原位电子显微学

仪器信息网原位电子显微学专题为您整合原位电子显微学相关的最新文章,在原位电子显微学专题,您不仅可以免费浏览原位电子显微学的资讯, 同时您还可以浏览原位电子显微学的相关资料、解决方案,参与社区原位电子显微学话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

原位电子显微学相关的资讯

  • 直播预告!iCEM 2022之原位电子显微学技术及应用专场篇
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位仪器信息网、中国电子显微镜学会参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022或扫描二维码报名以下为“原位电子显微学技术及应用”专场预告(注:最终日程以会议官网发布为准)专场二:原位电子显微学技术及应用(7月26日下午)专场主持人:袁文涛 浙江大学 特聘研究员时间报告题目演讲嘉宾13:30--14:00纳米尺度氧化物相变的原子尺度原位电子显微学研究王建波(武汉大学电镜中心 教授)14:00--14:30基于扫描电镜和双束电镜的原位微反应系统吴伟(赛默飞世尔科技 电镜应用开发专家)14:30--15:00原位电镜中电、热、力、光外场的引入及在材料化学中的应用廖洪钢(厦门大学 教授)15:00--15:30蔡司跨尺度多模态原位实验解决方案高迪(卡尔蔡司(上海)管理有限公司 应用专家)15:30--16:00纳米金属变形机制的原位透射电镜研究钟立(东南大学 教授)16:00--16:30Fischione多尺度可控环境原位电镜样品制备解决方案赵颉(上海微纳国际贸易有限公司 经理)16:30--17:00基于扫描电镜的原位热力耦合测试仪器开发及其在镍基高温合金表征中的应用张跃飞(浙江大学 求是特聘教授)17:00--17:30催化材料表界面动态行为的原位电镜研究袁文涛(浙江大学 特聘研究员)嘉宾简介及报告摘要 武汉大学物理科学与技术学院、电镜中心、科研公共服务条件平台教授 王建波【个人简介】王建波,男,1975年4月出生,武汉大学物理科学与技术学院教授、高等研究院兼职研究员、珞珈学者特聘教授、博士生导师、武汉大学电子显微镜中心主任、中国晶体学会理事、中国电子显微镜学会常务理事、中国物理学会固体缺陷委员会委员以及湖北省电子显微镜学会理事长。主要从事固体材料超微结构表征方向的研究工作,利用先进的球差校正及原位电子显微学,结合第一性原理计算等针对微纳尺度材料结构缺陷的原子尺度表征、演变及调控开展系统深入的研究工作,取得一系列重要研究进展和成果。近年来,在Nature、Nature Communications、Physical Review Letters、Advanced Materials等国际知名学术期刊发表SCI论文185余篇,论文被正面引用4700余次,H因子37。主持与参与包括6项国家自然科学基金、1项973纳米专项、教育部“新世纪优秀人才支持计划”、湖北省青年杰出人才基金等。作为第四完成人获得湖北省自然科学一等奖,获得湖北省第5届和武汉大学首届优秀博士论文奖、湖北省第16届优秀博士学位论文指导老师奖、武汉大学第九届“我心目中的好导师”荣誉称号。担任国内电子显微学权威期刊《电子显微学报》杂志第七届执行主编、第五届、第六届编委;担任国内物理学权威期刊《大学物理》杂志的第十届编委。在国际国内重要学术会议上做邀请报告90余次。报告题目:纳米尺度氧化物相变的原子尺度原位电子显微学研究【摘要】 纳米尺度氧化物会在尺寸效应下发生相变,对于ZnO、CuO等氧化物的功能具有显著影响,通过原位透射电子显微学进行原子尺度的研究,并结合第一性原理计算,有效揭示其相变机理。 厦门大学教授 廖洪钢【个人简介】中美联合培养博士,厦门大学化学系教授、博士生导师,国家高层次青年人才,厦门超新芯科技有限公司创始人。报告题目:原位电镜中电、热、力、光外场的引入及在材料化学中的应用【摘要】 在过去近90年,在高分辨和高衬度成像两方面所取得了巨大进展, 而液体和气体环境中的原位透射电镜研究近十年才得以实现。其中的一个主要原因是电镜的整个光路系统需要在高真空中运行,气液体环境在电镜中不易实现。通过使用微纳加工制备的原位芯片,可以实现高分辨率的实时原位观察多种纳米晶体在溶液中的成核生长及形貌演变过程。目前通过开发制备的原位芯片及配套系统还可同时引入光、电、热、力等外场。通过对液体池芯片中封存的电解质液体施加电位,高分辨率的实时观察溶液多种电化学动态过程,包括电催化、储能过程等。原位液相电镜可从原子分子尺度高分辨实时成像并获取相关材料电化学固液界面结构及价态的高空间分辨率信息,为深入研究化学、材料基础及应用提供了一个新的视角。 东南大学教授 钟立【个人简介】钟立,东南大学青年首席教授,国家高层次青年人才。长期从事纳米材料应力应变下的微观结构演变机理和物性调控机制研究以及先进原位透射电子显微技术研发,在非平衡材料制备、原位力学性能测试等领域实现技术创新,以第一作者或通讯作者在Nature、Nature Materials、Nature Communications、Advanced Materials等学术期刊发表论文,他引4000余次,入选江苏省双创人才。报告题目:纳米金属变形机制的原位透射电镜研究【摘要】 随着微/纳机电系统(M/NEMS)的不断小型化,许多器件的结构单元尺寸已进入纳米尺度。在该尺度下,由于尺寸效应和表面效应,纳米材料通常表现出与其宏观尺度下截然不同的物理化学性质。探究纳米材料的新异力学行为及相关机制既可以完善金属力学相关理论,也可为新型微纳器件的设计和材料选择提供依据。报告将介绍基于原位透射电镜的纳米力学测试技术及其应用于纳米金属蠕变、位错变形、孪生变形等机制研究的相关成果。浙江大学求是特聘教授 张跃飞【个人简介】张跃飞:男,博士,浙江大学材料科学与工程学院求是特聘教授,博士生导师。中国科协求是杰出青年科技成果转化奖获得者,北京市长城学者,美国麻省理工学院核科学与工程系访问学者,香港城市大学高级研究员。