有机高分子材料

仪器信息网有机高分子材料专题为您整合有机高分子材料相关的最新文章,在有机高分子材料专题,您不仅可以免费浏览有机高分子材料的资讯, 同时您还可以浏览有机高分子材料的相关资料、解决方案,参与社区有机高分子材料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

有机高分子材料相关的资讯

  • 直播预告!先进高分子材料主题网络会议之高分子材料研究专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子材料研究专场报告嘉宾简介:中国科学技术大学教授 尤业字尤业字,中国科学技术大学化学与材料科学教授,博士生导师。1996年本科毕业于合肥工业大学化学工程学院,2000年获中国科学技术大学硕士学位, 2003年获得年中国科学技术大学博士学位,并获中科院院长奖学金。随后,2003年在日本东京工业大学资源化学研究所做访问研究员,2005年到美国美国韦恩州立大学药学院进行博士后研究。2007年12月回到中国科学技术大学高分子科学与工程系,任副教授;2012.12至今 中国科学技术大学高分子科学与工程系教授、博士生导师;2017.12合肥微尺度物质科学国家研究中心研究员。2007以来,主持或参与科技部重点研发、基金委重点项目、面上项目等。多年来一直从事高分子纳米材料在基因传递和癌症治疗领域的研究,在Nat Metab, Nat Commun, Adv Mater, JACS, Angew Chem, ACS Nano等国际学术期刊发表研究论文150余篇。2011获教育部新世纪优秀人才,2016年获得国家自然基金委杰出青年科学基金资助。大部分癌症患者死于化疗药物的耐药或者肿瘤转移,因此合成耐药倾向低且抑制肿瘤转移的药物是当前癌症治疗的关键。构建了对肿瘤细胞膜表面特有的磷脂酰丝氨酸有高度特异性结合作用的两亲性有机金属配合物的多功能纳米材料,能实现对癌细胞的精准靶向,在肿瘤组织的高效富集,高效抗肿瘤和肿瘤转移。报告题目:靶向肿瘤细胞膜上磷脂酰丝氨酸的抗肿瘤药物华南理工大学教授 童真童真,华南理工大学教授、博士生导师。研究方向为高分子材料结构与性能、功能高分子材料,近期主要从事聚电解质相互作用转变与凝聚态变化、超拉伸环境响应纳米复合水凝胶、高分子物理凝胶化及其微观结构的形成与演化等方面的研究工作,先后主持过国家和省部级项目32项,包括国家杰出青年科学基金、国家自然基金重点项目、国家重大科研仪器研制项目等。曾在J. Am. Chem. Soc.、Adv. Func. Mater.、Macromolecules等刊物发表学术论文308篇,被引用约10000次;获授权中国发明专利33件。曾获广东省自然科学一等奖和二等奖各1项,2000年获教育部“长江学者特聘教授”。搭建了多粒子示踪微流变平台,在凝胶化的高分子流体中加入微米直径的探针粒子,记录这些粒子在不同空间位置和不同时间热运动的轨迹,得到了体系在凝胶化点近旁的微观动态特性。对于6 wt%明胶溶液的凝胶化,记录不同时间探针粒子的均方位移(MSD),系综平均得到探针粒子位移的分布密度在凝胶化点偏离Gauss分布,而单粒子轨迹的非高斯参数(kurtosis)表明凝胶化点近旁单粒子位移符合Gauss分布。系综非高斯性是由扩散系数的分岔引起的,探针的非高斯动力学与介质的非高斯动力学并非直接等效,受到观测长度与体系相关长度耦合的影响。报告题目:多粒子示踪微流变仪观测凝胶化点近旁的动态不均匀性 中国科学院长春应用化学研究所研究员 陈全高分子的链结构和各种拓扑结构赋予其不同于小分子体系的熔体加工行为。在纺丝、吹膜和拉伸等加工过程中,拉伸流场是占主导的流场,因此研究拉伸流场下高分子熔体的链取向拉伸等行为和相应的非线性流变响应对于高分子加工具有重要的指导意义。本报告将聚焦高分子熔体特别是可逆凝胶体系的拉伸流变学研究的最新进展。报告题目:高分子熔体非线性拉伸流变学进展 沃特世科技(上海)有限公司材料科学市场高级应用工程师 李欣蔚李欣蔚,2011年加入Waters,有十几年的色谱、质谱行业经验,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。聚合物科学取得的进展正迅速将应用扩展到生活的方方面面:努力开发可持续的聚合物材料,希望能减少污染和石油的使用;轻量、高强度材料的开发;以及各种先进材料改性研究,获取更优异性能。但聚合物包括从线性聚合物到三维立体结构的多种分子构型。由于这种分子复杂性,需要色谱和质谱来把控一级结构、混合物、同分异构体和分子结构。在本报告中将分享大量聚合物开发各个阶段的分析案例,为进一步构效关系研究给与更多的支持。