反氢原子

仪器信息网反氢原子专题为您整合反氢原子相关的最新文章,在反氢原子专题,您不仅可以免费浏览反氢原子的资讯, 同时您还可以浏览反氢原子的相关资料、解决方案,参与社区反氢原子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

反氢原子相关的资讯

  • 科学壮举:人类首次完成反物质原子光谱测量
    p   英国《自然》杂志19日在线发表了一项粒子物理学重大进展:欧洲核子研究中心(CERN)报告了对反物质原子的首次光谱测量,实现了反物质物理学研究长期以来的一个目标。该成果标志着人类向高精度测试物质与反物质行为是否不同迈进了重要一步。 /p p   当今宇宙为何看起来几乎全由普通物质构成,这是物理学界的一个重大谜题。因为根据粒子物理学经典模型的预测,在大爆炸发生之后应存在等量的物质和反物质。光照射可以激发原子,当原子恢复至基态时会发光,光的频率分布形成,可以借用其光谱精确地测量出原子属性,这也是光谱学的基本原理。但是,反物质难以产生和捕捉,因为反物质一旦与物质接触就会湮灭,这为科学家测量其属性带来挑战。 /p p   欧核中心反质子减速器的最新进展,让研究人员得以捕捉和测量反质子与反氢原子。现在,来自欧核中心反氢激光物理装置(ALPHA)项目的丹麦科学家杰弗里· 汉斯特及其同事,在圆柱形真空腔内成功磁捕获反氢原子。这一真空腔长仅280毫米,直径为44毫米,研究人员通过真空腔上的窗口向里面照射激光,测量了反原子1S—2S的跃迁(从基态向激发态跃迁)情况。 /p p   研究团队报告称,反氢的跃迁频率与氢的跃迁频率一致。氢的光谱已经得到高精度表征,因此反氢光谱学的改进应可以促成对物质—反物质对称性的高敏度测试。 /p p   ALPHA装置是欧核中心捕获反原子的“利器”,该项目组此前曾用特殊磁场将反氢原子“抓住”达1000秒,还曾首次对反物质与引力的相互作用进行直接分析。 /p p br/ /p
  • 单个原子,看起来是什么样?
    当提到原子时,你的脑海中浮现的是怎样的画面?一个最广为流传的版本是,电子围绕着原子核在圆形的轨道上运动,就像太阳系中行星绕太阳运动一样。然而,这个原子模型并不准确。随着人们对量子世界的深入理解,物理学家逐渐了解到,电子可以同时存在于不同的位置。只有当对一个电子进行测量时,它的波函数才会坍缩,从而出现在一个特定的位置。也就是说,如果进行多次测量,并每次都绘制出电子的位置,最终就会得到一个轨道云模式。这才是更接近真实的单原子的画面。早在2008年,物理学家就成功地用电子显微镜拍摄了单个氢原子的图像。五年后,科学家做到了用“量子显微镜”窥视氢原子的内部,首次直接观察到了电子轨道。2013年,物理学家用量子显微镜窥视了氢原子的内部。(图/A. S. Stodolna et al.)近日,《自然》杂志上刊登了一篇新的研究表明,一组物理学家已经获得了首个单个原子的X射线成像。这是一项有望彻底改变科学家探测材料的方式的突破性成就。无处不在的X射线物理学家经常使用扫描探针显微镜对原子进行常规成像。它的工作原理是在材料的表面上运行一个非常锋利的尖端,然后根据从尖端读取的信号,形成一个表面的图像。但是,如果没有X射线,科学家就不能分辨样品是由什么组成的。自1895年伦琴(Wilhelm Röntgen)发现X射线以来,从医学检查到机场安检再到材料科学,X射线的应用可以说是无处不在。即使是发射到太空的探测器,也有许多都配备了X射线设备。在科学上,X射线的一个重要用途是检测样品中的材料的种类。多年来,随着同步加速器X射线源和新仪器的发展,对样品进行X射线检测时所需的材料的量已经大大减少。在此之前,科学家已经可以用X射线对质量只有一阿克(一微微微克)的样品进行检测,这大约相当于10000多个原子的质量。然而,这与只对一个原子进行X射线探测仍有很大距离。实现这一目标的主要挑战就在于,一个原子产生的X射线信号极其微弱,传统的X射线探测器无法探测到。SX-STM过去的12年里,以Saw-Wai Hla为代表的物理学家一直致力于将同步辐射和量子隧穿结合,进而开发出一种X射线版本的扫描隧穿显微术。他们将这种技术称为同步加速器X射线扫描隧穿显微术(SX-STM)。当X射线(蓝)照射到铁原子(分子中心的红球)上时,核心能级的电子被激发。然后,X射线激发的电子通过重叠的原子/分子轨道,隧穿到探测器的尖端(灰),提供了铁原子的元素和化学信息。(图/Saw-Wai Hla et al via ohio.edu)在这项新技术中,研究人员在传统的X射线探测器之外,还使用了一种专门配备了一个尖锐的金属尖端的的探测器。尖端被放置在离样品非常近的地方,当X射线击中样品,并激发核心电子时,电子会隧穿到探测器的尖端。核心能级的电子的光吸收就像指纹一样,可以帮助科学家有效地识别材料中的原子类型。