板观看https://live.polyv.cn/watch/1111127 岛津化工催化专题网络讲坛(第三季) 催化在化工和新能源等领域中扮演着非常重要的角色。它能够以一种高效,绿色和经济的方式将原材料转变为具有高附加值的化工产品和燃料等,因而被广泛应用于能源,化工,食品,医药,电子等各个领域。目前,全世界90%以上的化学生产过程都离不开催化。毫不夸张地说,催化领域的每一次重大突破,都极大地改变了人类的生产与生活方式。本次云讲坛让我们共同感受催化研究的魅力,催化在化工中应用的科技生产力,以及岛津催化分析方案的实力。手机观看:扫描上图二维码电脑或其他平板观看https://live.polyv.cn/watch/1167316 2020版药典化药元素杂质控制通则公示稿解读及案例介绍 当前,2020年版《中国药典》编制工作进入收官阶段,新版药典更具科学性和规范性。本版药典在化药安全性控制方面更进一步,多个项目通则和指导原则协同ICH(人用药品注册技术要求国际协调会议,中国国家药品监督管理局2017年6月加入)要求。新版药典首次收载《元素杂质限度和测定指导原则》,首次收载X射线荧光光谱法进入四部元素分析通用检验方法,本期岛津带来“2020版药典化药元素杂质控制通则公示稿解读及案例介绍”。手机观看:扫描上图二维码电脑或其他平板观看https://live.polyv.cn/watch/1167319 如何收看?讲坛开课时,扫描以上海报二维码,或复制PC端链接即可进入专家讲坛。 如何互动?1、弹幕留言:课程中遇到难点,可填写弹幕提问,实时互动;2、专家提问:向专家1v1提问,直指疑点。 如何温习?1、视频回放链接和直播链接相同,视频结束后,想要重看的小伙伴们,扫描海报二维码,或复制PC端链接即可进入观看回放。2、我们会在课后将回放视频链接放在订阅号“岛津科技资讯通”中,在公众号页面发送“回放”,即可收到视频链接。(具体回放的视频课程,请以收到的视频链接为准)

数据剖析相关的方案

数据剖析相关的论坛

  • 【分享】化学成分剖析简论

    内容是作者多年分析化学产品(大多是混合物)的经验和体会.化学剖析是指对复杂化学品进行成分定性,定量和结构分析,其特点是多种分离和分析方法的联合运用,也就是“综合分析”,这种综合分析是分析科学中较为前沿的学科。对于复杂的多元体系的化学品,要对其中的成分和结构进行综合分析,实际上已超出了经典分析化学定性和定量分析的范围,它已成为分析科学中的一个分支。它不但要求剖析工作者应具备深厚的化学基础,分离技术,化学分析技术,更重要的是要具备多种现代仪器分析(NMR、MS、IR、UV、GC、GC-MS、HPLC、HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]、X-Ray等)技术以及这些技术的灵活运用和综合分析的能力。丰富的剖析经验往往是使剖析工作顺利准确进行的重要条件之一。一个训练有素的化学剖析专家,对不同性状和不同来源的化学品有各自独特的样品处理方法和分析步骤,在很多情况下也可以不经过细致分离就可以进行剖析,这得益于其对混合物多种波谱的综合分析能力,这往往起到事半功倍的效果。有人把动植物化学成分的研究也纳入化学剖析的范畴,从原理上讲是对的,但植物化学属于天然产物化学,是一个历史悠久而又生机勃勃的学科,国际上有一些重要的专业杂志,如天然产物杂志(Journal of Natural Products),植物化学杂志(Phytochemistry)等,它和工业和民用化学品的剖析的内容有很大区别。所以笔者在这里讨论的内容主要是指工业和民用化学品的剖析。关于天然产物的分析,不管是文献还是专著都是很多的,特别是中外文文献。笔者与合作者最近出版的《天然有机化合物的提取分离与结构鉴定》有专门讨论。不少工业和民用化学品中使用天然化合物和/或天然化合物的混合物,有的则添加植物提取物,这种样品的剖析工作量和难度都比较大。笔者曾剖析过一些工业化学品,有的产品使用的是混合的天然化合物的衍生物,按照剖析的结果,寻找符合要求的原料(经过波谱鉴定)组配,产品达到预期的效果。化学品剖析过程的复杂性:化学样品随用途不同其成分的多样性和化学结构的复杂性决定着剖析工作的复杂程度。样品的用途和背景可为剖析提供思考问题的方向,比如溶剂型粘合剂,水乳型粘合剂,表面活性剂,增塑剂等是有思路好循的,一个正确的思路可以把样品的成分类型集中在某一大类化合物,尽管这类化合物种类很多。