光学芯片

仪器信息网光学芯片专题为您整合光学芯片相关的最新文章,在光学芯片专题,您不仅可以免费浏览光学芯片的资讯, 同时您还可以浏览光学芯片的相关资料、解决方案,参与社区光学芯片话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

光学芯片相关的资讯

  • 小芯片提高光学仪器测量精度
    罗切斯特大学研究人员共同开发的1平方毫米的集成光子芯片将使干涉仪精度更高。图片来源:罗切斯特大学/ J. Adam Fenster从镜子上的微小缺陷,到大气中污染物的扩散,再到宇宙深处的引力波,通过合并两个或多个光源,干涉仪产生的干涉图样可以提供一切事物的详细信息。“想要进行非常精确的测量,光学干涉仪必不可少,因为光可以成为非常精确的‘尺子’。”美国罗切斯特大学光学助理教授Jaime Cardenas说。现在,Cardenas的实验室发明了一种方法,使这种光学机器更加灵敏。罗切斯特大学博士生宋美廷(音译)首次在1平方毫米的集成光子芯片上验证了一种实验方法,可以在不增加无关且不必要的输入或“噪声”的情况下放大干涉信号。近日发表在《自然—通讯》的这一突破,基于该校物理学教授Andrew Jordan和实验室学生开发的波导弱值放大理论。Jordan和团队研究弱值放大已有十多年。他们以一种新颖的方式将模态分析应用于具有弱值放大功能的自由空间干涉仪上,弥补了自由空间与波导弱值放大之间的差距,并由此证明了在光子芯片上集成弱值放大的理论可行性。弱值放大是基于光的量子力学,基本上只涉及包含所需信息的特定光子导向探测器。Cardenas说,这个概念曾被演示过,但“总是要在实验室里放置一张桌子、一堆镜子和激光系统,这些物件排列起来非常耗时和辛苦”。“我们将所有这些物质提炼出来,放入光子芯片中。通过把干涉仪装在芯片上,你可以把它放在火箭、直升机,或者手机上。放在哪里它都不会偏移。”Cardenas说。与传统的干涉仪不同,新装置没有使用一组倾斜的镜子来弯曲光线并产生干涉图样,而是使用了一个设计好的波导来传播光场的波。Cardenas说,这是该研究的新颖之处。在传统干涉仪中,只要简单地提高激光功率,就可以提高信噪比,从而产生更有意义的输入。但Cardenas说,这实际上是有限制的,因为传统的干涉仪探测器只能处理有限的激光功率,在达到饱和前,信号噪声比并不能提高。新装置通过在探测器上以更少的光达到相同的干涉仪信号,消除了这一限制,这为通过继续增加激光功率从而增加信噪比留下了空间。“如果以传统干涉仪相同的功率到达新弱值,新设备总是会有更好的信噪比。”Cardenas说,“这项工作真的很酷,有很多非常棒的物理和工程应用在后台进行。”他表示,下一步将把该设备用于相干通信和使用压缩或纠缠光子的量子应用,使量子陀螺仪等设备成为可能。相关论文信息:https://doi.org/10.1038/s41467-021-26522-2
  • 海谱纳米光学:全球首款微型光谱芯片正式量产
    物理世界的数字化时代正奔涌而来。2D、3D视觉技术将物体的颜色、形状、大小、尺寸、位置等信息转换为AI时代的大数据,但物质成分的数字化进程却停步不前。如今,可解码万物“指纹”的革命性视觉成像技术—高光谱成像正打破这一僵局。高光谱成像突破人眼限制,可实现万物成分检测,为机器视觉提供更真实、更准确的物理世界信息,为人类提供更高维度观察世界的方式。近日,《南方日报》等媒体持续聚焦海谱纳米光学(以下简称“海谱”)微型高光谱成像MEMS芯片及快速增长的高光谱成像市场。从专注研发到高光谱产品的工程化、市场化,海谱跨过创业公司“死亡之谷”的背后,折射的是国产MEMS芯片在全球高端芯片竞技场的突围。从深圳市海谱纳米光学科技有限公司(Hypernano,简称海谱)获悉,2022年初,该公司宣布正式全球率先量产了第一代微型高光谱成像MEMS(微机电系统,Micro-Electro-Mechanical System)芯片,高光谱工业相机及高光谱相机模组即将推向市场。