长期从事原位电子显微学相关方法与仪器开发,并致力于原位高温微观力学性能表征方法研究,开发的扫描电子显微镜原位高温力学性能测试系列化仪器,为先进材料的研发提供新设备、新技术、新手段。先后主持和参与完成了“973”“863”和国家重大科学仪器专项、国家自然科学基金和北京市自然科学基金10余项。发表论文150余篇,授权发明专利20余项。研究成果曾获国家自然科学二等奖、北京市科学技术奖一等奖、入选中国高等学校十大科技进展等。报告题目:基于扫描电镜的原位热力耦合测试仪器开发及其在镍基高温合金表征中的应用【摘要】 热力及其耦合作用是金属、陶瓷、复合材料等在热处理、烧结、加工过程中调控微观结构特征的主要外场条件,也是影响高性能结构材料服役性能的主要环境因素。 扫描电镜原位高温拉伸、蠕变、疲劳测试仪器的开发,实现了从纳米到宏观尺度深入研究材料在高温受力条件下微观结构、长时间结构演化与力学性能间定量化关系,是优化材料制备工艺、质量检测、服役寿命评估、安全性评价重要的科学手段。 报告将介绍基于扫描电镜原位高温拉伸、蠕变、疲劳测试仪器研发最新进展和原位表征方法发展的最新进展,以及在镍基高温合金研究中应用的最新成果。袁文涛 浙江大学 特聘研究员【个人简介】袁文涛博士,现任浙江大学材料学院“百人计划”研究员,博士生导师。2017年在浙江大学材料学院取得博士学位,之后分别在浙江大学化学系和材料学院进行博士后研究,期间曾赴丹麦技术大学访学。2021年9月加入浙江大学材料学院张泽院士/王勇教授研究团队。主要从事气氛环境下的纳米材料表界面的显微结构与性能研究。致力于通过环境透射电镜、大气压气体样品杆+球差校正透射电镜等先进原位电子显微学手段,在原子尺度下探索纳米材料表界面对外场环境(气氛、温度等)的响应规律,揭示使役环境下催化材料等表界面结构与性能的内在关联,为高性能纳米材料的表界面设计提供实验依据。近年来,先后在Science,Angew. Chem.,ACS Catal.,Nano Lett.等著名期刊发表SCI论文40余篇。报告题目:催化材料表界面动态行为的原位电镜研究【摘要】 随着材料尺寸减小,表界面原子所占比例显著增加,因此纳米催化剂的表界面对其性能起着主导作用。尽管目前通过各种手段可以获得催化材料表界的一些重要信息,但是对于气氛环境下催化材料表界面行为的认知还非常有限。原位电子显微学技术的发展为我们在原子尺度原位研究外场环境作用下材料结构的动态演变提供了前所未有的机遇。本报告主要介绍我们课题组近年来利用原位电子显微学手段对催化材料表界面的原位动态研究工作。赛默飞世尔科技电镜应用开发专家 吴伟【个人简介】赛默飞世尔科技扫描电镜和双束电镜资深产品专家,有超过十八年电镜应用经验,为聚焦离子束双束电镜,超高分辨率扫描电镜和环境真空扫描电镜提供技术支持,擅长低电压扫描电镜技术对介孔分子筛的表征以及运用双束电镜对锂电池正负极及隔膜材料的三维表征,镀膜包覆,界面和传质分析,在加入赛默飞公司之前在中国科学院上海硅酸盐研究所分析测试中心工作了10年,为SEM,FIB,EPMA,EBSD,EDS,WDS,CL提供技术支持,期间发表电镜应用相关专业文章20余篇,撰写《低电压扫描电镜应用技术研究》和《扫描电镜和电子探针的基础》专著2篇,参与3项电镜、电子探针以及能谱仪相关国家标准制定。报告题目:基于扫描电镜和双束电镜的原位微反应系统【摘要】 材料合成中的反应温度以及反应气氛均会影响材料显微结构,从而决定材料最终性能。随着新材料的发展,迫切的需要精准地调节材料合成工艺中的“温度”和“气氛”这两个最重要参数。基于扫描电镜和双束电镜的原位微反应系统具备原位气氛加热功能,其低热漂移设计,实现在1200℃高温下,实现高分辨率SE/BSE成像,也可以实现高分辨率STEM、EDS和t-EBSD分析。卡尔蔡司(上海)管理有限公司应用专家 高迪【个人简介】硕士毕业于北京工业大学,2017年至今在蔡司显微镜部工作,在电子显微学及微纳加工等相关领域有多年工作和学习经验,为国内近百余客户进行了应用培训和成像演示工作,协助用户解决SEM及FIB应用问题。熟悉SEM和FIB在材料科学、化学物理、半导体科学等领域的应用。报告题目:蔡司跨尺度多模态原位实验解决方案【摘要】 原位实验作为材料表征的重要手段,可以将材料性能和微观结构联系起来,而材料的性能与尺寸又密切相关,所以在不同尺度对材料进行原位研究就显得尤为重要。蔡司可以提供从纳米到厘米,从二维到三维,从制样到表征再到分析的全套原位实验解决方案,助力解决材料科学研究中不同尺度下的原位实验难题。上海微纳国际贸易有限公司经理 赵颉【个人简介】理学博士,毕业于北京工业大学固体微结构与性能研究所,主要研究方向是金属材料塑性变形中的电子显微结构及其变形机理。在电子显微学领域具有超过十年的应用经验,了解多种电子显微学分析方法及制样技术。目前任职于上海微纳国际贸易有限公司,负责Fischione品牌电镜制样相关及原位分析设备的推广与销售。报告题目:Fischione多尺度可控环境原位电镜样品制备解决方案【摘要】 随着电子显微学技术的发展,以及对新能源材料的研究越来越深入,电镜样品制备作为电子显微学研究的前提条件,显得尤为重要。由于新能源材料往往对于水氧具有很高的敏感性,因此如何在多尺度下制备水氧敏感的电镜样品就成为当前重要的技术问题。Fischione提供了多尺度下可控环境的原位电镜样品制备解决方案,来满足扫描电镜、透射电镜的可控环境的无损样品制备需求。
  • 直播预告!iCEM 2023之原位电子显微学技术及应用篇