根据用途背景还可以查阅文献资料,为剖析提供参考,这也是常用的经典方法。但最终还是要由分析数据来决定剖析结果。有的客户为了保密,不愿提供样品用途背景,这是可以理解的。在这种情况下,只有把样品按 “盲样”来剖析。实际上样品背景只是参考,剖析的关键是证据,也就是分析测试的数据以及对这些数据科学地综合分析(不能含主观的经验性的判断)。分析测试也有方法学问题,比如一种复合的表面活性剂,含有非离子、阳离子等数种表面活性剂,如果进行细致的化学分离后进行鉴定,其前期的工作周期较长,工作量也比较大。当进行简单分离和/或不经分离而进行结构鉴定,往往事半功倍。在很多情况下,剖析的目的并不是含量最高的成分,而是少量和微量的物质,显然这种剖析工作的难度要大一些。组分的多寡也往往是剖析难易的关键,单就对多成分样品进行分离来说就是一个复杂的工作,再加上定性、定量和结构鉴定,说它是一个系统工程并不过分。这种研究工作通常都是由专业技术人员来完成。化学品剖析的作用:1. 化学新产品研发。不少研究者进行新产品研发过程中要查阅很多中外文献,这当然是必要的,但专利文献所公开的内容和其最新产品往往存在一定的差距,通常其技术秘密在文献中也有所保留,但他们的产品是其技术先进性的集中表现,直接剖析产品,进行借鉴,加上自己的创造,避开知识产权,不失为一种新产品研发的捷径。2. 跟进国内外的先进技术。当自己企业的产品和国内外同行业产品同类时,密切注视同行业的产品的技术动向是一件重要的工作,知己知彼,百战百胜,道理自在其中。3. 了解国内外同类产品的最新进展,剖析工作可以最快的方式获得先进技术的第一手信息。4. 化学产品的直接仿制。剖析是直接仿制化学品的捷径,它使仿制的投入少,周期短,见效快,这已成为不争的事实。当然仿制要注意知识产权问题,如何规避,也有一些个技术创新的问题。5. 化学反应混合物的分析。现代仪器分析可以进行反应混合物的分析,当色谱法不奏效时,采用波谱法往往可以不经分离直接分析样品中的目的物和非目的物。

  • 【转帖】化学成分剖析简论

    化学成分剖析简论化学剖析是指对复杂化学品进行成分定性,定量和结构分析,其特点是多种分离和分析方法的联合运用,也就是“综合分析”,这种综合分析是分析科学中较为前沿的学科。 对于复杂的多元体系的化学品,要对其中的成分和结构进行综合分析,实际上已超出了经典分析化学定性和定量分析的范围,它已成为分析科学中的一个分支。它不但要求剖析工作者应具备深厚的化学基础,分离技术,化学分析技术,更重要的是要具备多种现代仪器分析(NMR、MS、IR、UV、GC、GC-MS、HPLC、HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]、X-Ray等)技术以及这些技术的灵活运用和综合分析的能力。丰富的剖析经验往往是使剖析工作顺利准确进行的重要条件之一。一个训练有素的化学剖析专家,对不同性状和不同来源的化学品有各自独特的样品处理方法和分析步骤,在很多情况下也可以不经过细致分离就可以进行剖析,这得益于其对混合物多种波谱的综合分析能力,这往往起到事半功倍的效果。 有人把动植物化学成分的研究也纳入化学剖析的范畴,从原理上讲是对的,但植物化学属于天然产物化学,是一个历史悠久而又生机勃勃的学科,国际上有一些重要的专业杂志,如天然产物杂志(Journal of Natural Products),植物化学杂志(Phytochemistry)等,它和工业和民用化学品的剖析的内容有很大区别。所以笔者在这里讨论的内容主要是指工业和民用化学品的剖析。关于天然产物的分析,不管是文献还是专著都是很多的,特别是中外文文献。笔者与合作者最近出版的《天然有机化合物的提取分离与结构鉴定》有专门讨论。 不少工业和民用化学品中使用天然化合物和/或天然化合物的混合物,有的则添加植物提取物,这种样品的剖析工作量和难度都比较大。笔者曾剖析过一些工业化学品,有的产品使用的是混合的天然化合物的衍生物,按照剖析的结果,寻找符合要求的原料(经过波谱鉴定)组配,产品达到预期的效果。 化学品剖析过程的复杂性: 化学样品随用途不同其成分的多样性和化学结构的复杂性决定着剖析工作的复杂程度。 样品的用途和背景可为剖析提供思考问题的方向,比如溶剂型粘合剂,水乳型粘合剂,表面活性剂,增塑剂等是有思路好循的,一个正确的思路可以把样品的成分类型集中在某一大类化合物,尽管这类化合物种类很多。