报告题目:借助色谱质谱探寻聚合物分子构型和问题溯源 清华大学教授 杨睿杨睿,清华大学化学工程系教授,博士生导师。现任中国机械工程学会理事、高分子材料专委会秘书长;中国材料研究学会高分子材料与工程分会副秘书长;中国化工学会工程热化学专业委员会专家委员。担任老化领域国际权威期刊Polymer Degradation and Stability和Polymer Testing、Journal of Vinyl and Additive Technology、BMC Chemistry、《功能高分子学报》、《机械工程材料》和《塑料工业》等期刊编委。担任173计划重点项目技术首席专家。发表论文100余篇,授权专利19项。主编教材《聚合物近代仪器分析》及 Analytical Methods for Polymer Characterization,参编教材Polymer Science and Nanotechnology。获教育部自然科学二等奖和北京市科技进步二等奖各 1 项。高分子材料的使用寿命需和使用要求及使用条件相适应。在储存期和使用期,希望材料尽可能保持其使用性能;在废弃期,则希望材料尽快降解。同一种材料在不同地区和不同的气候条件下使用,其使用寿命也不同。报告以PBAT和PP为例,介绍高分子材料的全生命周期和在不同时空下的降解行为,以期对材料的研发和应用起到指导作用。报告题目:高分子材料的全生命周期降解行为及时空谱 杭州师范大学教授 李勇进李勇进,杭州师范大学材料与化学化工学院教授、博导。主要研究领域为多相多组分高分子材料界面调控、高分子材料反应性加工、高分子材料凝聚态物理及流变学等。已完成和承担国家重大研发计划课题、国家基金委重大项目课题以及国家自然科学基金区创联合重点项目等多个重要纵向研究课题。在Macromolecules, Polymer, ACS Macro Lett等国内外重要学术期刊上发表论文160余篇, SCI引用6300余次;获得授权的美国专利4项、日本专利22项、中国国家发明专利42项;编写英文专著6篇章。2010年5月获得第18届日本筑波化学生物奖, 2017年获得高分子加工“新锐创新奖”,2018年、2020年和2021年三次获得冯新德高分子奖提名奖,2019年获得国际高分子加工学会(PPS) Morand Lambla奖,2020年获得浙江省自然科学二等奖(排名第一)。目前担任Journal of Polymer Engineering 副主编,Composite Science and Technology, Functional Composite Materials等国际重要学术期刊编委。是浙江省塑料工程协会副理事长、中国力学学会流变学分会委员、中国复合材料学会纳米复合材料分会常务理事、中国化学会应用化学学科委员会委员。高分子材料的界面增强和调控是多相多组分高分子材料研究的核心科学问题。到目前为止,不相容共混物界面增容研究以共价键连接形成的增容剂分子为主要途径,增容体系的可设计性和普适性受限。本文基于聚乳酸立构复合作用探索建立界面“非共价增容”新模式。首先通过反应性加工技术,分别制备左旋聚乳酸(PLLA)接枝的聚甲基丙烯酸甲酯(PMMA)与右旋聚乳酸(PDLA)接枝的共聚物聚苯乙烯(PS),基于PLLA与PDLA间强相互作用,通过熔融加工一步构筑“类嵌段/接枝共聚物”;进一步研究“类嵌段/接枝共聚物”对不相容共混物(PS/PMMA)的增容影响。论文结果有助于建立多相多组分高分子“非共价增容”基本模型,有望为共混材料结构设计和界面调控提供新途径。报告题目:类嵌段/接枝高分子的构筑及其对不相容共混物的增容研究会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 揭秘高分子材料全球顶尖实验室
    刚刚落下帷幕的2013年诺贝尔奖颁奖牵引全球注意力,物理奖、化学奖、生物奖等,无一不涉及高科技应用,这实际上是一场科技力量的较量。   科学的&ldquo 圣堂&rdquo 依然闪耀着光芒,引无数科技&ldquo 圣徒&rdquo 们前仆后继。   高分子材料也依然充满魅力,功能性膜材料、有机硅、工程塑料、特种橡胶,也无一不充满着未来想象力。   理财周报材料科学实验室把探索的触角延伸至全球领域,在世界范围内寻找这些&ldquo 闪耀&rdquo 的物质所在地。   据理财周报记者统计,全球涉足高分子材料科学研究的科研机构、高校研究所、顶尖公司研究所共有175所。其中,美国有53家,除了美国以外的主要地区包括欧洲、韩国、日本、新加坡、南非等有76家,中国有46家,美国是拥有顶尖科研机构、高校研究所和公司研究所最多的国家,科研实力全球领先。   