在新的研究中,Hla与合作者利用SX-STM,对铁和铽(稀土金属)进行了测试。他们将一个铁原子和一个铽原子插入各自的超分子宿主中,成功实现了对单个原子进行准确的类型检测。左:环状超分子的图像,整个环中只有一个铁原子。右:一个铁原子的X射线特征。(图/Saw-Wai Hla et al via ohio.edu)不仅如此,他们还同时测得了这些单个原子的化学状态。通过比较铁原子和铽原子在各自的超分子宿主内的化学状态,他们发现铽原子相当孤立,它不会改变化学状态;而铁原子则会与周围的物质产生强烈的相互作用。技术的革新这项研究成功地将同步加速器X射线与量子隧穿联系了起来。它实现了对单个原子进行X射线成像,并开辟了许多令人兴奋的研究方向,包括使用同步加速器X射线研究单个原子的量子和自旋特性。这将对量子信息、环境科学、医学研究等众多领域产生巨大影响。此外,他们还开发了一种名为“X射线激发共振隧道(X-ERT)”的新方法,这种方法使他们可以用同步加速器X射线检测材料表面上的单个分子的轨道方向。未来,研究团队希望能继续使用X射线来检测单个原子的性质,并找到进一步革新其应用的方法。
  • 科研人员利用透射电镜破解氢致界面失效之谜
    当“安静”的铝制品遇见“淘气”的氢原子,为何“肌肤”表面就会冒出“痘痘”?  这一谜团已存在超过50年。  西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心的科研人员破解了这一难题。此项成果6月29日在线发表在世界著名期刊《自然-材料》上(原文链接http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4336.html)。  人们知道,生活中常见的铝制品通常稳定耐用,因为它的表面会自然形成一层致密而坚硬的氧化铝保护膜,俗称“刚玉”。但在含氢环境中,铝制品常常会在表面鼓出气泡,最终导致氧化膜保护层脱落,乃至材料失效。这一现象,被称为“氢鼓泡”。  西安交大科研人员发现,原来,对于“纤瘦”的氢原子而言,刚玉中的原子间隙如此之大,以至于它们可以在其中来去自如。氢原子的随性“游走”会破坏金属铝和刚玉之间“手拉手”的紧密联系,从而使一部分铝原子“重获自由”。这些铝原子也会在氧化物和金属铝的界面上自由运动,并在金属铝的一侧形成很多微小的坑。随着坑的不断长大,氢原子拥有足够的空间重新结合形成氢分子并对氧化膜产生压力。当坑的直径大到某一临界尺寸时,氧化膜就会被撑得发生塑性变形,并向外鼓出形成气泡。而气泡密度足够大时,氧化膜保护层便会脱落,最终导致材料失效。  这种氢致界面失效是在石化、海洋、核、航空航天及半导体等工业里常见的金属材料失效原因之一。尽管此前不同国度的研究人员进行了大量的研究,但对其原子尺度的机理一直不甚明了。传统的表面鼓泡理论只能解释气泡的生长,对于气泡的形核则缺乏理论及实验证据。西安交大微纳中心的这一研究发现填补了氢致界面失效现象起源的实验和理论空白,有助于人们找到防止氢致界面失效的方法,提高材料在含氢环境中的服役寿命。  “举一个激动人心的例子:太阳帆,”微纳中心博士生解德刚介绍说,宇宙中氢的质量分数在70%以上,人类造的任何飞行器在太空航行时都必须考虑氢对材料性能的影响。太阳帆的原理就是利用大面积镜面般光滑的薄膜反射太阳光以获得动力航行。目前最有可能的薄膜材料就是铝箔,科学家已经意识到太空环境中铝箔表面易发生鼓泡的现象,而太阳帆表面一旦发生鼓泡,其反射能力就会大打折扣,影响飞行器的动力性能。“希望我们的发现对于太阳帆的防氢设计有着积极的指导意义”,解德刚对此十分期待。  “这项发现对很多与氢有关的未解之谜都有着重要的启示,”微纳中心主任单智伟教授告诉记者,“比如半导体芯片中的导线基底界面劣化、电厂的汽轮机叶片的氧化皮脱落、核电站中有大量的质子辐射环境以及高温水汽环境等等。”  此项研究中,微纳中心的科研人员一改以往楔形的样品设计,采用微纳尺度的金属铝圆柱体,通过环境透射电子显微镜观察氢气氛围下金属和氧化界面的动态演化过程,以令人信服的证据无可争辩地证明了氢致表面氧化物鼓泡的晶向依赖性。  据了解,绝大多数金属制品在实际使用时表面都会有一层保护膜,有的是自然形成,有的是人为添加。这层保护膜通常起着防氧化、防腐蚀、耐磨损等作用。一旦被破坏,材料的氧化、腐蚀、磨损就会加速,发生到一定程度就会使材料彻底失效。单智伟教授指出,降低表面防护层的粗糙度,选择合适的金属基底取向,对界面进行有目的改性等可有效减缓甚至防止氢致界面失效的发生。接下来,研究小组将继续聚焦氢致材料失效机理研究,致力于进一步推动人们对氢影响的认知,以减少和避免由氢脆等材料失效所造成的巨额经济损失和重大安全事故。  该文章的作者依次为博士生解德刚、王章洁博士、孙军教授、马恩教授、李巨教授和单智伟教授。此项研究工作得到中国国家自然科学基金、973项目及111项目的资助。