▲海谱纳米光学据悉,基于微型高光谱成像MEMS芯片技术,海谱推出的高光谱成像模组在波长精度、拍摄速度、空间分辨率、半峰宽、视场角等专业技术指标上达到全球领先水平,体积比传统光谱相机缩小了近1000倍,是业界尺寸最小的高光谱相机模组。半导体老兵深圳创业跨越“死亡之谷”海谱创始人兼CEO黄锦标介绍,公司于2019年1月创立,以“光谱芯视觉,感知超极限”为使命,专注于高光谱成像技术的设计与研发。▲黄锦标黄锦标毕业于南开大学微电子专业,有着20多年半导体技术和市场经验,曾担任多家半导体公司高管,有着很强的系统开发和市场开拓的经验。而海谱研发团队在MEMS领域拥有近20年的芯片设计与工艺制造经验,团队核心成员包括多名顶尖MEMS专家及深圳孔雀人才。2022年3月,海谱完成数千万元A轮融资,投资方包括昆仑资本、远方资本、湾信资本。业内人士介绍,MEMS芯片最常用的是承担传感功能,在整个大的信息系统里有点类似于人的感官系统。从行业而言,欧美是MEMS产业、技术与产品的发源地,处于全球领先地位,中国MEMS产业起步较晚,MEMS产业还处于发展的起步阶段,我国不仅在精度和敏感度等性能指标上与国外存在巨大差距,应用范围也多局限于中低端领域。因而有芯片创业难,MEMS芯片创业更难的说法。不过,尽管我国MEMS传感器厂商面临诸多挑战,但从上游设计、中游制造、下游封装等领域国产替代的空间巨大。▲海谱微型高光谱成像MEMS芯片正因为身处MEMS产业这一高精尖行业,海谱从成立初期的3年,经历了高科技创业公司所面临的“死亡之谷”考验,即从技术研发到产品量产的种种挑战。“创业公司的技术再领先,也要把它变成一个工程化且可市场化的产品,这个过程有很多坑,只有迈过去,技术才具有商业价值。”黄锦标称。黄锦标介绍,海谱走到去年年底时,最核心的技术芯片开始量产。同时,将芯片应用于相机的相关模组也已准备完毕,相当于公司在技术工程化产品这个初创公司最大的槛,已经迈了过去。填补国内微型高光谱MEMS芯片领域空白说起海谱的技术,首先还要科普一下光谱技术。光谱学始于英国科学家牛顿,是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为可以辨别物质的成分信息。光谱学的最大特色之一,是研究光与物质产生相互作用的学科,通过物理的方法可以获取物体的成分,在应用上可以非接触和非破坏地进行检测。典型的如天文对象、高温物体、放电气体… … 在分子和原子层次上物质作分析研究,主要是用光谱方法。比如人类用光谱相机拍摄遥远星球的表面物质。▲高光谱原理黄锦标介绍,高光谱成像技术则将成像技术与光谱技术相结合,可获取高光谱分辨率的连续、窄波段的图像数据。其原理是将成像技术与光谱技术相结合,在探测目标二维空间信息的同时,获取其每一个空间位置上的光谱信息,从而实现对物质成分的直接检测。物质光谱信息具有指纹特性,即不同的物质拥有不同的光谱,因此高光谱成像为机器视觉的物质感知、识别和分析提供了新路径,是继2D、3D视觉技术之后的下一代革命性视觉成像技术。2019年,海谱在深圳成立后,开启第一款微型高光谱成像MEMS芯片的研发设计与流片。2020年初,海谱宣布正式量产第一代微型高光谱成像MEMS芯片,填补了国内在微型高光谱成像MEMS芯片领域的空白。传统光谱成像设备一般手工组装,存在体积大、价格昂贵、无法批量生产等问题,海谱微型高光谱成像MEMS芯片具备高空间分辨率、高透光率等性能优势,解决了光谱成像设备体积、成本等问题 芯片化量产还可有效降低高光谱成像设备的台间差,实现芯片至整机全自动组装。由此,海谱突破性地实现了MEMS特殊工艺的突破,解决了高光谱成像工业化、低成本和量产化的业界难题,研发能力覆盖芯片设计、光学模组、产品相机、算法研发、完整应用解决方案等高光谱全链条技术,可为全球多领域客户提供一站式高光谱成像解决方案。“传统的光谱成像设备是一个大仪器 海谱的相机模组才一片指甲大,而且更便宜,不管从体积还是价格、便利性都跨越民用的门槛,也是中国在这个细分芯片赛道上做到了世界领先的位置。”黄锦标这样比较。▲高光谱成像技术可检测物质成分芯片产品覆盖全光谱波段,万物皆可测目前,公司已推出几款芯片,形成全光谱覆盖,实现万物皆可测。