美国&ldquo 之巅&rdquo   美国是科技大国,走在高科技前沿,名副其实。   50个州一共拥有50个科研机构和高校研究所,其中,据理财周报记者统计,在美国涉及高分子材料科学研究的顶尖高校以及科研机构共有50所,其中名列前五的分别是麻省理工学院、斯坦福大学、伊利诺伊大学厄巴纳香槟分校、西北大学以及加州大学伯克利分校。   此外,波士顿大学聚合物研究中心、普林斯顿大学化学工程部、加州理工学院化学工程与聚合物物理流变学、弗罗利达大学的瓦格纳小组、马萨诸塞大学的阿姆赫斯特高分子研究与教育中心、马萨诸塞大学塑料工程罗维尔分校、南密西西比大学、康奈尔大学以及新罕布什尔大学也都是集聚高分子材料科学研究精英的&ldquo 圣堂&rdquo 。   这些堆砌的名校,是美国能够站在高分子材料科学研究&ldquo 之巅&rdquo 的扎实基础。   不仅高校研究所林立,美国在专业科研机构方面实力非常雄厚。理财周报主要关注涉足高分子材料科学研究的美国标准与技术研究院、NIST化学科学与技术实验室以及NIST材料科学与技术实验室。   作为权威科研机构,美国标准与技术研究院(NIST),前身为国家标准局(NBS,1901年~1988年),是一家测量标准实验室,属于美国商务部的非监管机构。NIST总部位于马里兰州的盖瑟斯堡,在国内约有350个附属研究中心。   此外,在高分子材料的产业化发展过程中,一批具有创新精神的企业走在了时代的前沿,这其中包括大名鼎鼎的杜邦公司、尤尼艾克斯公司(UNIAX)、明尼苏达矿务及制造业公司(3M)以及光学聚合物研究公司(Optical Polymer Research,Inc.)等。   中国&ldquo 在路上&rdquo   在领略了其他地区高分子材料研究所的风采后,我们走进中国大陆地区高分子研究所和高校实验室。   大陆研究所方面,中国科学院占据了绝对的主导地位。第三方研究显示,中科院材料科学专业的研究已经连续多年全球领先,现在也是一直走在&ldquo 路上&rdquo   根据中科院内部人士透露,中科院直属研究所中涉及物理和化学研究的所几乎都在做新材料的研发,其中包括中科院宁波材料技术与工程研究所、中科院化学研究所、中科院物理研究所、中科院国家纳米科学中心、中科院金属研究所、上海应用物理研究所、上海硅酸盐研究所、长春应用化学研究所、高能物理研究所、半导体研究所、光电研究院、微电子研究所、北京综合研究中心、工程热物理研究所、大连化学物理研究所、上海技术物理研究所、上海有机化学研究所等。   在以上研究所中,高分子材料研究做得最为出色的包括中科院化学研究所、上海应用物理研究所、上海硅酸盐研究所、长春应用化学研究所、中科院宁波材料技术与工程研究所等数家研究所。如中科院长春应用化学研究所就取得了镍系顺丁橡胶、火箭固体推进剂、稀土萃取分离、高分子热缩材料等重大科技成果450多项,创造了百余项&ldquo 中国第一&rdquo 。   此外,大陆地区众多高校的高分子实验室研究也做的风生水起,包括华北地区的清华大学、哈尔滨工业大学、北京航空航天大学、大连理工大学、天津大学、北京理工大学等,上海江浙地区的上海大学、华东理工大学、上海交通大学、浙江大学、同济大学、南京理工大学、南京大学等,以及其他地区中国科学技术大学、华中科技大学、中南大学、西安交通大学、四川大学、西北工业大学、华南理工大学、东南大学等等。   此外,国内高分子材料相关顶尖公司的研发中心力量同样不可小觑。如国内光学膜领导者康得新就从韩国、日本、美国和台湾等地区引进了100多位博士、专家人才,组建了国内领先的高分子材料研发技术团队。   欧、日、韩&ldquo 各有所长&rdquo   高分子材料目前应用广泛,但其研究也具备一定的技术和资金上的壁垒壁垒,从欧洲、日本、韩国、台湾等国家和地区的研究方式来看,存在一定的差异性,但也各有所长,取得不错的研究成果。   欧洲是高分子材料研究的一个重要区域,代表性国家有德国、英国和俄罗斯。以德国为例,德国在高分子方面的研究主要集中在国家支持成立的研究机构联合会里。德国研究气氛浓厚,既有政府支持的联合会,也有企业资助的协会。而这些研究机构也注重与大学的联系,例如马普高分子所便设立在德国美因茨大学内部。   另外,德国企业本身也同样重视新技术的研发与应用,能够迅速地将新技术、新材料应用于大规模生产,朗盛集团、西门子为当中翘楚。   英国同样拥有众多顶尖研究所和高校研究院。最早将&ldquo 黑金&rdquo 石墨烯从石墨中分离出来便是英国的曼彻斯特大学实验室。   俄罗斯关于高分子材料的研究则主要集中在国内大型、最前沿的研究机构中,比如说航空材料研究所等军工研究机构。   另外,亚洲日本、韩国也是多集中在全国性的研究机构内,起到整合资源的作用。而这些国家的企业也是高分子材料研究的前沿,索尼、LG、三星等产品风靡全球。