反氢原子相关的方案

  • 低场核磁共振技术在石油裂化氢含量研究中的应用
    脉冲磁共振法具有操作简单,无有毒溶剂、结果重现性好、灵敏度高、快速、准确等优点。能够直接测量出样品中氢原子核磁共振信号与其氢含量成线性关系,通过已知氢含量样品进行定标,可快速、高效测试待测样品的氢含量。
  • 氢能发展重要方向——氢氨一体化
    氢能源拥有诸多优点,但难以储存和运输,成本高昂。氢是元素周期表上最轻的元素,很容易泄漏,对储存容器要求高,并且氢气非常活泼,与空气混合后很容易发生燃烧和爆炸。如果远距离运输氢,需要将其液化,在常压状态下,需要将其温度降低到-235摄氏度以下,能耗较高。如果以管道运输,则需要克服纯氢以及掺氢的气体给管道带来的安全隐患,攻克氢气管道的材料难题。在氢能源高昂的成本下,氨气走入人们视野,氨由一个氮原子和三个氢原子组成,是天然的储氢介质。常压状态下,温度降低到-33摄氏度,就能够液化,便于安全运输。目前全球八成以上的氨用于生产化肥,并且氨有完备的贸易和运输体系。理论上,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。
  • 北分瑞利:微波消解—氢化物原子荧光光谱法测定番茄酱中的铅.doc
    摘要:本文采用微波消解技术溶解番茄酱,以氢化物—原子荧光光谱法测定铅,研究并确定了酸介质及其浓度、还原剂用量以及番茄酱中常见元素对测定的干扰情况;以及氧化剂的选择、使用方法进行了讨论。方法的线性范围为0 ~150ng/mL,检出限为0.4 ng/mL,精密度为2.6% ~ 3.1%,回收率为92% ~104%。