根据用途背景还可以查阅文献资料,为剖析提供参考,这也是常用的经典方法。但最终还是要由分析数据来决定剖析结果。 有的客户为了保密,不愿提供样品用途背景,这是可以理解的。在这种情况下,只有把样品按 “盲样”来剖析。实际上样品背景只是参考,剖析的关键是证据,也就是分析测试的数据以及对这些数据科学地综合分析(不能含主观的经验性的判断)。 分析测试也有方法学问题,比如一种复合的表面活性剂,含有非离子、阳离子等数种表面活性剂,如果进行细致的化学分离后进行鉴定,其前期的工作周期较长,工作量也比较大。当进行简单分离和/或不经分离而进行结构鉴定,往往事半功倍。 在很多情况下,剖析的目的并不是含量最高的成分,而是少量和微量的物质,显然这种剖析工作的难度要大一些。组分的多寡也往往是剖析难易的关键,单就对多成分样品进行分离来说就是一个复杂的工作,再加上定性、定量和结构鉴定,说它是一个系统工程并不过分。这种研究工作通常都是由专业技术人员来完成。 化学品剖析的作用: 1. 化学新产品研发。不少研究者进行新产品研发过程中要查阅很多中外文献,这当然是必要的,但专利文献所公开的内容和其最新产品往往存在一定的差距,通常其技术秘密在文献中也有所保留,但他们的产品是其技术先进性的集中表现,直接剖析产品,进行借鉴,加上自己的创造,避开知识产权,不失为一种新产品研发的捷径。 2. 跟进国内外的先进技术。当自己企业的产品和国内外同行业产品同类时,密切注视同行业的产品的技术动向是一件重要的工作,知己知彼,百战百胜,道理自在其中。 3. 了解国内外同类产品的最新进展,剖析工作可以最快的方式获得先进技术的第一手信息。 4. 化学产品的直接仿制。剖析是直接仿制化学品的捷径,它使仿制的投入少,周期短,见效快,这已成为不争的事实。当然仿制要注意知识产权问题,如何规避,也有一些个技术创新的问题。 5. 化学反应混合物的分析。现代仪器分析可以进行反应混合物的分析,当色谱法不奏效时,采用波谱法往往可以不经分离直接分析样品中的目的物和非目的物。

  • [原创]化学成分剖析简论

    化学成分剖析简论下面内容是作者多年分析化学产品(大多是混合物)的经验和体会.化学剖析是指对复杂化学品进行成分定性,定量和结构分析,其特点是多种分离和分析方法的联合运用,也就是“综合分析”,这种综合分析是分析科学中较为前沿的学科。对于复杂的多元体系的化学品,要对其中的成分和结构进行综合分析,实际上已超出了经典分析化学定性和定量分析的范围,它已成为分析科学中的一个分支。它不但要求剖析工作者应具备深厚的化学基础,分离技术,化学分析技术,更重要的是要具备多种现代仪器分析(NMR、MS、IR、UV、GC、GC-MS、HPLC、HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]、X-Ray等)技术以及这些技术的灵活运用和综合分析的能力。丰富的剖析经验往往是使剖析工作顺利准确进行的重要条件之一。一个训练有素的化学剖析专家,对不同性状和不同来源的化学品有各自独特的样品处理方法和分析步骤,在很多情况下也可以不经过细致分离就可以进行剖析,这得益于其对混合物多种波谱的综合分析能力,这往往起到事半功倍的效果。有人把动植物化学成分的研究也纳入化学剖析的范畴,从原理上讲是对的,但植物化学属于天然产物化学,是一个历史悠久而又生机勃勃的学科,国际上有一些重要的专业杂志,如天然产物杂志(Journal of Natural Products),植物化学杂志(Phytochemistry)等,它和工业和民用化学品的剖析的内容有很大区别。所以笔者在这里讨论的内容主要是指工业和民用化学品的剖析。关于天然产物的分析,不管是文献还是专著都是很多的,特别是中外文文献。笔者与合作者最近出版的《天然有机化合物的提取分离与结构鉴定》有专门讨论。不少工业和民用化学品中使用天然化合物和/或天然化合物的混合物,有的则添加植物提取物,这种样品的剖析工作量和难度都比较大。笔者曾剖析过一些工业化学品,有的产品使用的是混合的天然化合物的衍生物,按照剖析的结果,寻找符合要求的原料(经过波谱鉴定)组配,产品达到预期的效果。化学品剖析过程的复杂性:化学样品随用途不同其成分的多样性和化学结构的复杂性决定着剖析工作的复杂程度。