黄锦标介绍,高光谱成像MEMS芯片及模组可以应用于工业检测、医疗健康、安防环保、食品检测、IOT等多场景。例如在工业检测领域,高光谱技术可在非接触的情况下实现食品检测分拣、质量等级筛选等功能,以往几分钟或数小时的检测结果如今可实时在线获取。在医疗健康,高光谱设备可赋予普通显微镜高光谱视觉能力,同时还可实现癌症筛查、手术辅助成像等功能。在安防环保领域,高光谱技术可对水质、环境进行实时监测,实现对水质的定性、定量观测,实现云图可视化效果。在食品检测领域,高光谱成像技术可对肉类、果蔬、粮油等进行材质分析,检测果蔬的糖度、水分、硬度、酸度等指标,智能分析肉类的新鲜程度。值得留意的是,海谱不仅有硬件团队,也有AI算法团队,这也保证了芯片获取数据后可以计算建模,得到一致性较高的结果。为何一个默默无名的初创科技公司,可以填补芯片产业空白,实现全球技术领先?黄锦标介绍,高光谱成像MEMS芯片是一个多学科的技术突破,不单单涉及微电子,还有化学、材料、机械、光学等。但是,公司一直聚焦于高光谱成像技术这一细分领域,而且公司核心研发团队此前20年专注于该细分技术的研发,有着世界领先的技术沉淀。“中国芯片暂时落后于国外,实际上差在积累不够,除了资本、政策和市场加持,需要很多科研人员、工程师长年累月地在实验室和芯片产线上辛勤付出,这样才有领先技术突破。”黄锦标称,作为一名90年代从大学毕业后进入半导体行业的老兵,见证了深圳20来年半导体行业的萌生、发展和蓬勃,希望通过自主科技创新,支持国产技术在半导体“无人区”技术实现更多突破。【深创者说@黄锦标】“我们一直强调,一个技术是否具有先进性、突破性,一定要有用,要为市场和消费者提供所认可的解决方案。海谱将微型高光谱成像MEMS芯片与人工智能算法结合,来为消费者转译物体的成分信息。比如我们人眼或者普通相机拍一块肉,就是一张普通照片,但是安装我们芯片的相机拍出的照片,经过算法读取,会转换出一个普通人可理解的结果,告诉你这块肉是否新鲜。我们坚持不会做终端产品。现在国内尤其深圳已经有很多全球知名的硬件终端产品公司,我们的定位是生产芯片以及解决方案,来服务这些硬件终端产品公司。在我们看来,现在中国卡脖子,是卡在缺少上游核心芯片或器件的技术和制造能力。海谱立志于去做这样的一个角色。
  • 麻省理工开发出全新光学芯片可实现高效“深度学习”
    p   美国麻省理工学院(MIT)科学家在6月12日出版的《自然· 光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。 /p p   “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中,需要执行大量重复性“矩阵乘法”类高度复杂的运算,对于依靠电力运行的传统CPU(中央处理器)或GPU(图形处理器)芯片来说,这类运算太过密集,完成起来非常“吃力”。 /p p   通过几年努力,MIT教授马林· 索尔贾希克和同事开发出光学神经网络系统的重要部件——全新可编程纳米光学处理器,这些光学处理器能在几乎零能耗的情况下执行人工智能中的复杂运算。索尔贾希克解释道,普通眼镜片就能通过光波执行“傅里叶变换”这样的复杂运算,可编程纳米光学处理器采用了同样的原理,其包含多个激光束组成的波导矩阵,这些光波能相互作用,形成干涉模式,从而执行特定的目标运算。 /p p   研究小组通过测试证明,与CPU等电子芯片相比,这种光学芯片执行人工智能算法速度更快,且消耗能量不到传统芯片能耗的千分之一。他们还用可编程纳米光学处理器构建了一个神经网络初级系统,该系统能识别出4个元音字母的发音,准确率达到77%。他们的最终目标是,将可编程纳米光学处理器交叉铺成多层结构,构建光学网络神经系统,模拟人脑中神经元执行复杂的“深度学习”运算。 /p p   索尔贾希克表示,新光学处理器还能用于数据传输中的信号处理,更快速实现光学信号与数字信号间的转换。未来,在大数据中心、安全系统、自动驾驶或无人机等所有低能耗应用中,基于新光学处理器的复杂光学神经网络将占据重要席位。 /p