反氢原子相关的论坛

  • 欧核中心首次成功制造出反氢原子束

    欧核中心首次成功制造出反氢原子束向超精细反氢原子光谱研究迈出重要一步 科技日报讯 (记者华凌)据物理学家组织网1月22日(北京时间)报道,欧洲核子研究中心(CERN)的ASACUSA(低速反质子原子光谱和碰撞)实验首次成功制造出反氢原子束,并在产生反氢原子地方向下2.7米的范围内,即远离强磁场的区域,检测到80个反氢原子。这个结果意味着朝向精确的超精细反氢原子光谱研究迈出重要一步。该研究结果刊登在1月21日的《自然·通讯》杂志上。 为什么宇宙是由正物质而非反物质构成?当前有关亚原子世界的最优理论——粒子物理标准模型也无法给出答案。但科学家认为,物质和反物质属性之间的微小差异可能就是答案所在,而这种差异体现在违反CPT对称定理上。CPT对称指把粒子用反粒子替换,右手坐标系换成左手坐标系,以及所有粒子速度反向,物理定律不变。而反氢原子由一个反质子和一个正电子构成,这样简单的结构是测试CPT对称的最佳模型。 迄今,在宇宙中从未观测到原始的反物质,CERN在实验中通过将反电子(正电子)和由反质子减速器产生的低能量反质子混合,产生大量反氢原子。氢和反氢原子的光谱预测是完全相同的,所以在它们之间的任何微小差异会给新的物理学打开一扇窗口,并可能在解决反物质之谜方面有所助力。凭借其单一质子只伴随有一个电子,氢是最简单存在的原子,在现代物理学中是最精确研究并极好理解的一种体系。因此,比较氢和反氢原子构成是执行物质/反物质对称性高精度测试的最佳途径之一。 当物质和反物质相遇,它们会立刻消减,因此除了创建反氢原子,保持反原子(由反粒子组成的原子)远离普通物质更是关键挑战。要做到此点,实验需利用反氢原子的磁特性(类似于氢气的),并使用非常强的非均匀磁场诱捕反原子足够长的时间来研究。然而,强磁场的场梯度会降低(反)原子的光谱性质。 在ASACUSA实验中,研究人员开发出一个创新的粒子陷阱装置——“卡斯波”陷阱,可利用多个磁场的综合作用将反质子和正电子集合到一起,形成反氢原子。然后这些反氢原子转移到远离强磁场的区域,导入真空管状通道中呈现飞行状态,由此测量反氢原子由基态开始的超精微跃迁。 ASACUSA协作团队领导者、日本理化学研究所山崎说:“由于反氢原子没有电荷,这给将其从陷阱中运送出来造成一大挑战。这项研究结果对超精细反氢原子研究非常有前景,特别是光谱特性。在反氢原子中其测量将允许对物质/反物质对称性最敏感的测试,我们期待今年夏天将这个装置重新启动改进。”ASACUSA实验下一步将优化反氢原子束的强度和动能,以更好地了解其量子状态。 总编辑圈点 绘制精确的超精细反氢原子光谱,进而比较氢和反氢原子构成,将提供探索宇宙起源和检验宇宙大爆炸理论的基础数据,把它比作物理学的一座“圣杯”并不为过。无论最后结果如何,都能使人类在微观和宏观两个层次上的认识尺度有跨越式提升。现在,欧核中心向伟大成功又迈了一大步,从十几年前首次制造出微量反氢原子,到2011年使数百个反氢原子停留近16分钟,再到制造出反氢原子束,他们已经踩在诺贝尔奖的节奏上。来源:中国科技网-科技日报 2014年01月23日