  • 直播预告!先进高分子材料主题网络会议之大科学装置在高分子研究中的应用专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。大科学装置在高分子研究中的应用专场报告嘉宾简介:中国科学技术大学教授 李良彬 李良彬,中国科学技术大学讲席教授,博士,博士生导师,国家杰出青年基金获得者,科技部“新型显示光学膜”创新团队负责人,国家“万人计划”领军人才。现任国家同步辐射实验室党委书记、副主任,合肥先进光源工作小组副组长。安徽省先进功能高分子薄膜工程实验室主任,中国科大-皖维PVA新材料、中国科大先研院-乐凯功能膜、中国科大先研院-国风集成电路与新型显示PI膜3个校企联合实验室主任。中科院“新型显示光学膜和离子交换膜等关键膜材料”建制化科研平台首席科学家,安徽皖维先进功能膜材料研究院有限公司首席科学家。美国化学学会Macromolecules杂志副主编。主要发展同步辐射先进技术和方法,研究高分子物理,开发先进高分子薄膜产品。近年主持国家自然科学基金委杰青、重大仪器、重点项目,科技部重点研发和中科院建制化平台等项目。通过校企联合实验室和横向项目等形式服务新型显示、新能源、新一代信息产业链薄膜企业40余家。获安徽省科技进步一等奖、教育自然科学二等各一项。同步辐射先进光源具有高亮度、波长连续可调、偏振和相干等特点,不仅是前沿基础研究不可或缺的平台,也是产业创新的利器。本报告以团队利用同步辐射开展高分子薄膜产品研发的工作,展示同步辐射在产业创新方面的潜力,希望能吸引更多企业利用同步辐射开展产品研发。报告题目:同步辐射先进光源——高分子产业创新的加速器散裂中子源科学中心研究员 程贺程贺,中国科技大学本硕博,美国国家标准与技术研究院访问学者。作为主要参与者建成我国第1台基于反应堆的小角中子散射谱仪,主持建设世界上第2台基于散裂源的微小角中子散射谱仪;公开发布我国第1套基于无序大分子中子全散射的数据分析软件(著作权2项),可重构无序大分子全原子最可几位置;发表60余篇论文,受邀在国内外会议上多次做分会邀请报告;主持了7项国家自然科学基金、1项国家重点研发项目子课题;现为中国化学会高分子材料分析技术与表征方法专业委员会、中国晶体学会小角散射专业委员会、中关村材料试验技术联盟科学试验标准化领域委员会委员;参与制定《无损检测中子小角散射检测方法》国家标准,正在主持制定相关团体标准。小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在高分子结构表征方面发挥着独特的作用。2019年11月,在广东省科技厅的资助下,微小角中子散射谱仪开始建设,将于今年底具备验收条件。为进一步发展用户,我们介绍了VSANS谱仪和机时申请方法,并分别介绍在高分子稀、浓溶液、熔体、玻璃态、晶态、复合物以及拉伸状态下测量其单链构象的实验方法。报告题目:中国散裂中子源微小角中子散射谱仪及其在高分子构象研究中的应用 上海交通大学研究员 刘烽刘烽,上海交通大学化学与化工学院教授,国家高层次人才入选者。2005年于华东理工大学取得本科学位;2008年于复旦大学取得硕士学位;2014年于麻省大学取得哲学博士学位,师从国际著名高分子科学家 Thomas Russell教授;随后在美国劳伦斯伯克利国家实验室(2014-2016)从事博士后研究。主要研究领域为有机薄膜光伏电池、同步辐射散射技术、质子膜燃料电池等。至今在包括Nature Materials, Nature Photonics, Nature Energy, Nature Communication, Adv. Mater., Adv. Energy Mater., Joule 等重要学术期刊上发表论文300余篇,引用超过24000次,科睿唯安高被引科学家。报告检验阐述同步辐射散射技术的基本知识,包括散射的基本原理、广角/小角硬光散射、共振散射、原位散射实验的相关内容,并且结合相关实际应用案例展示同步辐射散射技术的应用优势。报告题目:同步辐射散射技术在高分子薄膜表征中的应用 岛津企业管理(中国)有限公司产品专员 蔡斯琪蔡斯琪,岛津市场部X射线光电子能谱仪产品专员,负责XPS在各行业市场推广工作。X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在二维材料中的应用。报告题目:岛津XPS在二维材料表面分析中的应用研究会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/