样品的用途和背景可为剖析提供思考问题的方向,比如溶剂型粘合剂,水乳型粘合剂,表面活性剂,增塑剂等是有思路好循的,一个正确的思路可以把样品的成分类型集中在某一大类化合物,尽管这类化合物种类很多。根据用途背景还可以查阅文献资料,为剖析提供参考,这也是常用的经典方法。但最终还是要由分析数据来决定剖析结果。有的客户为了保密,不愿提供样品用途背景,这是可以理解的。在这种情况下,只有把样品按 “盲样”来剖析。实际上样品背景只是参考,剖析的关键是证据,也就是分析测试的数据以及对这些数据科学地综合分析(不能含主观的经验性的判断)。分析测试也有方法学问题,比如一种复合的表面活性剂,含有非离子、阳离子等数种表面活性剂,如果进行细致的化学分离后进行鉴定,其前期的工作周期较长,工作量也比较大。当进行简单分离和/或不经分离而进行结构鉴定,往往事半功倍。在很多情况下,剖析的目的并不是含量最高的成分,而是少量和微量的物质,显然这种剖析工作的难度要大一些。组分的多寡也往往是剖析难易的关键,单就对多成分样品进行分离来说就是一个复杂的工作,再加上定性、定量和结构鉴定,说它是一个系统工程并不过分。这种研究工作通常都是由专业技术人员来完成。化学品剖析的作用:1. 化学新产品研发。不少研究者进行新产品研发过程中要查阅很多中外文献,这当然是必要的,但专利文献所公开的内容和其最新产品往往存在一定的差距,通常其技术秘密在文献中也有所保留,但他们的产品是其技术先进性的集中表现,直接剖析产品,进行借鉴,加上自己的创造,避开知识产权,不失为一种新产品研发的捷径。2. 跟进国内外的先进技术。当自己企业的产品和国内外同行业产品同类时,密切注视同行业的产品的技术动向是一件重要的工作,知己知彼,百战百胜,道理自在其中。3. 了解国内外同类产品的最新进展,剖析工作可以最快的方式获得先进技术的第一手信息。4. 化学产品的直接仿制。剖析是直接仿制化学品的捷径,它使仿制的投入少,周期短,见效快,这已成为不争的事实。当然仿制要注意知识产权问题,如何规避,也有一些个技术创新的问题。5. 化学反应混合物的分析。现代仪器分析可以进行反应混合物的分析,当色谱法不奏效时,采用波谱法往往可以不经分离直接分析样品中的目的物和非目的物。 波谱综合解析在有机化学品剖析中的应用 从事波谱综合解析,天然产物结构鉴定,化学品成分和结构剖析近30年,下面简述波谱综合解析在有机化学品剖析中的应用实例(不包括天然产物结构鉴定)。1、表面活性剂的剖析表面活性剂可分为非离子,阴离子,阳离子和两性离子几种类型。早年,红外光谱(IR)对表面活性剂类化合物的分析起过重要作用,并有相当数量的IR标准图谱可供参照,如Sadtler图谱集。近20多年来,核磁共振(NMR)技术已成为剖析此类化合物最为重要的工具,尤其对多种表面活性剂的复配物。常用的NMR图谱有1HNMR,13C NMR,DEPT,QNMR(定量NMR)等,必要时使用水峰和/或溶剂峰压制以及2DNMR技术。 表面活性剂的亲油基多种多样,但其在NMR图谱中有其特征的共振信号。亲水基如果是聚氧乙烯醚(非离子表面活性剂),可用NMR进行定性和定量。亲水基如果是羧基阴离子,季铵阳离子,NMR均可测定,但磺酸盐和硫酸盐基用NMR不能直接测定,常规的电子轰击质谱(EIMS)通常也无能为力,IR则是重要手段。 NMR技术还可以测定不同表面活性剂之间的近似相对比例、聚醚类环氧/环丙嵌段比例等。电喷雾质谱(ESI-MS)和大气压化学电离质谱(APCI-MS)对测定表面活性剂的分子量和组成很有用。接下帖--

数据剖析相关的资料

数据剖析相关的仪器

  • Thermo Fisher Scientific ESCALAB Xi+是最新研发出的一款基于ESCALAB 250Xi产品后,具有可扩展功能、多种分析技术集成化的测试手段。该产品通过无与伦比的灵活性、完备的专业配置选项、直观的软件操作以及硬件配置,带给用户的是世界级领先的的实验结果和生产力。强大的Avantage数据系统提供系统控制、数据采集、数据处理与系统运行报告等一站式服务。世界领先的分析性能●表面元素定性、定量分析 世界一流的能量分析器设计和双晶微聚焦单色化X射线源结合,实现了卓越的能量分辨率●快速高分辨平行成像 化学成像: 空间分辨率优于1um 回溯成谱: 回溯区域优于6um●无需背底修正探测器 电子倍增器和电阻阳极探测器的双探测器设计,可实现高性能的XPS采谱和高空间分辨的XPS成 像的需求。 