  • 新方法可将反氢原子温度降低25倍

    中国科技网讯 据物理学家组织网1月7日(北京时间)报道,最近,一个由美国和加拿大科学家组成的国际研究小组,提出了一种为陷落反氢原子制冷的新方法,能使反氢原子温度比现在所能达到的温度低25倍,使它们更稳定,便于开展各种实验操作。研究人员指出,该成果有可能大大推动反物质实验进步,帮人们揭示反物质迄今未知的神秘性质。相关论文发表在最近的国际物理学会(IOP)出版物《物理学杂志B辑:原子、分子与光学物理》上。 反氢原子是在超高真空陷阱中,将反质子射入正电子等离子体而形成。在此过程中,反质子会捕获一个正电子,成为一个处于激发态的反氢原子,相对于它们的陷落深度而言,其能量较高,会干扰人们对其性质的检测。降低反氢原子能量的方法主要是用激光将其降低到极低温度。这一过程叫做多普勒冷却(Doppler cooling),已经比较成熟。 测量反物质要求严格的参数限制。“造出必需数量的波长在121纳米的激光,并使这种光配合反氢原子捕获实验,这并非琐碎研究。”论文合著者、美国奥本大学教授弗朗西斯·罗拜奇奥克斯说,经过一系列计算机模拟,他们证明了该方法能将反氢原子冷到约20毫开,而目前纪录为500毫开。 “降低了反氢原子能量,对其所有参数的检测就可能更加精确。我们的方法能使陷落的反氢原子平均能量降到不足原来的1/10。”罗拜奇奥克斯说,“反氢原子实验的最终目标是将它们的性质与氢原子作比较,降低其能量是实现该目标的重要一步。” “无论过程是什么,反氢原子的运动速度越慢,就会陷落得越深,由此损失也会越少。”罗拜奇奥克斯说。2011年,欧洲核子研究中心(CERN)报告说,他们将反物质陷落时间延长到1000秒,一年后,人们对反氢原子进行了首次实验。虽然控制陷落反氢原子的技术过程已广为人知,但研究人员认为,激光致冷还能使反氢原子被陷落的时间大大增加。 造出更冷的反氢原子,还可用于测量反物质的重力性质。论文合著者、加拿大国家粒子与核物理国家实验室的藤原诚说,至今还没人见过反物质在重力场中是上升还是下降,要实现这一观察,激光致冷技术是非常重要的一步。(记者常丽君) 总编辑圈点 当1克物质和1克它的反物质相撞湮灭时,迸发出的能量无可比拟。如果用反物质来制造武器,只需几克便可摧毁地球;如果想把人类送上火星,需要千万吨以上的化学原料,而几十毫克的反物质燃料就能办到。反物质的“超能量”无疑吊足了科学家的胃口,尽管目前只在实验室中制造并短暂捕捉到了反物质原子,而文中提到的激光致冷技术,在让反氢原子温度大大降低的同时,也使科学家离揭开反物质的“神秘面纱”又“近了一步”。 《科技日报》(2013-01-08 一版)

  • 【分享】科学家将捕获的反氢原子保持1000秒

    2011年05月06日 来源: 科技日报 作者: 常丽君  本报讯 1000秒并不太长,但对于欧洲核子研究中心(CERN)反氢激光物理装置(ALPHA)项目的物理学家来说,却是4个数量级的重大突破。据美国物理学家组织网5月4日报道,CERN此前的记录是捕获了38个反氢原子并保持了172毫秒,而本次实验捕获了309个反氢原子并保持了1000秒,为进一步证明反物质属性铺平了道路。   特殊反物质概念是现代科幻小说和电影的最爱,在大众心理层面产生的效果经常会扭曲了反物质的真实性质,或对使用反物质带来的后果产生误解。因此,任何CERN取得的新进展,都可能引发更多联想。  由粒子和反粒子构成的原子很不稳定,通常仅能存在不到1微秒。而反氢原子完全由反粒子构成,被认为是稳定的,成为精确研究物质—反物质对称体系的最佳目标。反氢原子和氢原子是否具有同样的能级?它和重力会怎样反应?反氢原子在重力作用下会向下落还是向上升,抑或是以其他某种人们想不到的方式?CERN进行的系列实验正是要回答这些问题。  ALPHA项目研究小组在反质子和正电子结合的时候,将其冷却以降低能量制造出反氢原子,低能态让反氢原子在磁阱中保持一团云状。在实验中,研究人员捕获了309个任意速度的反氢原子,它们在跟各种微量气体碰撞而彻底湮灭或者得到能量逃出磁阱之前,持续存在了1000秒时间。  研究人员指出,这意味着ALPHA小组掌握了捕获更多反氢原子的技术。下一步计划是冷却一小群反氢原子,以观察它们在重力作用下是升还是降,回答有关反物质属性的关键问题之一。  实验还首次测量了被捕获反氢原子的能量分布。根据计算显示,大部分被捕获的反氢原子处于基态。这些研究拓宽了进一步实验的范围,包括精确研究CPT(电荷—宇称—时间反演)对称、凸显万有引力效应的制冷温度等,也为系统地研究磁阱动力学提供了关键工具。(常丽君)