有机高分子材料相关的方案

有机高分子材料相关的论坛

  • 高分子材料常见的有什么

    [font=&][size=18px]高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂所构成的材料。那么高分子材料有哪些呢?[/size][/font][font=&][size=18px]?[/size][/font][font=&][size=18px]  首先,高分子材料按来源分可分为天然高分子材料和合成高分子材料。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑料、合成橡胶和合成纤维三大合成材料。[/size][/font][font=&][size=18px]?[/size][/font][font=&][size=18px]  其次,高分子材料按特性分可分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。[/size][/font][font=&][size=18px]?[/size][/font][font=&][size=18px]  最后,按照材料应用功能分类,高分子材料分为通用高分子材料、特种高分子材料和功能高分子材料三大类[/size][/font]

  • 【原创大赛】高分子材料成分分析解密

    【原创大赛】高分子材料成分分析解密

    文/肖婉艳(华测检测) 以高分子化合物为主、添加各种添加剂而构成的材料叫高分子材料,高分子材料为混合物。高分子材料包括塑料、橡胶、纤维、涂料、胶黏剂等一系列产品,在人们的生产和生活中无处不在。随着人们对高分子材料研究的不断深入,高分子材料将在未来发挥更大的作用。 高分子材料通常由主体树脂和添加剂组成,纯树脂的用途是非常受限的,经过改性才能扩大高分子材料的应用。高分子材料的改性就是设法改变原有的高分子材料的化学组成和结构,改善和提高其性能,从而实现高分子材料从单项性能优良向多项性能及综合性能良好发展。通常来讲,主体树脂决定高分子材料的基本性能,通过添加不同的添加剂改善高分子材料耐老化、阻燃、耐磨、增强等性能。由此可见,了解高分子材料的成分组成是高分子材料的性能研究及改进的基础。 目前,高分子材料已遍及航空航天到家用电器的各个领域,高分子材料的复合化发挥了不同材料的优点,克服了单一材料的缺点和不足,提高经济效益,使高分子材料的应用更为广泛。由于高分子材料本身的特性,为了确保产品的耐久性与高品质,高分子材料成分分析成为生产、研发、品质控制过程中常见的需求。成分分析可以了解未知物质成分,改善产品的性能,为配方分析和产品失效分析提供依据。 高分子材料成分分析是将原料或制品通过多种技术分离,利用高科技分析仪器进行表征,技术人员对检测结果进行逆向推导,最终完成对待检样品未知成分定性、定量分析的过程。由此可见,高分材料成分分析是一种综合分析的技术手段,目前行业内没有统一的关于高分子材料成分分析的标准。 高分子材料成分分析是在以下几个方面建立起来的:一是较为先进的检测设备,这些设备包括FTIR、TGA、DSC、HPLC、核磁、元素分析仪等,每种仪器能实现的目的不一样,熟悉各种仪器的能力范围及局限性是高分子材料成分分析的基础;二是针对性的分离手段,高分子材料通常是由各种化合物共混而成的复合材料,借助萃取、灰化等分离手段可以实现不同组分之间的分离,使得成分分析更加全面细致;三是具有丰富行业知识和理论知识的技术人员,高分子材料成分分析不仅要求技术人员熟悉相关仪器分析和分离手段,同时要求熟悉材料的常见配方及生产工艺。 虽然高分子材料成分分析没有统一的标准,但是经过多年的研究总结,高分子材料成分分析的基本流程如图1所示。高分子材料成分分析首先需要了解样品的基本信息(外观、气味、元素、主材质等),根据以上基本信息制定分离方法和仪器分析手段,最后综合分析所有分离结果和仪器分析结果得到样品的成分列表。下面介绍一些常见的分析仪器和分离手段,可供相关领域人士参考。[img=,608,649]http://ng1.17img.cn/bbsfiles/images/2017/08/201708111418_01_3051334_3.jpg[/img][align=center]图 1[/align][b]1.红外光谱法(FTIR)[/b]红外光谱是借助红外吸收带的波长位置与吸收带的强度和形状来表征分子结构,主要用于鉴定未知物的结构或用于化学基团及化合物的定性鉴定。又因红外吸收带的吸收强度与分子组成或其化学基团的含量有关,故也可用来进行定量分析和化合物纯度鉴定。目前红外检测主要还是用于定性分析,通常将试样的谱图与标准物的谱图或文献上的谱图进行对照,也可采用计算机谱库检索,通过相似度来识别。[b]2.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法(GC-MS)[/b]GC-MS主要用于高分子材料中助剂的分离、定性及定量。一般是将高分子材料中的助剂与树脂分离后,通过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱将不同助剂进行分离,再与质谱中标准谱图对照进行定性,结合标准样品进行定量。[b]3.热重分析法(TGA)[/b]热重分析是在程序控温下,测量样品的重量随温度或时间的变化。高分子材料随着温度升高发生分解、氧化、挥发等,并伴随着质量的变化,通过记录质量与温度的关系结合其他仪器分析结果推断发生质量变化原因,对主要成分、添加剂、填料、炭黑等进行定量。[b]4.差式扫描量热法(DSC)[/b]DSC是程序控温条件下,直接测量样品在升温、降温或恒温过程中所吸收或释放出的能量。高分子材料随着温度升高发生物理变化并伴随着热流的变化,通过记录热流与温度的关系来检测发生的物理变化,如熔点、玻璃化转变温度等,实现对材料的定性。[b]5.元素分析法(XRF)[/b]X-射线激发高分子材料表面元素使其发生能带跃迁,后又回到基态发射荧光,通过检测发出的荧光对高分子材料中的部分元素进行定性及半定量,这种方法简单易操作,可用于高分子材料基本信息的确认。[b]6.灰化[/b]灰化是在高温条件下将有机物分解掉,得到不再分解的无机物。高分子材料通常会添加玻纤、二氧化钛、碳酸钙、滑石粉等无机物来改性,将高分子材料按照规定的条件(温度、时间)进行灼烧,可以将这些无机物分离出来,进一步实现这些化合物的定性定量。[b]7.萃取[/b]萃取是利用[url=http://baike.baidu.com/item/%E7%B3%BB%E7%BB%9F][color=windowtext]系统[/color][/url]中[url=http://baike.baidu.com/item/%E7%BB%84%E5%88%86][color=windowtext]组分[/color][/url]在[url=http://baike.baidu.com/item/%E6%BA%B6%E5%89%82][color=windowtext]溶剂[/color][/url]中不同的[url=http://baike.baidu.com/item/%E6%BA%B6%E8%A7%A3%E5%BA%A6][color=windowtext]溶解度[/color][/url]来[url=http://baike.baidu.com/item/%E5%88%86%E7%A6%BB][color=windowtext]分离[/color][/url][url=http://baike.baidu.com/item/%E6%B7%B7%E5%90%88%E7%89%A9][color=windowtext]混合物[/color][/url]的操作。萃取是高分子材料分离的常用手段,根据目的和萃取形式的差异,萃取通常有超声萃取、回流萃取、索氏萃取、溶解-沉淀等方法。超声萃取是利用超声波的能量将高分子材料中的抗氧剂、润滑剂、增塑剂等提取出来,是一种常见的萃取方法;回流萃取是通过高分子材料与沸腾的溶剂接触,缩短萃取时间,提高萃取效率;索氏萃取是利用溶剂回流和虹吸原理,使高分子材料每一次都能被纯的溶剂萃取,极大的提高萃取效率;溶解-沉淀是选择合适的溶剂将聚合物和有机助剂溶解,将有机物和无机物分离,将上层清液倒出,加入析出溶剂将聚合物析出,从而实现一步分离聚合物、无机助剂和有机助剂。 以上是高分子材料成分分析常见的仪器分析方法和分离方法,除此之外,还有很多设备和分离方法可以采用。具体分析时该运用什么样的方法,与待分析样品的成分体系、设备的配备情况及个人的目的息息相关。华测拥有大批世界顶级的仪器设备和技术资源,可以为客户解决生产、流通和使用过程中遇到的技术问题。