空间连续的电阻阳极探测器创新技术,使得XPI成像分辨率达1um,同时所得数据无探测器背底特 征,无需背底校正,直接得到微米尺度分辨的定量元素分布成像结果。●微聚焦单色源 分析尺寸在20μm~900μm之间连续可调 卓越的灵敏度和能量分辨率 提供不少于20个靶材工作点,确保仪器终身使用过程中阳极靶无需更换●自动化高效离子剖析源 新型Ar离子团簇与传统单粒子离子源相结合,用于各类材料的深度剖析研究●高精确度角分辨XPS 软件控制分析位置和角度,确保数据的精确性和重复性 全套的ARXPS数据处理工具,可对纳米尺度的多层结构器件进行层厚计算●一键式荷电补偿 配有双束电荷中和系统,可以根据实际样品的需要独立控制开启。 适用于所有不导电样品及粗糙表面的精准荷电中和●强大的Avantage分析软件 全数字化仪器控制 系统软件可视化操作 全套XPS标准数据图库以及化合物结构鉴定数据库 自定义数据采集到报告生成模式操作简便●高度自动化 分析区域和角度分辨可选 自动化气体调节和真空控制●随时校准 能量标尺和仪器功函数的校准 离子枪定位和离子束聚焦●鼠标点击式样品导航 实时显示分析位置 高照明强度、强度可调设计灵活●ISS、ARXPS与REELS为标准配置●多功能进样室为标准配置●UPS和EDS/AES/SEM/SAM/可选●可选的样品预处理附件,包括: 样品制备台、晶体清洁器、样品刮片器 样品加热/冷却装置 溅射清洁离子枪 蒸发器 高压反应室
    留言咨询
  • Thermo Scientific ESCALAB QXi X 射线光电子能谱仪(XPS)是ESCALAB 系列的最新产品。作为可扩展的多技术表面分析平台,ESCALAB QXi有着空前的灵活性和完备的专业配置选项。汇聚前沿技术,打造出高效便捷的软件系统和高性能的硬件配置,带来世界一流的测试体验和高效的生产力。强大的Thermo Scientific&trade AvantageTM 软件系统集系统控制、设备状态实时监控与调节、数据采集、数据处理、报告生成等多功能于一身,操作便捷,快速高效。世界领先的分析性能●定量光谱成像 世界一流的能量分析器设计和双晶微聚焦单色化X射线源结合,实现了卓越的能量分辨率●快速高分辨平行成像 化学成像: 空间分辨率优于1um 回溯成谱: 回溯区域优于6um●无需背底修正探测器 电子倍增器和电阻阳极探测器的双探测器设计,可实现高性能的XPS采谱和高空间分辨的XPS成 像的需求 空间连续的电阻阳极探测器创新技术,使得XPI成像分辨率达1um,所得数据无探测器背底特征,无需背底校正 直接得到微米尺度分辨的定量元素分布成像结果●微聚焦单色源 分析尺寸在20μm~900μm之间连续可调 卓越的灵敏度和能量分辨率 提供不少于20个靶材工作点,确保仪器终身使用过程中阳极靶无需更换●自动化高效离子剖析源 新型Ar离子团簇与传统单粒子离子源相结合,用于各类材料的深度剖析研究●高精确度角分辨XPS 软件控制分析位置和角度,确保数据的精确性和重复性 全套的ARXPS数据处理工具,可对纳米尺度的多层结构器件进行层厚计算●一键式荷电补偿 配有双束电荷中和系统,可以根据实际样品的需要独立控制开启。 适用于所有不导电样品及粗糙表面的精准荷电中和●强大的Avantage分析软件 全数字化仪器控制 系统软件可视化操作 全套XPS标准数据图库以及化合物结构鉴定数据库 自定义数据采集到报告生成模式操作简便●高度自动化 分析区域和角度分辨可选 自动化气体调节和真空控制●随时校准 能量标尺和仪器功函数的校准 离子枪定位和离子束聚焦●鼠标点击式样品导航 实时显示分析位置 高照明强度、强度可调设计灵活●ISS、ARXPS与REELS为标准配置●多功能进样室为标准配置●UPS和EDS/AES/SEM/SAM/可选●可选的样品预处理附件,包括: 样品制备台、晶体清洁器、样品刮片器 样品加热/冷却装置 溅射清洁离子枪 蒸发器 高压反应室如您想了解更多关于EscaLab QXi X射线光电子能谱仪报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 仪器简介:PerkinElmer® 全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer 的同步热分析仪 (STA) 产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,我们的 STA 仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000 系列产品将差热分析技术(DTA 或 DSC)与久经验证的热重分析 (TGA) 技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。