反氢原子相关的资料

反氢原子相关的仪器

  • ChemTron HyCo 氢气增压装置用于实验室环境中高压氢气输送的紧凑型在线氢气发生和增压装置HyCo 无需移动部件即可运行,因此,它运行安静且无需维护HyCo 即插即用,无需耗时的设置HyCo 可安全地将氢气增压至 200 bar (2900 psi) HyCo 提供超纯氢气HyCo 非常安全提高实验室的安全性,摆脱 高压 H2 气瓶规格 待机模式下接近环境压力 增压至 200bar 用时小于 6 分钟 单台 H ₂ 存储容量 90 Nl 的增压装置最大出口流速:800 Nml/min 单台 H ₂ 存储容量 180 Nl 的增压装置最大出口流速:1600 Nml/min(当 HyCo 包括扩展模块外壳和尺寸与标准 HyCo 保持相同时) 出口压力 10 bar (145 psi) 到 200 bar (2900 psi) 可调 多功能附件可选,例如电解槽、低压氢气管线或外部储存的高压钢瓶 填充压力 10 bar操作原理 HyCo 利用特定金属合金的热力 学性质,在有利条件下形成氢 化物。在低温下,氢原子被金属化合 物吸收并位于间隙位点内。室 温下的平衡压力低于 10bar。 根据需要,金属氢化物床被加 热以增加压力。O2 等杂质被困 在金属化合物中,超纯氢气是 提供给用户的。产品编号描述HYCO110HyCo,实验室用的金属氢化物氢气增压装置 最大压力:200bar。容量:90 Nl。最大流速:800 Nml/min。尺寸:483 x 461 x 133 mmHYCO120HyCo 扩展模块,扩展模块允许将存储容量和最大氢气流量加倍,分别达到 180 Nl 和 1600 Nml/minCONN010HyCo 电解槽连接套件,用于将电解槽连接到 HyCo 的套件CONN020HyCo 压力调节器连接套件,用于将 HyCo 连接到压力调节器的套件MPRE200手动压力调节器,可实现完美恒定的氢气压力。尺寸:483 x 461 x 89 mm
    留言咨询
  • minispec LF90 时域核磁共振分析仪可用于精确测定活体小鼠、大鼠和小动物的肌肉、脂肪和体液等含量。 快速分析,测定时间不超过2分钟,无需制备试样。操作简便,无需耗材,节省了珍贵的动物资源。减轻动物承受的压力:无需麻醉;“按现状”对动物进行测定。由于降低了对动物的健康危害,因此可以频繁地进行测试。较之 DEXA ( X 光)技术,准确度和精确度更高。推出全新 LF90II 布鲁克 minispec 肌肉/脂肪分析仪是台式核磁共振分析仪,适用于活体大鼠、小鼠及其他小动物进行全身组分分析。 自2001年初推出以来, minispec活鼠组分分析仪迅速赢得市场认可,被视为适于在研究实验室内进行活鼠表征、筛选和表型的功能强大的无损无创型分析工具。 全新 minispec LF90 采用一体化身体组分分析工作流程,实现整体式操作。分析用时不足两分钟,可以放到鼠棚里,测试大量的样品。为何采用时域核磁共振技术? 核磁共振技术是最有用的无损材料分析技术。利用核磁共振技术对身体进行无损检查已经非常广泛,有许多实用范例,特别是磁共振成像和磁共振波谱法。 时域核磁共振采用类似的核磁共振技术,可对脂肪组织、肌肉组织和体液等进行分析,所依据的物理原理与在核磁共振成像中形成对比度所遵循的物理选择规则相同。