    2023年6月27-30日,仪器信息网(www.instrument.com.cn) 与中国物理学会电子显微镜分会(对外:中国电子显微镜学会/www.china-em.cn)将联合主办“第九届电子显微学网络会议(iCEM 2023)”。iCEM 2023会议围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家、重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,中国电子显微镜学会参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2023 或扫描二维码报名“原位电子显微学技术及应用”专场预告(注:最终日程以会议官网为准)专场二:原位电子显微学技术及应用(6月27日下午)专场主持暨召集人:袁文涛 浙江大学电镜中心 研究员报告题目演讲嘉宾纳米分辨高温原位扫描电镜研发新进展及其应用张跃飞(浙江大学 教授)待定复纳科学仪器(上海)有限公司催化反应过程及活性位电子显微学研究周燕(中国科学院大连化学物理研究所 研究员)Cu基催化剂表界面动态结构原位电子显微研究罗浪里(天津大学分子+研究院 教授)金属催化剂的动态原位电镜研究黄兴(福州大学 教授)嘉宾简介及报告摘要(按分享顺序)专场主持暨召集人:袁文涛 浙江大学电镜中心 研究员【个人简介】袁文涛,浙江大学材料学院“百人计划”研究员,博士生导师,浙江省杰出青年基金获得者。2017年在浙江大学材料学院取得博士学位,2021年9月加入浙江大学材料学院张泽院士/王勇教授研究团队。之后分别在浙江大学化学系和材料学院进行博士后研究,期间曾赴丹麦技术大学访学。长期致力于利用和发展环境电子显微学方法,在原子尺度下探索纳米催化剂表界面对外场环境的响应规律,揭示使役环境下催化材料表界面结构与性能的内在关联。在Science, Angew. Chem., ACS Catal., Nano Lett.等著名期刊发表SCI论文40余篇。担任国家重点研发计划青年科学家项目首席科学家,获得全国电子显微镜学会优秀青年学者奖、国际材料联合会 “前沿材料青年科学家奖”等奖项。张跃飞 浙江大学 教授【个人简介】张跃飞:男,博士,浙江大学材料科学与工程学院求是特聘教授,博士生导师。中国科协求是杰出青年科技成果转化奖获得者,北京市长城学者,美国麻省理工学院访问学者,香港城市大学高级研究员。长期从事原位电子显微学相关方法与仪器开发,并致力于原位高温微观力学性能表征方法研究,开发的扫描电子显微镜原位高温力学性能测试系列化仪器,为先进材料的研发提供新设备、新技术、新手段。先后主持和参与完成国家重大科学仪器专项、国家自然科学基金和北京市自然科学基金10余项。发表论文200余篇,授权发明专利20余项。研究成果曾获国家自然科学二等奖、北京市科学技术奖一等奖、入选中国高等学校十大科技进展等。报告题目:纳米分辨高温原位扫描电镜研发新进展及其应用【摘要】高温、应力及其耦合作用是金属、陶瓷等材料在热处理、烧结、塑性加工过程中微观结构调控与性能优化的主要手段。长期以来对材料加工制备与性能评价中微观结构研究主要依靠事后离位表征,缺乏材料加工或服役条件下微观结构演变和与之相应的性能调控全时过程信息。纳米分辨原位高温扫描电镜的开发,实现了从纳米到宏观尺度可视化研究材料在高温受力条件下微观结构演变与力学性能间定量化关系,是优化材料制备工艺、质量检测、服役寿命评估、安全性评价重要科学手段。报告将介绍纳米分辨原位高温扫描电镜仪器最新进展、原位表征方法发展及其在合金研究中应用的最新成果。周燕 中国科学院大连化学物理研究所 研究员【个人简介】中国科学院大连化学物理研究所催化基础国家重点实验室研究员。主要从事氧化物负载金属催化剂的界面结构调控及催化性能研究,以及多相催化原位研究工作。采用环境透射电子显微镜、原位X 射线技术研究工作条件下催化剂的动态变化,解析催化构效关系。近5年来在《Nature Catalysis》、《Angewandte Chemie International Edition》、《ACS Catalysis》等发表通讯作者论文10余篇。报告题目:催化反应过程及活性位电子显微学研究【摘要】 催化科学的发展趋势是在原子尺度精确调控催化剂活性位结构,在反应条件下表征处于工作状态的催化剂动态行为,进而在原子、分子层次定量描述催化剂构–效关系。报告人利用纳米结构CeO2、ZnO和MoC等分散Au、Cu纳米粒子或原子簇,通过氧化物活性晶面的选择性暴露,调节金属组分的落位以及金属–氧化物界面结构、相互作用方式和程度;利用原位透射电镜和谱学技术表征界面活性位的原子排布及配位环境,跟踪催化剂活性位结构在反应温度和气氛下的动态行为,在原子尺度上建立催化剂构–效关系。罗浪里 天津大学分子+研究院 教授【个人简介】罗浪里,天津大学分子+研究院教授,博士生导师。2012年获得纽约州立大学宾汉顿分校材料科学与工程博士学位,先后在美国西北大学、能源部西北太平洋国家实验室从事研究工作。2018年7月加入天津大学分子+研究院。主要研究方向为原位电镜表征、能量存储与转换机理研究。在原子尺度金属氧化机理、锂电池电化学反应机理以及异相催化过程与机理等方向取得了一系列成果, 以通讯和第一作者身份在Nature Materials, Nature Nanotechnology, PNAS, Physical Review Letters, JACS, Angewandte Chemie等刊物发表文章50余篇。报告题目:Cu基催化剂表界面动态结构原位电子显微研究【摘要】催化剂的活性位点具有特定的结构与化学特性,并且往往在催化过程中动态产生,这使得我们准确认识其催化机理十分困难。本研究利用原位环境透射电子显微方法,在原子/分子尺度研究反应气体吸附/活化引起的Cu基催化剂表界面结构变化,揭示反应条件下结构活性位点特征;并以理论计算和模拟研究气体与表面作用机制,从而厘清其活化/反应机理。黄兴 福州大学 教授【个人简介】黄兴,福州大学化学学院教授、博导,福建省“闽江学者”特聘教授、国家高层次青年人才。2013年博士毕业于中科院理化技术研究所,先后在德国马普学会弗里茨-哈勃研究所、化学能源转换所、瑞士苏黎世联邦理工学院从事科研工作,2020年加入福州大学,任独立PI;主要从事原位电镜在材料、催化领域的研究工作,包括1)低维纳米材料设计、合成及生长机制研究;2)催化材料的表界面结构、动态变化以及构效关系研究。迄今共发表SCI论文100余篇,包括Science、Nat. Catal.、Nat. Commun.、Adv. Mater.、Angew. Chem. Int. Ed.、ACS Nano等,文章被引7000余次,H因子42。报告题目:金属催化剂的动态原位电镜研究【摘要】金属催化剂在工业催化反应中起着至关重要的作用,揭示金属催化剂的活性结构和构效关系是催化领域的核心研究内容之一。原位电镜由于可以实现环境气氛下的超高分辨表征,已经成为催化研究的理想工具之一。本报告将通过几个不同的金属催化体系介绍如何利用原位电镜揭示催化剂在反应气氛下的活性结构、动态变化以及构效关系。会议联系会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会汪老师:13637966635,1437849457@qq.com会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 日程揭晓!iCEM 2024之原位/环境电子显微学与应用专场预告