光学芯片相关的方案

光学芯片相关的论坛

  • 新型光子芯片能测量更多光量子态

    据报道,无线电和真空管问世以来,电子计算和通信有了很大发展。今天,消费设备的处理能力和内存等级在几十年前是无法想象的。但是,随着计算和信息处理设备的体积越来越小、功能越来越强,量子物理定律强加的一些基本限制正在出现,这一领域未来的发展前景可能与光子学密切相关。光子学是与电子平行的光学基本概念,光子学理论上类似于电子,但如果用光子代替电子,光子装置处理数据的速度比电子装置快得多。量子计算机。   目前,光子学领域的基础研究仍然非常活跃,但由于缺乏重要的设备,无法进行实际应用。美国 加州在理工大学开发新的光子芯片,延迟线特别是光子量子信息处理器,可以生成和测量光量子态。   根据光子的基本特性,不同种类的光子被分为能量、动量、偏振等特征,由这些不同特征决定的光子状态称为光量子态。   这种新的光子芯片基于在光学领域广泛使用的铌酸锂材料,在芯片一侧产生所谓的光压缩状态,在另一侧测量。时钟和数据恢复/重定时光压缩状态,简单地说,据悉在量子等级中降低“噪音”的光,近年来光压缩状态技术被用于加强激光干涉引力波天文台(LIGO)的灵敏度测量,LIGO天文台是利用激光束探测引力波的探测装置,如果科学家使用基于光的量子装置处理数据,低噪音照明状态也很重要。   加州理工大学电子工程与应用物理学副教授阿尔雷扎马兰迪 (Alireza Marandi)说:“我们可以利用它突破许多传统非线性光学研究的局限,甚至打破许多传统假设。”   另一方面,据马兰迪介绍,光子芯片技术显示了以太赫兹主频运行量子光学处理器的最终发展方向,专用时钟/计时比苹果笔记本电脑MacBook Pro的计算处理器快上千倍,未来5年内可以通信。据合著者、博士后学者拉杰维尔奈尔拉 (Rajveer Nehra)介绍,该研究报告指出:“光学一直是实现量子计算最有希望的方法之一。因为在可扩展性和室温下的超高速逻辑操作中有内在的优点。但是,可扩展性应用的主要课题之一是在纳米光子学中生成和测量足够的量子状态。 电子元器件是信息技术产业发展的基石,也是保障产业链供应链安全稳定的关键。面对成千上万种功能迥异的电子元器件,以及复杂的供应渠道和货源,往往一个器件的品质就可能影响到整个产品设计,加上近期电子元器件价格大涨,如何提升采购效率降低采购成本对于控制企业产品成本,提高产品竞争力有着极其现实的意义。 随着互联网的发展,用户都在便捷地通过型号搜索并比较渠道。[b]创芯为电子[/b]为不同规模的企业提供电子元器件采购的平台。主要产品包括电源管理[url=https://www.szcxwdz.com]芯片[/url]、处理器及微控制器、接口芯片、放大器、[url=https://www.szcxwdz.com]存储器[/url] 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

  • 【实战宝典】哪些检测技术可用于微流控芯片?