多个不同射频脉冲序列被发射到组织中,使得水和脂肪中氢原子核的磁自旋发生改变。这使得组织中的氢原子产生射频信号, minispec 进而检测出这些信号。这些信号的振幅和持续时长短与材料属性有关。基于相对弛豫时间的差别,脂肪与肌肉之间的组织对比非常明显,并且可以利用特定射频脉冲序列,进一步增强对比度。minispec LF90 所采用的6.2 MHz 频率可以准确分析出活体动物的身体组分,而不会危害动物健康。 无压力测定 时域核磁共振方法对样品无任何要求。活体动物无需杀死或麻醉,只要将动物装入特制的样品管即可;整个测试过程不到两分钟即可完成。可以对活体动物多次进行无创、无损、无压力测定。 外型小巧的移动式仪器 整个系统可以放置在移动推车上,轻松地在实验室间移动。minispec LF90 磁体装置外型小巧,仅为80厘米长、70厘米宽(27英寸长、30英寸宽)。系统及其配套台式机采用常规110伏或220伏交流电源。无需其他装置,即可开始测定。电子装置和梯度装置被放置在底架上。
    留言咨询
  • 布鲁克公司直接留言,请将以下链接拷贝到浏览器地址栏(强力推荐) 瘦肉/脂肪分析仪 The mnispec TD-NMR 分析仪为测量活体小鼠和大鼠的瘦肉组织、脂肪和体液含量提供了一种精确无损的试验方法 两分钟内检测全身的瘦肉、脂肪和体液含量。适合垂直和水平测量永磁体,无需冷却剂系统仅需110伏电压小鼠或大鼠对动物无风险无需麻醉剂 布鲁克的minispec瘦肉/脂肪分析仪是用于测量活体小鼠、大鼠及其他动物体内全组分的台式NMR分析仪。在2001年首次应用以来,the minispec 老鼠分析器作为在实验室中表征、扫描和确定老鼠模型的一种有效的、非破坏性的、非侵入性的分析工具迅速被社会所认可。它已经成为测定活老鼠体内瘦肉和脂肪含量的工业性标准仪器。这种仪器主要应用在制药公司及从事糖尿病和肥胖症研究的研究所和大学。 核磁共振法是大多数有效的非破坏性材料分析方法中的一种。利用NMR对身体非侵入性检测 广泛使用并且已经有很多应用,尤其是MRI(核磁共振成像)和MRS(磁共振波谱分析)。TD-NMR使用类似于NMR技术,利用和MRI相同的物理选择规则来进行脂肪组织、瘦肉组织和流动体液的分析。各种射频脉冲序列应用于组织之中,水和脂肪中的氢原子因此在磁体中自旋重新定位,组织中的氢原子也相应的产生射频信号,而后这些信号被the minispec获得,这些与材料特性相关的信号的强度和持久性不同。依据弛豫时间在不同组织中的不同,脂肪和肌肉相对较高,通过特定的射频脉冲序列的应用可以进一步提高它的应用。 The minispec 瘦肉/脂肪分析仪是一个基于时域信号核磁共振仪。获取和分析整个样品管中的所有质子的TD-NMR信号,给出以下三个信息:脂肪、自由体液和瘦肉的含量值。这个核磁技术使得研究者有机会在动物的生命周期中进行更多的测试,并且还有以下优点; 快速分析:不需样品前处理,测试在两分钟内完成方法经济:整个过程中无消耗,保留了昂贵的实验室动物LF50可测的小鼠的重量可达80克LF90用于小鼠和大鼠的测定降低了动物的压力:不需要麻醉;按其原样分析由于对动物健康无损伤可以频繁的进行测试相对于DEXA(x衍射)法有更高的精确度和准确度
    留言咨询