    2024年6月25-28日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(对外)(www.china-em.cn)将联合主办“第十届电子显微学网络会议(iCEM 2024)”。会议结合目前电子显微学主要仪器技术及应用热点,邀请业界知名电子显微学专家、电子显微学仪器技术专家、电子显微学应用专家等,重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。iCEM 2024恰逢电子显微学网络会议创立十周年,会议专场将增设“十周年”主题内容,围绕过去十年我国电子显微学重要进展、未来展望等进行分享。第十届电子显微学网络会议(iCEM 2024)将设置八个分会场:1) 原位/环境电子显微学与应用;2)先进电子显微学与应用;3)扫描电镜/聚焦离子束显微镜技术与应用;4)电子能量损失谱/电镜光谱分析技术;5)低温电子显微学与应用;6)生物医学电镜技术与应用;7)电镜实验操作技术及经验分享;8)电镜开放共享平台及自主保障体系建设。诚邀业界人士线上报名参会。主办单位:仪器信息网,中国电子显微镜学会(对外)参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2024/或扫描二维码报名“原位/环境电子显微学与应用”专场预告(注:最终日程以会议官网为准)专场一:原位/环境电子显微学与应用(6月25日上午)专场主持暨召集人:尹奎波 东南大学MEMS教育部重点实验室副主任/副教授报告时间报告题目演讲嘉宾09:00-09:30【十周年主题报告】:小尺寸金属Ag变形机制的原位原子尺度研究王立华(北京工业大学 教授)09:30-10:00Protochips基于机器学习全流程原位解决方案赵颉(上海微纳国际贸易有限公司 产品经理)10:00-10:30扫描透射电子显微技术(STEM)在低维量子材料的应用与研究进展林君浩(南方科技大学 教授)10:30-11:00日立聚光镜球差电镜HF5000的原位功能介绍郭晓杰(日立科学仪器(北京)有限公司 电镜应用工程师)11:00-11:30原位观测表面-亚表面动态耦合孙宪虎(中国科学院大学 副教授)11:30-12:00液相环境金属纳米晶体结构演变机制研究王文(郑州大学 副教授)嘉宾简介及报告摘要(按分享顺序)专场主持暨召集人:尹奎波 东南大学MEMS教育部重点实验室副主任/副教授【个人简介】长期从事低维半导体材料的原位制备和性能调控工作,聚焦于新材料体系的可视化原子制造过程和新功能器件的开发,以期为下一代半导体材料和器件发展提供思路。在Nature、Nature Commun.、Adv. Mater.、IEEE Sens. J.等国际期刊发表SCI论文130余篇,总被引频次超过7000次,H因子40;获授权中国发明专利20余项;获江苏省科学技术奖一等奖和中国发明协会发明创新奖一等奖等。任中国电镜学会原位电子显微学方法专业委员会副主任,东南大学MEMS教育部重点实验室副主任,Micromachines 编委等。王立华 北京工业大学 教授【个人简介】王立华,北京工业大学材料与工程学院教授、博士生导师。入选国家WR领军人才、国家优青、北京市卓越青年科学家计划,北京市青年拔尖团队等。获国家自然科学二等奖,北京市科学技术奖一等奖。获得澳大利亚优秀青年基金(Discovery Early Career Researcher Award),在昆士兰大学从事博士后研究工作。现主要从事材料透射电子显微镜表征、原子尺度下材料力学行为的原位实验研究。发表论文100余篇,包括Science 1篇,Nat. Energy 1篇,Nat. Commun. 8篇,Phys. Rev. Lett. 2篇,Adv. Mater. 2篇,Nano Lett. 4篇,Acta Mater. 4篇,ACS Nano 4篇等。成果被Science,Nature, Nature Materials, Nature Communications等引用6000余次。承担国家重点研发计划课题、JKW项目、霍英东基金、国家自然科学基等10余项国家/省部级项目,总经费4000余万。Science, Phys. Rev. Lett., Nat. Commun.,Adv. Mater., Nano Lett.,Acta Mater., ACS Nano等20余种期刊审稿人。报告题目:小尺寸金属Ag变形机制的原位原子尺度研究【摘要】材料力学性能与其变形过程中微观结构演化的原子机理直接相关。在原子层次认知材料弹塑性变形过程的原子机理,是其力学性能优化的基础。透射电镜具有原子分辨率,然而常规的原位力学实验技术空间分辨率往往只有纳米尺度。本报告介绍团队原创的原子分辨的材料弹塑性力学行为研究方法。并介绍利用该方法研究尺寸对金属弹性极限及塑性变形机制的影响。在原子层次研究尺寸对多晶金属材料塑性变形机制以及弹塑性能的影响。最后介绍原子分辨的原位观测技术对解决一些经典科学问题的优势。赵颉 上海微纳国际贸易有限公司 产品经理【个人简介】理学博士,毕业于北京工业大学固体微结构与性能研究所,主要研究方向是金属材料塑性变形中的电子显微结构及其变形机理。