  • 高分子材料

    高分子材料分析,需要测一二三级结构,需要用到哪些分析仪器

有机高分子材料相关的资料

有机高分子材料相关的仪器

  • 高分子材料水分检测仪,高分子材料含水率测定仪 冠亚牌SFY-118D高精度高分子材料水分检测仪,高分子材料含水率测定仪结果可以传统烘箱法达到一致,只需要几分钟检测时间,检测过程是全自动的,检测结束直接读取水分值,高效、快速、便捷!是高分子材料生产加工企业的!在高分子材料生产过程中,如果使用水分含量过多的高分子材料进行生产,则会产生一些加工问题,并终影响成品质量,如:表面开裂、反光,以及抗冲击性能和拉伸强度等机械性能降低等。因此,水分含量的控制对于生产高质量的高分子材料产品是**关重要的。高分子材料水分测定仪生产厂家《冠亚牌》快速水分测定仪是由深圳市冠亚公司研发并生产,该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代卤素线快速水分测定仪器。高分子材料水分测定仪引进进口自动称重显示系统,人性化系统操作, 无需特殊培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。高分子材料水分检测仪,高分子材料含水率测定仪特点:● 准确测量样品内低**10ppm的水分● 减少不必要的干燥时间和电能损耗● 减少注塑机和干燥机的维护成本● 减少废品率● 提高生产效率● 即装即用,一键按式操作● 测试结果与国际公认的烘箱法的结果相符● 快速、专业、环保高分子材料水分检测仪,高分子材料含水率测定仪技术参数:1、称重范围:0-90g★★可调试测试空间为3cm2、水分测定范围:0.01-** 3、称重小读数:0.001g★★JK称重系统传感器 4、样品质量:0.5-90g 5、加热温度范围:起始-205℃★★加热方式:可变混合式加热★★微调自动补偿温度15℃ 6、水分含量可读性:0.01% 7、显示参数:7种★★红色数码管独立显示模式 8、双重通讯接口:RS 232(打印机) RS 232(计算机) 9、外型尺寸:380×205×325(mm) 10、电源:220V±10% 11、频率:50Hz±1Hz 12、净重:3.7Kg
    留言咨询
  • 高分子材料电液伺服拉力机价格,高分子材料电液伺服拉力试验机,高分子材料电液伺服拉力机厂家高分子材料电液伺服拉力试验机简介:主要用于金属、非金属等材料的拉、压、弯、剪切等试验。试样夹持采用液压结构。可根据GB、JIS、ASTM、DIN、ISO等标准自动求出抗拉(抗压)强度、zui大力值、上屈服强度、下屈服强度、规定非比例延伸强度、弹性模量、各种伸长(压缩)应力、各种延伸率、弯曲挠度等参数。性能特点: 1.采用两根光杆及两根高精密丝杆组成可调式机械结构,无间隙钢性设计,对中性好,防止试样受侧向力的影响,同时也能适用于特殊材料或加长构件的试验;2.主机架、横梁及油缸等均采用高强度球墨铸铁,采用进口油浸式柱塞高压油泵或低噪音内啮合高压齿轮油泵;3.油管及液压部件采用卡套式高压接头紧固并使用内铝外胶组合垫圈作为密封件,采用不锈钢无缝钢管作为连接管路达到低噪音、无漏油的要求;4.上下钳口中轴设置独立油缸以控制液压自动夹具,可由手控盒点动控制,夹持可靠、方便;5.减磨衬板和柔性防护装置的使用有效地减少了钳口的磨损,相对延长了钳口夹板的寿命;6.两套控制系统分别实现微机控制及手动控制功能;7.微调和手动控制功能保证试验机处在zui佳操作状态;8.具有过流、过压、过载、欠压、过速、限位等多种保护;9.强大的软件处理功能,可对设备进行数据采集,实时动态显示设备的工作状态,并可根据用户要求绘制曲线及分析编辑,操作界面简单、直观、操作方便,并支持网络数据传输;10.采用先进的水晶报告制作系统,可视化的编程格式,满足不同的试验报告格式要求;11.用户根据不同的试验要求,可自行对多段的试验方法的各阶段控制进行编程;12.符合GB/T228-2002、GB/T50081-2002、GB/T232-1999、GB/T17671-1999等试验标准。