反氢原子相关的耗材

  • 五氟苯基柱,紫杉醇分析专用色谱柱
    用氟原子取代反相固定相碳链上的氢原子,含氟固定相除了对含氟和含卤素化合物有较高的选择性外,也可作为普通的反相固定相使用,用于分离不含氟或卤素的化合物,提供与C-H烷基固定相不同的选择性。在生物制药、天然产物和环境分析中近年来应用广泛。 氟代固定相比烷基固定相有更强的离子交换和极性作用的分离特性,对一些极性的代谢产物有很好选择性。另外含氟固定相有很强的几何尺寸和立体形状选择性,能分离一些结构相似、用烷基固定相很难分离的物质。 用于含氟化合物以及紫杉醇类的天然产物的分离,由于苯环的存在,和其它氟烷基固定相不同,PFP对芳香族化合物也有很高的选择性。
  • 福立原子吸收空心阴极灯元素灯Sn锡Zn锌V钒Ti钛Rh铑Os锇
    福立原子吸收空心阴极灯元素灯Sn锡Zn锌V钒Ti钛Rh铑Os锇有北分瑞利、北京普析、海光、华洋、浩天晖瀚时、东西分析、上海精科、上海仪电、皖仪、天瑞、森谱、天美、上海光谱、美析、福立、沈分、华光、中和测通、原子吸收,福立原子吸收空心阴极灯元素灯Sn锡Zn锌V钒Ti钛Rh铑Os锇AS-1-2型号:2针脚配套岛津、耶拿、赛默飞、日立,安捷伦、瓦里安、GBC等原子吸收。AS-2专配PE原子吸收。元素有:Ag银、Al铝、As砷、Au金、B硼、Ba钡、Be铍、Bi铋、Ca钙、Cd镉、Co钴、Cr铬、Cu铜、Fe铁、Ga镓、Ge锗、Hg汞、K钾、Li锂、Mg镁、Mn锰、Mo、钼Na钠、Ni镍、Pb铅、Pd钯、 Pt铂、Rb铷、Re铼、Rh铑、Ru钌、Sb锑、Sc钪、Se硒、Sn锡、Sr锶、Ta钽、Te碲、Ti钛、W钨、V钒、Y钇、Zn锌、Zr锆、 ●产 品 简 介空心阴极灯,又称元素灯,简称HCL(Hollow Cathode Lamp),是原子吸收光谱仪(AAS)中的关键部件之一。作为分析光源主要用来提供被测元素的锐线光谱,能发射待测元素的特征谱线,在较低工作电流条件下,能辐射强度较大的特征谱线,谱线宽度窄,自吸效应小,灯的辐射立体角小,在使用效果上近似于一个点光源,使灯辐射的特征谱线能量几乎全部从原子化器内通过,并进入单色器分光系统。本公司采用国际领先的阴极制作技术和真空处理工艺,产品具有特定元素的特征辐射谱线强度高而稳定,背景低,光谱纯净度高,噪音低,灵敏度高,稳定性好,牢固可靠,寿命长等特点,拥有一个独特的阴极杯系统使得灯管更快地达到平衡,同时更多地扩充了其内部气体容量,使其每一支空心阴极灯管都能达到最低5000 mA.h (毫安小时)的使用寿命,即使是砷和汞的元素灯。本公司通过采用可视化和光电化检测工艺以确保每一个空心阴极灯的高质量,每个灯都经过了严格的噪音、漂移、波长精度和能量的质量检测。本坊LTL系列空心阴极灯包括LTL-2、LTL-4、LTL-PE4、LTL-PE9、LTL-MF2、LTL-MF4、LTL-HP2、LTL-HP4、LTL-AF、LTL-AF-C等型号,产品覆盖国内外各型号原子吸收光谱仪器、原子荧光仪器用分析光源,无论您在寻找单元素还是多元素灯、无编码还是带编码灯、38mm (1.5")还是50mm (2")灯,我们都能够提供您与仪器原厂商来源的灯具有相同性能或比其高性能的元素灯,型号、规格与原厂完全匹配。
  • 有研总院上海精科原子吸收元素空心阴极灯Tm铥 W钨 V钒 Y钇 Yb镱 Zr锆
    有研总院上海精科原子吸收元素空心阴极灯Tm铥 W钨 V钒 Y钇 Yb镱 Zr锆有北分瑞利、北京普析、海光、华洋、浩天晖瀚时、东西分析、上海精科、上海仪电、皖仪、天瑞、森谱、天美、上海光谱、美析、福立、沈分、华光、中和测通、原子吸收,有研总院上海精科原子吸收元素空心阴极灯Tm铥 W钨 V钒 Y钇 Yb镱 Zr锆AS-1-2型号:2针脚配套岛津、耶拿、赛默飞、日立,安捷伦、瓦里安、GBC等原子吸收。AS-2专配PE原子吸收。元素有:Ag银、Al铝、As砷、Au金、B硼、Ba钡、Be铍、Bi铋、Ca钙、Cd镉、Co钴、Cr铬、Cu铜、Fe铁、Ga镓、Ge锗、Hg汞、K钾、Li锂、Mg镁、Mn锰、Mo、钼Na钠、Ni镍、Pb铅、Pd钯、 Pt铂、Rb铷、Re铼、Rh铑、Ru钌、Sb锑、Sc钪、Se硒、Sn锡、Sr锶、Ta钽、Te碲、Ti钛、W钨、V钒、Y钇、Zn锌、Zr锆空心阴极灯,价格优惠,现货供应,欢迎订购产 品 能 参 数 ★起辉电压:≦360V,起辉电压低(特别是用高频率点灯时如此),可以适用于各种不同的原子吸收光谱仪(AAS),一般原子吸收光谱仪灯的供电频率是200Hz、400Hz或更高,每秒钟灯要连续接通断开数百次。★最大工作电流:一般在10~30mA之间,AS-2型空心阴极灯略大。★超纯光谱性能:特征辐射谱线强度高而稳定,没有阴极材料杂质元素或其他元素、阳极材料、充入的惰性气体等发射谱线的重叠干扰,持续而稳定光源输出。★发射性能:独特的阴极环系统,保证达到均匀快速的发光性能。★噪  声:<0.3%,信号噪音降低到最小。★背  景:在特征谱线两侧的辐射背景低,主要分析线附近的背景强度小于分析强度的1%。★预热时间:<30min,一般在5-15min之间。★稳定性:≦+1%—-1%如果您想对我们的产品进一步了解,请咨询客服,我们将以优惠的价格、 高品质的产品回报客户、我们期待您的来电!

反氢原子相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制