在电子显微学领域具有超过十年的应用经验,了解多种电子显微学分析方法及制样技术。目前任职于上海微纳国际贸易有限公司,负责电镜制样相关及原位分析设备的推广与销售。报告题目:Protochips基于机器学习全流程原位解决方案【摘要】透射电镜已经成为现代材料研究的重要手段之一,由于传统的透射电子显微镜只能局限在真空条件下对样品进行结构已经形貌的观察。针对温度、气氛、液体等环境下样品的动态变化过程难以进行直接的观察。使用原位透射电镜样品杆可以加入不同外场环境对样品进行原位动态的观察,获取最直接的动态结果,尤其是在研究纳米材料、热电材料、能源材料以及催化反应等领域具有十分强大的优势。Protocolchips基于机器学习采用热、电、气体以及液体原位样品杆,为用户带来了硬件以及软件的整合,提供了全新的原位实验解决方案。林君浩 南方科技大学 教授【个人简介】林君浩,南方科技大学物理系副系主任,教授,国家青年特聘专家,博士生导师。博士毕业于美国范德比尔特大学(Vanderbilt University)物理系,后赴日本任JSPS特聘研究员,2018年加入南方科技大学物理系任准聘副教授,2024年5月破格晋升为长聘正教授。主要研究兴趣为透射电子显微学新技术与新方法的发展,以及新型低维量子材料的微观量子物态的精确测量及缺陷对宏观量子物性的影响。近5年来,在Nature,Science,Nature Materials/Electronics/Synthesis, Nature Communications, Advanced Materials,ACS Nano等高影响期刊发表130余篇文章,总引用次数超过14500多次,H因子52。多次在国际学术会议及高校论坛做邀请报告,担任Nature, Nature Communications等期刊审稿人,承担多项国家与省市级科研攻关项目。入选《麻省理工科技评论》“35 岁以下科技创新 35 人”2021中国区榜单,2022年获广东省青年五四奖章提名奖,2024年入选爱思唯尔中国高被引学者(物理)。报告题目:扫描透射电子显微技术(STEM)在低维量子材料的应用与研究进展【摘要】我将报道定量衬度分析技术在二维材料缺陷表征中的应用与方法学发展,以及我们课题组在克服二维材料水氧敏感性的一些设备创新尝试。我们搭建了一套具有完全知识产权的大型氛围控制互联系统,将水氧敏感二维材料的生长-表征-转移-高精度结构解析-器件制作与测量整个实验过程都保护在惰性氛围下。我们利用该系统在直接观测二维敏感单层材料晶格原子结构与缺陷中取得的一些初步成果,包括单层敏感WTe2的大范围无损本征褶皱结构,MoTe2/WTe2本征缺陷的统计分布,少层卤族铁磁反铁磁材料的直接CVD制备与无损表征,单层CrI3的缺陷磁性调控,层状拓扑反铁磁绝缘体MnBi2Te4的自发表面重构现象等。最后,我将讨论透射电子显微技术发展的新机遇与新挑战,包括低温冷冻电镜技术在二维材料中的应用和透镜消磁技术研究二维磁性与超导相变等。郭晓杰 日立科学仪器(北京)有限公司 电镜应用工程师【个人简介】 郭晓杰博士毕业于中国科学院大学上海硅酸盐研究所,主修材料物理与化学专业,现任日立科学仪器(北京)有限公司电镜应用部电镜应用工程师,主要负责日立聚光镜球差电镜HF5000的相关应用支持。报告题目:日立聚光镜球差电镜HF5000的原位功能介绍【摘要】日立聚光镜球差电镜HF5000是具有原子级分辨率的环透电镜,并且配备了二次电子探测器,能够在进行原位通气实验时为材料提供原子级晶体结构及表面形貌信息。另外,它可以配备各种热、电及液相样品杆。本报告将介绍HF5000原位测试实例及各种样品杆的应用情况。孙宪虎 中国科学院大学 副教授【个人简介】孙宪虎,中国科学院大学化学科学学院副教授,海外优青,中科院百人计划入选者,环境电镜课题组组长。美国纽约州立大学宾汉姆顿分校博士,师从Guangwen Zhou教授,进行原位气-固界面研究。美国劳伦斯伯克利国家实验室材料科学系和美国国家电镜中心博士后,师从Haimei Zheng 教授,进行原位液-固界面研究。博士期间先后在布鲁克海文国家实验室苏东研究员课题组,美国标准与技术研究所Renu Sharma 教授课题组,匹兹堡大学Judith C. Yang 教授课题组访问与学习。发表论文20余篇,以第一或共一作者发表12篇,包括Nature 2篇, Nature Communications, Advanced Functional Materials, Small 等。授权原位液相电镜技术美国专利一项。荣获海外优秀自费留学生奖学金和纽约州立大学博士生优秀科研奖等。报告题目:原位观测表面-亚表面动态耦合【摘要】异相催化反应中,尽管亚表面未直接暴露于电解质或气体,但可以通过电子效应、几何效应、传质等影响表面上的催化反应。但是,亚表面具体如何影响表面重构进而影响反应动力学仍不明朗。因此,以铜基氧化物还原反应为例,深入探究表面和亚表面结构演变行为,以及通过氧传质所构建起来的表面-亚表面动态耦合关系。王文 郑州大学 副教授【个人简介】王文,郑州大学物理学院副教授,东南大学博士,师从孙立涛教授,美国劳伦斯伯克利国家实验室联合培养博士,师从Haimei Zheng教授。主要研究方向为利用原位液相透射电镜探究研究原子/分子尺度纳米晶体结构演变机制。近年来在Nature Materials, Research等期刊发表SCI论文多篇。报告题目:液相环境金属纳米晶体结构演变机制研究【摘要】纳米材料的性质与其尺寸、形貌、晶体结构密切相关。如何可控合成纳米材料是材料、化学等领域研究者关注的重点。但目前对纳米材料成核、生长和结构调控的机理理解存在很多未知。借助原位液相透射电镜,从原子/分子尺度上观察溶液中纳米晶体的结构演变过程,提出纳米晶体结构演变的新机制。会议联系1. 会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会(对外)汪老师:13637966635,cems_djw @163.com2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn

原位电子显微学相关的方案

  • 低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段,可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。
  • 电子显微镜技术
    目前,电子显微镜技术(electron microscopy)已成为研究机体微细结构的重要手段。常用的有透射电镜 (transmission electron microscope,TEM)和扫描电子显微镜(scanning electron microscope,SEM)。与光镜相比电镜用电子束代替了可见光,用电磁透镜代替了光学透镜并使用荧光屏将肉眼不可见电子束成像。
  • 扫描电子显微镜图像系统改造方法
    扫描电子显微镜是观察物质微观表面形貌的主要工具,它主要由真空系统、电子光学系统、图像系统和控制系统组成。现代扫描电子显微镜图像显示系统和控制系统都已经实现PC控制下的数字化,同时增加了图像处理功能,能够容易的与通用软件相结合,方便编辑报告、论文和信息传送。对于早期模拟图像系统和专用计算机控制的数字图像系统的扫描电子显微镜可以通过外接计算机图像采集系统实现模拟图像数字化,或图像系统数字化。什么是模拟图像数字化?就是将获取的图像模拟信号经过模数转换器(ADC)变成数据输入到计算机中存储、显示和处理。根据这种原理制成的图像系统,就是我们常说的被动式图像系统。其优点:采集卡电路简单,价格便宜。缺点:安装、调试困难,因为它需要和扫描电子显微镜的扫描系统同步,所以要改变原扫描电子显微镜内部电路,稍不小心就会造成事故,给扫描电子显微镜带来硬伤。另外,由于不能和扫描电子显微镜扫描真正同步,采集到的图像变形,最为明显的是圆变为椭圆,同时不能实时处理,只有将采集到的图像存储以后进行处理,才可以输出。什么是图像系统数字化?用数字扫描系统替代模拟扫描系统,由此获取的图像信号数据,完全对应电子束扫描点上的样品信息,图像显示分辨率对应电子束在样品上扫描过的行和列的点数,图像扫描和图像显示全数字化。需要说明的是现代数字扫描电子显微镜自定义分辨率值为:1024×1024,这是一个最佳值(从采集速度和分辨率两方面考虑),这和被动式图像系统所谓的图像分辨率不是一个概念。我们称这样的系统为主动式图像系统,国外升级扫描电子显微镜也是采用此种方法。其优点:图像质量高,速度快,不会产生图像变形等问题,安装简单,因为所有扫描电子显微镜都预留有外部图像控制接口,当外部控制信号到来时,内部扫描部分自动被旁路,显示部分被消隐,不需要改变任何内部电路结构。缺点:采集卡电路复杂,成本高。 综述,以上介绍了两种扫描电子显微镜改造图像系统的方法,最主要的区别在于是“被动式图像系统”还是“主动式图像系统”上,其中主动式图像系统是近年来国际上普遍使用的,因为被动式图像系统是一种早期图像数字化过渡产品,所谓的图像分辨率实质上是模拟信号取样点数,并非数字图像分辨率,像质较差,而主动式图像系统标称的分辨率才真正是数字图像分辨率,可以有效提高图像质量。

原位电子显微学相关的论坛

  • 《Science》大子刊:原位电子显微学用芯片厚度的重大突破!