技术参数:1、zui大试验力(kN):300 (试验力可选)2、 精度等级:0.53、试验力测量范围:0.4%~100%FS4、 试验力示值准确度:示值的±0.5%以内5、 力控速率控制精度:当速率0.05%FS时,精度为设定值的±2%; 当速率≥0.05%FS时,精度为设定值的±0.5%以内6、试验力分辨率:zui大试验力的1/200000/ zui高可达1/3000007、 变形测量范围:1%~100%FS8、 变形示值准确度:示值的±0.5%以内9、 变形分辨率:zui大试验力的1/200000/ zui高可达1/30000010、变形速率控制精度:当速率0.05%FS时,精度为设定值的±2%; 当速率≥0.05%FS时,精度为设定值的±0.5%以内;11、位移示值准确度:示值的±0.5%以内12、位移分辨力(mm):0.00113、位移速率控制精度:当速率0.05%FS时,精度为设定值的±2%; 当速率≥0.05%FS时,精度为设定值的±0.5%以内;14、压缩面zui大间距(mm):60015、拉伸钳口zui大间距(mm):55016、活塞行程(mm):20017、圆试样夹持直径(mm):Φ10-Φ2518、扁试样夹持厚度(mm):0-2019、上下压板尺寸(mm):Φ10020、弯曲支辊间zui大距离(mm):40021、两立柱间有效宽度(mm):48022、主机外形尺寸及极限高度(mm):780×500×206523、控制台外形尺寸(mm):520×580×105024、电源功率(kW):AC380V/325、重量(kg):1500
    留言咨询
  • 一、高分子材料薄膜拉压力试验机主要介绍: 高分子材料薄膜拉压力试验机是一款针对塑料薄膜等产品做5000N以内试样的整个拉压力的试验。更换倾技研发的不同夹具可做剥离试验、拉伸试验、拉力试验、剪切试验、刺破试验等多项试验。试验机还可根据用户需求满足GB、ISO、JIS、ASTM、DIN、JG、JT、YB、QB、YD、YY、QC、SY、SL、BB、HG等国际标准和行业标准。测试仪采用全液晶数控设定所需参数,曲线、位移、力值能动态显示在数显器上,联接电脑实现全电脑控制并打印标准试验报告;彻底改变传统材料式试验机机台笨重、操作复杂、性能单一之缺点。外观采用挤型封板及高级烤漆处理,更显美观大方。二、高分子材料薄膜拉压力试验机技术参数:1、 规格:QJ210A;2、 精度等级: 0.5级;3、 最大负荷:5N、10N、20N、50、100N、200N、500N、1000N、2000N、3000N、5000N(5KN以内力值任意换);4、 有效测力范围:0.2/100-100/%;5、 试验结果单位选择:gf、kgf、N、KN、LB;6、 试验力分辨率,最大负荷50万码:内外不分档,且全程分辨率不变。7、 有效试验宽度:150mm8、 有效拉伸空间:800mm9、 试验速度:0.01~500mm/min(任意调);10、速度精度:示值的±0.5%以内;11、位移测量精度:示值的±0.5%以内;12、变形测量精度:示值的±0.5%以内;13、采集感应方式:美国高精度传感器;14、控制系统:日本松下全数字交流伺服控制器;15、试台升降装置:快/慢两种速度控制,可调动;16、试台安全保护装置:软件自动诊断、电子限位;17、试台返回:手动可以最高速度返回试验初始位置,自动可在试验结束后自动返回;18、超载保护:超过最大负荷10%时自动保护;19、工装夹具配置:根据用户产品试样要求定制;20、选配装置:品牌联想液晶电脑一套;HP彩色喷默打印机一套;21、电源功: 200V 400W22、尺寸:长590×宽355×高1640mm23、主机重量:约85kg三、高分子材料薄膜拉压力试验机公司承诺:1.购机前,我们专门派技术人员为您设计合适的流程和方案2.购机后,将免费指派技术人员为您调试安装3.整机保修一年,产品终身维护4.常年供应设备的易损件及耗品,以确保试验机能长期正常使用
    留言咨询