    问题描述:哪些检测技术可用于微流控芯片?解答:[font=宋体]常用于微流控芯片检测的技术主要是电分析、光谱分析和光学分析。电分析包括对电化学阻抗、电流、电位等电信号的检测。光谱分析包括荧光检测、拉曼光谱检测、化学发光和生物发光检测。荧光检测需要先对待分析物进行荧光标记。拉曼光谱适用于对细胞及其生物分子的实时监测。化学发光和生物发光仅适用于特定化学发光试剂和细胞的研究。光学分析包括各类显微镜观测、折射率检测、热透镜显微检测等。其它检测方法还有胶体金法、表面等离子激光元共振检测等。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【资料】-芯片毛细管电泳

    [b]芯片毛细管电泳[/b][i]陈相,方禹之[/i] 摘 要:芯片毛细管电泳( ICEC) 是一种新型的微全分析系统 (μ-TAS),具有被分析的样品用量少、分析速度快、灵敏度高、体积小易携带、成本低等优点。文中介绍了芯片毛细管电泳的材料、结构、进样方式、检测手段、主要应用等方面的研究进展,并展望了其发展前景。 关键词:芯片毛细管电泳( ICEC) 芯片 进展  微型全化学分析系统“μ-TAS”自20世纪90年代初兴起以来,就以微型、快速、高效和高通量等特点而成为目前分析化学领域的研究热点之一,Harrison 和 Manz等开展了早期芯片毛细管电泳的开拓性研究工作,而毛细管电泳具有体积小,分离效率高,分析用样品少,分析速度快,分析过程易自动化等特点,所谓芯片毛细管电泳技术就是将样品处理、进样、分离、检测均集成在一块几平方厘米的芯片上的一项微型实验室技术,又称集成毛细管电 泳 芯 片 ( Integrated Capillary Electrophoresis Chips,ICE 芯片) 。这项技术可望发展成微全分析系统和芯片实验室的主流技术。它的研究和广泛应用,将使疾病诊断和治疗、环境监测、新药研究开发、食品安全检测等许多领域产生革命性的变化,已成为当今化学、生命科学、微机械、物理、计算机、微电子技术等领域的重要研究课题之一。到目前为止,芯片毛细管电泳已经用于糖类化合物的分离检测、氨基酸对映体的拆分、蛋白质、多肽分析、神经递质类物质的分离检测、寡核苷酸的分离、DNA 测序和 DNA 限制性片段分离等分离分析研究。1  毛细管电泳芯片的材料和结构 毛细管电泳芯片的基体材料有玻璃片、硅片、塑料、陶瓷和硅橡胶等几种,玻璃是目前使用最多的芯片材料,这是因为它的成功应用主要与其所具有的良好的光学性质、散热性和绝缘性以及已研究透彻的表面性质,在过去40年这些材料的微加工方法在微电子领域得到了成熟发展。ICE 芯片技术是在半导体的微制造技术基础上发展起来的。以玻璃为基片的毛细管电泳芯片制造过程,一般经过沉积、光刻、刻蚀和键合四步工艺。虽然采用干法刻蚀可以在玻璃上获得高深宽比的微管道,但管道的表面比较粗糙,从而降低了电泳的分离效率。所以一般采用湿法刻蚀的方法在玻璃上制作光滑的微管通道。用塑料材料来做基体材料价格便宜,有良好的绝缘性,可施加高电场实现快速分离,成形容易,批量生产成本低,易获得高深宽比的微结构,且电渗流与溶液的 p H 基本无关,具有广阔的应用前景。硅橡胶中最常用的是聚二甲基硅氧烷(PDMS),它有如下优点:价格便宜、可大规模生产,制备容易、耗时短、容易封装。而且耐用性好可重复使用,具有良好的生物适应性和气体通透性,良好的绝缘性和热学稳定性,良好的柔韧性、化学惰性和光学特性等优点。这些优点使它成为近年来新兴的理想微流体芯片材料。[color=red]最后有全文的下载[/color]