    [color=#000000]原位电镜(in situ transmission electron microscopy)是一种在电子显微镜下实时高空间分辨率观察和记录材料或样品在不同条件下变化的技术,这种技术的应用涵盖了多个领域,包括材料科学、纳米科技、生物学等。特别是得益于气体和液体环境的引入,大大的拓展了原位电镜技术的应用范畴,如腐蚀科学和催化反应等。电子显微镜本身具有非常高的真空工作环境,因此,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]反应介质通常被密封在一个非常小的纳米反应器里面。由于氮化硅(SiNx)具有易于微纳米制造且在一定厚度下仍有可靠的力学特性及适度的电子透明度等优点,被广泛应用于原位电镜中芯片用的密封膜材料。[/color][color=#000000]在过去20年,基于像差校正器、单色器及直接探测器等硬件技术的发展,电子显微镜本身的性能包括空间和能量分辨率都得到显著提升。但是原位电子显微学直到目前为止,在空间分辨率上并无显著突破。关键原因是作为密封的SiNx膜材料限制了电镜本身及原位实验的品质因子。目前商用的SiNx膜的厚度一般为50 nm,而[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]电子显微学一般需要用两个原位芯片,这样仅密封膜的厚度就高达100 nm。如此厚的密封膜会造成非常高的有害电子散射,大大降低了原位电子显微学实验中采集的各种数据的信噪比。在原位电子显微学领域,学者们都一直认为降低SiNx膜的厚度非常必要,但是直到目前仍很难实现,因为仅通过刻蚀降低SiNx膜厚度,会造成力学性能的显著恶化。[/color][color=#000000]针对此问题,[b]美国西北大学的Xiaobing Hu[/b]和[b]Vinayak Dravid教授[/b]研究团队从自然界蜂窝结构稳定性获得灵感,巧妙利用[b]掺杂浓度对Si的刻蚀速率影响,在观察窗口区域引入了额外的微米尺度Si支撑图案,成功的将SiNx膜的厚度从50 nm降至10 nm以下。[/b]这种在窗口区域具有支撑图案的超薄原位芯片具有很多优点,如优异的力学性能、耐电子束辐照、充分大的可观察区域,保证了该超薄芯片在原位电子显微学上的广泛应用。基于Pd的储氢特性,作者系统了探索了超薄芯片对原位实验测量品质因子的影响,及Pd纳米颗粒的吸/析氢行为。[/color][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/c12df4c5-8db9-4fce-8ddf-16d17cfd42fd.jpg[/img][/align][align=center][size=14px][color=#7f7f7f]图1. 超薄原位电镜用芯片的制备及其优异的力学稳定性和电子束耐辐照性能,插图A、C中标尺分别为10 mm, 100 μm[/color][/size][/align][color=#000000]图1A显示超薄芯片的制备过程,图1B显示了具有不同厚度的SiNx窗口的原位芯片。图1C的扫描透射模式下的暗场和明场像显示出超薄芯片窗口区域的蜂窝状特征。图1D显示出这种超薄芯片优异的力学特性,即使在5 nm厚的情况下,仍能承受1个大气压,完全满足绝大多数的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]原位实验。图1E显示出超薄芯片非常好的耐电子束辐照特性,当厚度从50 nm降到10 nm时,临界电子束剂量几乎没有改变。图1E为用光学方法和电子能量损失谱测量的不同厚度的SiNx膜数据。[/color][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/6f3b49eb-f7b1-4f8f-8a5f-362aa1e61846.jpg[/img][/align][align=center][size=14px][color=#7f7f7f]图2. 基于超薄原位芯片的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]电子显微学实验品质因数的显著提升[/color][/size][/align][color=#000000]图2A为理论模拟不同厚度的SiNx对Au纳米颗粒明场像信噪比的影响,对于超薄原位芯片而言,即使在电子剂量比较低的情况下,仍可以拥有很好的信噪比,成像质量比较高。图2B、C显示出在一个大气压的Ar环境不同SiNx膜厚度下的高分辨像对比。可以看出与常规50 nm厚的原位芯片相比,超薄芯片的应用不仅提高了图像的信噪比,分辨率也从2.3 ?提高到1.0 ?。图2C显示出了能谱对比结果,可以看出在一个大气压的Ar环境下,当原位芯片窗口区域膜厚度从50 nm 降低到10 nm时,Ar/Si峰值比从0.59%升到8.3%,提高了14倍以上。图2E-G数据显示了超薄原位芯片显著提高了电子能量损失谱分析的灵敏度。[/color][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/6d6e2657-12c9-4711-80d5-725e65b1eeb9.jpg[/img][/align][align=center][size=14px][color=#7f7f7f]图3. 基于超薄原位芯片电子显微学在储氢材料中应用[/color][/size][/align][color=#000000]图3A、3B为在不同支撑载体下纳米Pd颗粒的电子衍射对比图,可以看出超薄芯片显著压制了膜材料本身的有害电子散射,提高的电子衍射的信噪比。而这也允许研究人员在原位[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]实验中进行定量衍射分析。图3C-D的原位电子衍射,显示出Pd纳米颗粒在原位充氢、放氢过程中的相变行为。图3E的电子能量损失谱分析确认了相变产物PdHx的产生。[/color][color=#000000]基于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]超薄原位芯片的设计与探索实验,作者提出这种超薄芯片的设计策略可大规模推广到[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]原位及其它基于SiNx的原位芯片上,大大提高原位电子显微学实验的品质因子,从而允许研究人员在原位实验过程中不单单观察形貌变化,可将其它先进电子显微学方法应用到原位实验上来。更进一步,这种超薄芯片也可拓展到原位X射线领域。可以说,超薄芯片的概念提出,将大大的影响整个原位实验领域。[/color][color=#000000]这一成果近期发表在[b][i]Science Advances[/i][/b]上,美国西北大学[b]胡肖兵研究副教授[/b],[/color][color=#000000][b]Vinayak Dravid讲席教授[/b][/color][color=#000000]为文章的通讯作者,[b]Kunmo Koo博士[/b]为文章的第一作者。[/color][来源:材料学网][align=right][/align]

  • 【分享】分析电子显微学导论 课件共享

    《分析电子显微学导论》作者:戎咏华 王晓东 黄宝旭 李 伟出版社:高等教育出版社 分析电子显微学是揭示材料介观和微观世界的有力工具,它能对材料显微组织的形貌、结构、成分进行三位一体的原位分析,是材料研究的重要现代技术之一。本书是材料科学与工程专业硕士生的课程教材。全书共分六章,内容包括分析电子显微镜的构造及其功能,样品的制备方法,电子衍射花样的特征和标定方法,晶体衍射中的数学处理,电子衍射衬度运动学和动力学理论及其应用,高分辨和高空间分析电子显微术的原理和应用以及分析电子显微学的进展。 本教材是掌握分析电子显微术原理和应用的入门书,故注重基本的物理概念和相关的数学推导,并附许多实例和思考题、练习题以便读者理解和掌握重点。本书配有电子课件和练习答案的光盘,便于教师授课。本教材也可作为正在从事该领域学习和研究的科技人员的参考书。如有需要该书的课件,可以留下邮箱,发给大家共享!![em31]

  • 求助高人!本人最近急需有关电子显微学方面的资料

    本人最近急需有关电子显微学方面的资料,哪位达人有的话,能否告诉我。可以发到我的邮箱 denniszzh1688@sina.com以下书目急需:材料评价的分析电子显微学方法材料评价的高分辨电子显微学方法薄晶体电子显微学高空间分辨分析电子显微学谢谢了!