技术参数:精确控温量热能力:STA 系列同步热分析仪具有宽广的工作温度区间,最低工作温度达 15º C,从而能够捕获完整的水分或溶剂挥发过程.卓越的热分析性能,高效的检测通量:本着高效的原则,STA 系列同步热分析仪均采用了垂直式炉体和天平设计方案,易于装卸样品。另外,该款仪器还集成了气体质量流量控制器,操作者可在软件中方便的进行气体流速的控制以及气体种类的切换,量热灵活性:STA 系列同步热分析仪外观小巧、结构紧凑,能够同时进行 TGA 和 DTA/DSC 测量,可为众多应用领域提供高质量的热分析数据。仪器配有质量流量控制器,可以根据您的分析需求保持稳定且精确的气体流速;如果您需要进行气体切换,Pyris 软件可以方便的将切换步骤编入温控程序中,全自动的进行气体切换操作。主要特点:强大的拓展能力联用分析技术往往可以有效简化数据分析的难度,而 PerkinElmer 提供多种不同的分析技术(红外、气质联用等等),均可以与 STA 8000 搭建联机工作站。此外,您也可以选择定制接口将其它制造商的实验室设备连接到您的 PerkinElmer STA 上。众多选择无论您从事何种行业,PerkinElmer 都能为您定制全套解决方案。高度集成STA 8000 仪器可选配自动进样器,满足您连续测试的要求,您可以在 Pyris 软件中独立的为自动进样器进行编程(Player List)。软件可以自动监测轻质炉体内的温度,并在 STA 6000/8000 准备就绪之后自动载入下一个样品进行测试。
    留言咨询

数据剖析相关的耗材

  • 色谱数据工作站
    站的主导潮流,也是国内色谱分析工作者首选国产工作站。同时,N2000色谱工作站也打入国际市场,英文版远销英国、马来西亚等欧亚市场。在国内,各色谱生产厂家及国外各色谱厂家都是N2000色谱工作站合作经销商,包括日本岛津、美国WATERS、AGILENT、PE及上分、山东鲁南等色谱品牌大公司。 N2000的优势在于: 高性能的产品,最优惠的价格,诚信优质的服务。 N2000的目标在于: 哪里有色谱,哪里就有N2000,造就国产品牌色谱软件。 N2000的势力在于: 最早开发的国产色谱软件,浙江大学强大的科研后盾支持。 被评为国家级新产品; 通过了ISO90001认证; 色谱仪生产厂商配套销售; 提供免费升级,目前版本可以在win9X\win2000\winxp下使用,并有中、英文版;可在中国分析仪器网www.54pc.com的软件下载免费升级。 捆绑实验室管理软件; 硬件提供一年质保。 硬件: 采集卡线性: 色谱信号采集卡是色谱仪与计算机联接的桥梁.采集卡本身是包含一个单片机处理系统.采集卡有内置式和外置式之分.内置式卡插在计算机ISA插槽上,以便利用槽内的+5V电压.外置式单独放在一个屏蔽壳盒内,并有独立的外接电源. 原装进口16/24(可选)位高精度的A/D(模数)转换芯片(内含PGA程控放大、高斯低通滤波 、零点、满刻度、背景、失调等多种自动校正功能), 分辨率:全量程± 1uv(保障全量程呈线性)。 N2000数据采集卡有以下性能: 1)、温度漂移自动校零的功能:由于当前计算机技术的不断发展,芯片集成度不断增加,运行速度的大大提高,使得计算机机箱温度也越来越高.有了温度漂移自动校零功能,保证了采集卡不受外界和采集卡本身温度变化的影响,保证了色谱分析的重现性. 2)、数据误差自动校准功能:利用先进的动态储存器不断的记录和积累误差数据,在数据采集时自动进行校准,尽可能的减少误差的影响. N2000数据采集卡的特点: 1.24位高精度的A/D(模数)转换芯片(内含PGA程控放大、高斯低通滤波 、零点、满刻度、背景、失调等多种自动校正功能), 分辨率:全量程± 1uv(保障全量程呈线性)。 2.宽量程:输出-500mv-1.7v 3.输入阻抗大于10兆欧. 4.动态范围107,线性度± 0.1%。 5.采样频率为10次/秒,40次/秒(新采集卡). 6.RS232通讯方式,按键遥控,也可用键盘快捷键或鼠标菜单. 