有机高分子材料相关的耗材

  • 高分子材料拉力试验机 拉伸夹具
    高分子材料拉力试验机主要用于各种医疗类原材料、高分子材料、人体组织、接骨螺钉等各种材料的生物力学性能试验,可以进行拉伸、压缩、弯曲、拔出等项目的性能测试和力学鉴定。测试功能覆盖了软组织(皮肤、血管)、硬组织(骨)、软材料(水凝胶、人造皮肤血管)、硬材料(骨钉、骨板、高分子)等多种材料。 高分子材料拉力试验机可以对标准试样或构件进行轴向加载的静态(拉力、拉拔力、压缩、弯曲、剪切等)和动态试验,可检测材料或构件的拉伸力、破坏力、峰值、抗拉强度、延伸率、弯曲强度、寿命曲线、周期曲线等参数。
  • 高分子材料拉力试验机 其他物性测试仪配件
    HY-0230微机控制电子万能材料试验机 有着强大的数控显示系统,可以做2000N以内整个材料中拉伸、压缩、弯曲、剥离、刺破等试验,全液晶数控设定所需参数,曲线、位移、力值能动态显示在数显器上,联接电脑实现全电脑控制并打印标准试验报告;彻底改变传统材料式试验机机台笨重、操作复杂、性能单之缺点。外观采用挤型封板及高级烤漆处理,更显美观大方。 技术参数 Main specifications 1、大负荷Max capacity: 2000N以内(任意选) 2、荷重元精度Load Accuracy: 0.01% 3、测试精度 Measuring accuracy: ± 0.5% 4、操作方式 Control: 全数控或电脑控制、打印机打印 5、有效宽度 Valid width : 150mm 6、有效拉伸空间 Stroke: 300mm(根据需要可加高) 7、试验速度 Tetxing speed : 0.001~300mm/min 任意调 8、速度精度 Speed Accuracy: ± 0.5%以内; 9、位移测量精度Stroke Accuracy: ± 0.5%以内; 10、变形测量精度Displacement Accuracy: ± 0.5%以内 11、安全装置 Safety device: 电子限位保护,紧急停止键 Safeguard stroke 12、机台重量Main Unit Weight : 约40kg 13. 电源电压: 220V 14.. 主机尺寸:430*315*855mm 好质量好品牌好服务在上海衡翼,更多优惠请来电咨询。 衡翼全体员工真诚为您提供优质产品优质服务。
  • 填充柱〖GDX-104 高分子多孔微球载体〗
    气相色谱填充柱〖GDX-104 高分子多孔微球载体〗部件号描述规格LDPC20246-020GDX-104 高分子多孔微球载体 60-80mesh 填充柱1/8"*2m1. 柱管无特殊说明均为进口不锈钢管,有PEEK管、镍管、惰化管等柱管材料可选2. 采用进口优质填料,填装均匀3. 柱长度可依据客户要求订做4. 色谱柱两端的螺母压环等连接件均可选购,请及时沟通,以免无法连接
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制