光学芯片相关的资料

光学芯片相关的仪器

  • SIG 系列分布式光度计,可以直接得到LED 等光源的近场光线数据Ray DATA,从而通过权重法超高精度模拟不同距离下的远场数据,测试数据可以直接导入Zemax、LightTool、TracePro 等光学设计软件;可以了解你芯片的发光特点,改进封装设计工艺,提高出光效率;对于LED 应用,无需再为LED 光学模型重建而苦恼;让你轻松实现业界领先的光学设计; SIG400光源近场分布测试系统
    留言咨询
  • PA1CE压电芯片,低电压,光学仪器组件特性亚微米分辨率安装面尺寸范围从0.9 mm x 0.9 mm到10.0 mm x 10.0 mm定制其他尺寸请联系我们驱动电压范围为0 - 45 V、0 - 75 V、0 - 100 V或0 - 150 V推荐负载范围从13 N(3 lbs)到1600 N(360 lbs)用于开环实验装置许多芯片提供预连导线选项非常适合真空和OEM应用半球端帽和平面端帽单独提供Thorlabs的压电驱动器由多层压电陶瓷组成,如右上图所示,在下面压电芯片和堆栈制造中也有描述。堆叠之前,每层都镀有电极,通过精密打磨工艺,使每个芯片的高度公差优于±5 µ m。紧凑型多层设计使其具备高共振频率(160 kHz - 1350 kHz)和亚毫秒级的响应时间。这些驱动器可以精密移动,产生的自由行程范围(无负载条件下)从0.7 µ m至6.1 µ m 。驱动器预载最大位移负载时,可以达到最大位移,每种型号对于这点都有相应规定。每种型号最大位移的实际值有所差异,必须通过实验确定;但是,最大位移始终会大于自由行程位移。芯片的每层都包含电极,因为这样可以使驱动电压最小。我们的压电芯片具有三个驱动电压范围选项:0 - 45 V、0 - 75 V、0 - 100 V或0 - 150 V。当应用对电压非常敏感时,请考虑我们最大驱动电压为45 V或75 V的芯片。对电压不太敏感的应用,可考虑使用100 V和150 V的压电芯片,因为它们的使用寿命更长。完整的规格列表可查看下面的表格。这些芯片没有电极的区域镀有陶瓷层,用于防潮。陶瓷层的防潮性能比环氧树脂层更好。芯片其余两个侧面印刷网版银电极,可从电极上施加电压。正极以银色的"+"号或一个黑色的点表示。为了方便起见,我们的许多芯片都配送两侧焊接75 mm导线的版本。为了适应各种负载条件,可为这些芯片购置平面陶瓷或半球形陶瓷端帽附件。此外,Thorlabs提供锥形端帽,兼容接触直径为1.5到7.0 mm的球面。如要了解压电驱动器的负载、特殊操作注意事项的信息,以及当操作条件已知时,估算这些驱动器寿命的数据,请查看工作标签。可以定制压电芯片的尺寸、电压范围和涂层。此外,我们支持大批量订单。45 V压电芯片75 V压电芯片100 V压电芯片 150 V压电芯片
    留言咨询
  • Thorlabs 压电陶瓷环形芯片,PA40TM光学仪器组件特性PZT硬陶材料制成的压电陶瓷芯片,用于超声波焊接、超声波清洗、超声波传感和其他共振应用提供两种带裸电极的压电陶瓷环共振频率35 kHz,外径50 mm,内径17 mm,厚度6.5 mm共振频率26 kHz,外径60 mm,内径30 mm,厚度10 mm带金属外壳的朗之万换能器,用于超声波焊接驱动电压范围:0 - 5 kV可以定制;详情请联系我们Thorlabs提供PZT硬陶材料制成的环形芯片,带有裸电极,适用于超声波振动应用,且可以集成到朗之万换能器中,用于超声波焊接。PA40ND5环形芯片的外径(OD)为50 mm,内径(ID)为17 mm,厚度为6.5 mm,共振频率即工作频率为35 kHz;PKT40A朗之万换能器集成了四块PA40ND5芯片,提供20 kHz的共振频率作为工作频率,且瞬时功率为700 W。PA40TM环形芯片的外径为60 mm,内径为30 mm,厚度为10 mm,共振频率即工作频率为26 kHz;PKT40B朗之万换能器集成了四块PA40TM芯片,提供15 kHz的共振频率作为工作频率,且瞬时功率为500 W。这些超声波压电陶瓷芯片和换能器中的PZT硬陶材料适用的最高驱动电压为5 kV,但3 kV以上的操作可能会在空气中产生电弧。所以电压在3 kV以上时,应该采用硅油等保护措施;完整规格列表,请看下表。我们建议使用电压范围为0 - 5 kV且处于工作频率的正弦波来驱动钳位芯片或传感器。PZT硬陶与软陶材料 PZT软陶材料的压电常数较大,非常适用于运动控制应用中的驱动器。但是,软陶的介电损耗因子相对较高,大约2%,并且在高频驱动下会产生过多的热量。因此,我们建议在低于共振频率33%的应用中使用PZT软陶材质的驱动器。而PZT硬陶材料的介电损耗因子较低,机械品质因数较高,因此非常适合高频驱动甚至共振频率驱动应用。以共振频率驱动PZT硬陶材料将产生最大的振幅。与低频下的PZT软陶材料相比,高频下的行程或振动位移更难控制。PZT硬陶材料的振动始终用于产生振动波。当共振频率高于人耳可以听到的频率范围时,生成的波称为超声波,此设备称为超声波换能器。这些超声波通过快速摩擦和加热可用于超声波焊接;通过超声波反射可用于超声波探测;还可以用于超声波清洁。此外,还可以定制压电陶瓷芯片的尺寸、电压范围和镀膜。如需大批量订购压电陶瓷芯片,请联系我们了解详情。
    留言咨询