7.双通道:双通道同显可以同时对两台检测器输入信号进行采集、处理、分析、控制等. 新采集卡无需外接电源。 软件: 积分算法领先 卓越的软件性能(符合GLP/GMP/ISO) 1. 自动识别溶剂峰,拖尾峰,锯齿峰,前后肩峰. 2. 分析过程中自动调整参数(峰宽,斜率)&mdash -保证积分准确无误. 3. 基线自动跟踪,自动划分色谱峰类型. 4. 峰起落点全谱图智能识别&mdash 保证结果稳定可靠. 5.分析结果精度达到国际先进水平. 6. 强大的手动积分功能:加减峰,峰基线调整,切割方式调整. 7. 历史数据的再分析功能,实现无纸记录,归档. 软件特色功能: ■ 可处理的峰个数大于1000个(与计算机资源有关) ■ 谱图数据结果的实时分析过程 ■ 谱图数据可以很容易地转换成其他文本格式如二进制文件、文本文件等 ■ 数据结果可与Microsoft Excel、Word等软件共享;数据谱图可与Photoshop、CorelDRAW等图像软件共享及完全兼容 ■ 峰标记的多样选择 ■ 方便形象的时间程序设置 ■ 7725i连动信号自动触发软件,以及自动进样器信号接收功能,实现进样互动功能 N2010色谱数据工作站 N2010色谱数据处理软件是经过两年不断的 市场调查、开发、完善,并针对Microsoft(微软) 新操作系统Windows 2000/XP独立设计开发的,目 前国内最新的色谱数据处理软件。与indows95/98 上的色谱数据处理软件系统不同的,她是真正的 32位色谱数据处理应用软件系统,突出了稳定的 性能、准确的计算、方便的操作、个性化的应用 等诸多特点。适用与气相色谱、液相色谱、毛细 管电泳、薄层色谱、超临界流体色谱等各种色谱 的数据处理和控制。 N2010色谱数据处理软件的硬件采用先进的电子 设计技术,高性能的元器件,制造出高精度、低噪 声、高采样频率,低温度漂移,能满足各种分析要 求的色谱数据采集器,保证得到的色谱切片数据与 真实谱图非常接近。图谱的分辨率非常高。这就为 后继的数据处理打下良好的基础。她采用单通道、双 通道及四通道的工作方式。其主要性能特点为: 硬件: &#8226 24位高精度的A/D(模数)转换芯片(内含PGA程控 放大、高斯低通滤波 、零点、满刻度、背景、失调 等多种自动校正功能), 分辨率:全量程± 1uv(保障 全量程呈线性)。 &#8226 双/四(可选)通道,外置式;输入阻抗大于10兆欧 &#8226 16位的智能单片机控制,使采样板的体积大大缩小; RS-232国际标准通讯工作方式;远距离遥控启动功能; 采用光电隔离接口技术,避免数字电路与模拟电路之间 的相互共模影响;采样频率10次/秒、20次/秒可供选择, 最高频率可达40次/秒。 &#8226 RS232通讯方式,按键遥控,也可用键盘快捷键或鼠标菜单。 &#8226 动态范围106,线性度± 0.1% 积分灵敏度:1uv&#8226 s &#8226 采样电平输入范围 : -10.0MV-+1.2V N2010色谱数据处理软件是用微软最强大的编程语言VISUAL Basic 实现的。她集中体现了简洁的界面、方便的操作、稳定的系统、准确的计算结果等诸多特点;并且具有国内色谱数据处理软件的所有功能。其主要性能特点为: 软件: &#8226 国际标准的Windows界面风格;多线程、多任务并行处理技术,稳定性进一步提高。图谱窗口、谱图文件管理窗口、数据结果窗口集中同时显示。 &#8226 傻瓜式多窗口集成操作,避免界面的来回切换,使工作更加方便;具有资源管理器一样的谱图文件管理模式,标样文件、样品文件、方法文件有机地组合而成一个样品树形管理,操作思路更清晰,大大缩短学习的过程。 &#8226 面积、峰高与归一、校正归一、外标、内标、分组、指数等多种定性、定量方法可供选择。 多种手动基线处理方式。人工经验校正与计算机自动校正相辅相承。 &#8226 1、积分算法一流:可以自动判别各种类型的色谱峰,不漏峰,不错判。本色谱工作站可以对90%的谱图自动准确积分。 2、重现性好:在数据处理软件方面,建立在N2000色谱工作站十年开发和改进基础上成熟的积分算法保证积分结果重现性极好,采用不同的峰辨别参数,对同一样品的多次进样分析,保留时间偏差仅为0.001分钟。可以在滤去噪音的同时不会将那些微小色谱峰也除去。 