原位电子显微学相关的资料

原位电子显微学相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • [ 产品简介 ]蔡司新一代场发射扫描电子显微镜Sigma系列,具有高质量的成像和分析能力,将先进的场发射扫描电子显微镜技术与优秀的用户体验完美结合。利用Sigma系列直观的4步工作流程,在更短的时间内获得更多的数据,提高测试与生产效率。可选配多种探测器,以满足半导体、能源等新材料、磁性样品、生物样品、地质样品等不同的应用需求。结合蔡司原位电镜实验平台,可以实现自动智能化的原位实验工作流程,高效率获取高通量、高质量的原位实验数据。领先的EDS几何设计保证了出色的元素分析性能,分析速度高、精度好、结果可靠。高分辨、全分析、多扩展、强智能、广应用,全新Sigma系列是助力于材料研究、生命科学和工业检测等领域的“多面手”。[ 产品特点 ]&bull 独特的Gemini镜筒设计,低电压高分辨,无漏磁&bull 广泛全面的应用场景&bull 丰富灵活的探测手段&bull 智能高效的工作流程&bull 先进可靠的分析系统&bull 强大完善的扩展平台[ 应用领域 ]&bull 材料科学,如纳米材料高分辨成像,高分子聚合物等不导电样品成像,电池材料成分衬度成像,二维材料分析&bull 生命科学,如生物样品超微结构成像,冷冻样品高分辨成像&bull 地质矿物学,如地质样品高分辨成像、成分分析以及原位拉曼联用分析&bull 工业应用,如组件失效分析,工艺诊断&bull 电子半导体行业,如质量控制与分析,6英寸Wafer快速换样,电子束曝光技术(EBL)&bull 钢铁行业,如夹杂物分析,金属材料自动原位成像分析&bull 刑侦、法医学&bull 考古学、文物保护与修复NanoVP lite模式下断裂的聚苯乙烯表面成像氧化铝颗粒高分辨二次电子成像ETSE探测器氧化锌枝晶成像InLens SE探测器氧化锆&氧化铁复合材料成像Sense BSD探测器刺毛苔藓虫超微结构成像aBSD探测器超导合金成像
    留言咨询
  • Talos F200i S/TEM 产品描述更高生产率和灵活性 — 支持更多材料科学应用 用于高分辨率成像和分析应用的Thermo Scientific Talos F200i 扫描/透射电子显微镜 (S/TEM) 现可提供对称布置的双100 mm2 Racetrack 检测器“( Dual-X”),以提高分析通量。 Thermo ScientificTM TalosTM F200i S/TEM 为 20-200 kV 场发射扫描/透射电子显微镜,专为提高各种材料科学样品和应 用的分析性能和生产率而设计。其标准 X-TWIN 物镜极靴间距——可赋予应用灵活性——结合高再现性镜筒设计,可支持高分辨率 2D 和 3D 表征分析、原位动态观察及衍射应用。同时,Talos F200i 还 配备了 4k × 4k Ceta 16M 相机,可在 64 位平台上提供大 视野、高灵敏度快速成像。您可根据自身需求选择适宜的 EDS 可加装各类的能谱探头,从单 30 mm2 到双 100 mm2 特点与用途关键优势 双 EDS 技术可实现。从单 30 mm2 探头到可实现高通量 (或低剂量)分析的双 100 mm2 探头,可根据您的需求 选择理想的 EDS 高质量 S/TEM 图像和准确的 EDS。借助创新直观的 Velox 软件用户界面,可通过极其简单的操作方法,获得 高质量 TEM 或 S/TEM 图像。Velox 软件内置的特有的 EDS 吸收校准功能可实现精确的定量分析 全方位原位分析功能。加装三维重构或原位分析 样品杆。高速相机、智能软件和我们的大 X-TWIN 物镜间 距可实现 3D 成像和原位数据采集,同时可避免分 辨率和分析能力的损失 提高生产效率。超稳定镜筒,借助 SmartCam 和恒定功率 物镜实现的远程操作,用于快速的模式和高压切换。轻松 快速切换,适用于多用户环境 可重复性的数据。所有日常 TEM 合轴(例如,聚焦、 共心高度调节、电子束偏转、聚光镜光阑器对中、电子束 倾斜和旋转中心)自动完成,确保每次开始使用时都具有优质的成像条件。实验可反复重现,使您可以更多关注研 究工作本身,而非所用设备 高速大视野成像。4k × 4k Ceta CMOS 相机具有大视野, 能够在整个高压范围实现高灵敏度、高速数码缩放 紧凑型设计。本设备具有更小的尺寸和占地面积,有助于 在更具挑战性的空间内安装,同时降低安装和支持成本 产品参数TEM 线分辨率 ≤0.10 nm TEM 信息分辨率 ≤0.12 nm LACBED 会聚角可至 ≥100 mrad 衍射角可至 24°STEM 分辨率 ≤0.16 nm EDS 侧插式,可伸缩 电子枪类型 场发射枪或高亮度场发 样品操作 Z 轴运动总行程 (标准样品杆) ±0.375 mm α 倾转角可至(三维重构样 品杆) (高视野样品杆) ±90° 样品漂移 (标准样品杆) ≤0.5 nm/min
    留言咨询

原位电子显微学相关的耗材

  • 电子显微镜钨灯丝电子源10颗
    钨灯丝9210016适用于所有原厂的钨灯丝扫描电镜,使用寿命大于50小时。钨灯丝扫描电镜是一种用于物理学领域的分析仪器,扫描电镜分辨率:高真空二次电子像3.0nm(30KV) 扫描电镜放大倍数:5×~1000000×,连续可调 能谱仪分辨率:MnKα峰的半高宽优于127eV; 能谱仪元素测试范围:Be4— Pu94。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 电子显微镜ETD放大器高压板
    Det. MULTIP. TUBE,DPMTETD放大器高压板,用于原厂电子显微镜,为二次电子探头的放大器提供高压大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 电子显微镜专用用碳沉积
    CARBON FILL,MGIS碳沉积(多支气体注入系统专用)用于原厂电子显微镜多支气体注入系统,碳沉积(多支气体注入系统专用)是一种存放碳化合物的容器,将药品加热到一定温度,药品气化,在真空压差和可控阀门的作用下,将药品气体喷洒在样品表面,同时在离子束的诱导作用下将碳分子沉积在样品表面。以实现对样品表面形貌的保护,或对样品进行导电处理。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制