光学芯片相关的耗材

  • LCD驱动芯片检测系统配件
    LCD驱动芯片检测系统配件是一套LDI(LCD Driver IC)自动视觉检测系统,采用超快实时自动聚焦技术(Real-time Auto Foucs),实时聚焦LCD驱动芯片的表面,快速发现LCD Driver IC缺陷。LCD驱动芯片检测系统配件特色可在LCD驱动芯片表面上实时聚焦,对LDI tray上的不同器件提供公差补偿,更为清晰地获得景深图像。具有超快变焦技术可获得高精度聚焦的彩色图像,采用彩色相机替代传统的单色相机,能够获得暗花纹区图像(Dark pattern Area)。提供三种照明方式更好地探测缺陷.LCD驱动芯片检测系统配件和LCD驱动芯片自动视觉检测系统由孚光精仪进口销售,孚光精仪是中国领先的进口光学精密仪器旗舰型服务商!精通光学,服务科学,欢迎垂询。
  • 微流控芯片光刻机系统配件
    微流控芯片光刻机系统配件专业为微流控芯片制作而设计,用于刻画制作微结构表面。微流控芯片光刻机采用多功能一体化设计理念,一台光刻机具有六个传统单一的表面刻划机器的功能,而且不需要无尘环境,用户安装使用不再需要单独建设超净间,从而大大提高用户的使用经济性和方便性。 微流控芯片光刻机全自动化和可编程操作,适合几乎所有常用材料,可以根据用户的芯片衬底基片尺寸,形状和厚度进行调节。微流控芯片光刻机是一种无掩模光刻系统,具有两个易操作的软件,用户可以创建个人微结构图案,从单个微通道到复杂的微观结构都可以创建。微流控芯片光刻机具有技术突破性设计和灵活性优势,非常适合加工微纳结构用于MEMS,BioMEMS,微流控系统,传感器,光学元件,MicroPatterning微图案化,实验室单芯片,CMOS传感器和所有其他需要微结构的应用。这款无掩模光刻系统可以快速而轻松地做出许多种微图案结构,从最简单到非常复杂的都可以。它的写入磁头装备有一个激光二极管(波长405纳米- 50毫瓦),光学扫描器和F-θ透镜(405纳米)。激光束根据设定微结构图案而运动。为了方便使用,较好的再现性和较高的质量,焦距是可以根据基片厚度进行调节的。图像采集期间可以使用控制面板调节焦距。几个基片厚度都可以使用。编程参数被保存以供以后使用,修改或其他用户使用。 编号 名称 MSUP 基于无掩模光刻系统和湿法刻蚀技术的微结构化表面的单位生产。
  • 数字PCR生物芯片盒(单芯片)
    臻准数字PCR芯片制备方式采用的是“固相分割”路线,利用MEMS工艺刻蚀加工晶圆,形成微米级腔室,微体系反应液在固相微腔中完成PCR过程,避免了交叉干扰和剧烈热反应造成的稳定性破坏。在此基础上,微体系组分的变化并不影响物理结构,从而为平台带来了更强的开放性。芯片式除了均一稳定的优势之外,还有一些其他的特点,每个微单元可以独立观测、芯片可以反复阅读、图像可以溯源等等,非常利于研发人员进行分析和溯源。 臻准微腔式芯片优势特点:工艺硅基芯片,腔室稳定均一;单孔可独立观测;芯片可反复观测;数据图像可追溯;芯片封闭无污染;

光学芯片相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制