3、精度高:本工作站的数据采集器采用全量程不分段方式,全量程的精度为± 1uV,并且支持40,20,10,5等多个采样频率。 4、具有数据回卷功能:当您的电脑发生意外死机时,在数据采集器内可以缓冲保存十分钟的谱图数据,重新启动后可以由软件自动恢复回数据,最大限度地保护您的劳动成果。 5、使用方便,功能强大:我们采用了数据库作为支持,功能非常强大,处理、统计、分析都是极其方便。用户可以很方便地进行重复性分析,并将多个平行结果打在同一张纸上,可以对一段时期的结果进行统计、分析,同时可以由用户自己编写扩充应用程序。用户界面就是根据色谱分析的实际工作流程。 6、兼容性广:采用外接式数据处理器,集成化程度很高,尺寸小巧,并采用了最先进的24位CPU芯片,并采用串口进行通讯,彻底解决某些工作站因电脑无ISA卡而无法安装程序的缺陷。可以处理任何色谱仪的信号。 7、串行口自动检测设置,减少安装设置参数;负峰自动处理,新建样品及校正向导,使用操作极其方便; 加、减、调整峰起及终点、增删分割线、强制拖尾峰、设定负峰区等多种谱图处理方式,极大满足个性化处理图谱的要求。多样的分析报告表定制功能;并可无障碍与Windows环境下的任何文本编辑软件(如 Office 2000)进行完美的链接,并可将所得谱图或数据直接导入文本编辑器中,大大提高了谱图和数据的管理、编辑功能
  • 2010色谱数据工作站
    2010色谱数据工作站 说明 2010通用型,通过外置式高精度数模转换接口连接各类气相、液相色谱仪,实现数据采集及处理。 本工作站是性能稳定的中文版双通道色谱工作站,图形化的操作界面直观方便,适用于Windows98/2000/XP。 2010色谱数据工作站针对Microsoft(微软)Windows操作系统设计开发,根据用户需求不断升级改近,是目前国内优秀的色谱数据处理软件。与windows操作系统一样,该色谱数据工作站充分体现了分析行业人员的使用需求,操作简洁方便,功能强大,并保持产品稳定的性能,在峰处理方面决不错判漏判峰,计算准确、可定制生成个性化分析报告等诸多特点。适用与气相色谱、液相色谱、毛细管电泳、薄层色谱、超临界流体色谱等各种色谱的数据处理和控制。 特点 硬件 24位高精度的A/D(模数)转换芯片(内含PGA程控放大、高斯低通滤波 、零点、满刻度、背景、失调等多种自动校正功能), 分辨率:全量程± 1uv(保障全量程呈线性)。 单/双、四/八(网络型可选)通道,外置式,USB供电;输入阻抗大于15兆欧。 RS-232国际标准通讯工作方式;远距离遥控启动功能;采用光电隔离接口技术,避免数字电路与模拟电路之间的相互共模影响;采样频率10次、20次、50次、100次/秒,根据峰型自动差分计算。 遥控采样启动,也可用键盘或鼠标操作。 动态范围106,线性度± 0.1% 积分灵敏度:1uv?s 采样电平输入范围 : -300MV - +955MV 软件 2010色谱数据工作站处理软件是在多年的色谱分析仪器使用经验的基础上开发而成,有操作方便、功能强大、运行稳定等诸多特点,其主要性能特点为: 国际标准的Windows界面风格,占用系统资源少 多线程、多任务并行处理技术。 性能稳定,采样同时可播dvd、听音乐。 数据查找图形预览 文件带有样品信息说明,加上图谱图形预览,快速准确定位图谱数据文件。 快捷的操作界面 图形化的操作界面直观方便。 在同一窗口中定性、定量、校正曲线制作一次完成。 可对多个相同浓度和不同浓度的标准试样进行校准。 功能完善强大 面积、峰高与归一、校正归一、外标、内标、指数等多种定性、定量方法可供选择。 自动零点扣除。 根据色谱柱类型自动进行参数动态调整,完美积分,不漏峰,不错判峰。 随心所欲的定制报告工具 完全Word风格的报告设计方法,随心所欲地控制所需的报告外观。 多图谱结果报告 多张谱图可以同时打印在一张报告中,可以分开坐标打印也可以合成在一个坐标中叠加打印。 每张谱图的分析结果表可以打印在同一报告中同时给出统计结果。 all in one数据文件结构 数据文件中包含谱图、样品信息、峰表、分析结果、方法的全部信息。 方法包括积分参数、定量参数、组份表、校正曲线、报告格式、仪器控制参数。
  • ANTEK 数据采集卡
    用于ANTEK9000硫氮分析仪上,控制仪器参数和采集仪器数据.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制