污染物监测新技术

仪器信息网污染物监测新技术专题为您整合污染物监测新技术相关的最新文章,在污染物监测新技术专题,您不仅可以免费浏览污染物监测新技术的资讯, 同时您还可以浏览污染物监测新技术的相关资料、解决方案,参与社区污染物监测新技术话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

污染物监测新技术相关的资讯

  • 日程更新|新污染物检测与监测新技术发展论坛通知(第二轮)
    一、活动背景介绍十四五期间,国家将高质量发展作为主旋律,并将技术创新作为建设科技强国的关键举措。《中共中央国务院关于深入打好污染防治攻坚战的意见》提出要以更高标准打好蓝天、碧水、净土保卫战,并设立了2025年和2035年两个阶段污染防治目标,强化应对气候变化、生物多样性、新污染物等更广泛领域的治理工作。近年来,新污染物引发的环境和健康风险正逐步受到社会各界的广泛关注。“十四五”规划和2035年远景目标纲要明确要求,“重视新污染物治理”“健全有毒有害化学物质环境风险管理体制”。从环境管理角度来看,新污染物一般是指新近发现或被关注,对生态环境或人体健康存在风险,尚未纳入管理或者现有管理措施不足以有效防控其风险的污染物。随着现代检测分析技术的不断提升,微塑料、细颗粒物等新污染物不断从环境中被检出,与此同时,科学界在其危害特性、致毒机理、检测分析等方面均有重大技术突破。基于此,“新污染物检测与监测新技术发展论坛”将于2023年5月19日(ACCSI 2023同期)在北京怀柔雁栖湖国际会展中心召开.主办方诚邀国内外行业领域专家、头部科学仪器企业代表参与本论坛,共同就新污染物检测与监测新技术发展现状与趋势进行多维度、深层次、全方位的探讨与交流,以助力我国污染防治攻坚战目标的实现。欢迎从事环境监测及周边技术业界人士报名参会。点击报名,参加线上会本次论坛设有主题报告、圆桌讨论等环节,敬请参加!1、论坛主办单位: 珀金埃尔默 仪器信息网2、论坛主题:产业互动 创新发展3、论坛形式:报告分享+圆桌论坛4、会议时间:5月19日09:00-12:00 5、预期规模:100-150人二、 目标参会人群政府及协会、学会领导;环境领域国内外专家/学者、实验室主任、技术/研发负责人、采购负责人、QC/QA负责人;质谱、色谱、光谱相关仪器国际与国内企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监;投融资机构等。 三、 参会对象主要收获新污染物分析检测技术进展;微塑料、PFAS、纳米颗粒分析研究进展;新污染物的转化与毒理机制 “十四五”期间,新污染物治理行动的发展建议等。四、 论坛日程(最终以年会官网显示信息为准)时间会议内容嘉宾主持人:珀金埃尔默企业管理(上海)有限公司 环境及高校细分市场经理魏攀9:00-9:05嘉宾致辞待定09:05--09:30新污染物的转化与毒理曲广波中国科学院生态环境研究中心 研究员09:32--09:57“eXXpedition环球航行”:全球海洋中的塑料污染状况研究Winnie Courtene-Jones普利茅斯大学生物与海洋科学学院 博士09:59--10:24海洋环境中微塑料检测技术孙承君自然资源部第一海洋研究所 研究员/博士生导师10:40--11:05人体生物组织中PFAS的检测与研究Sabra Botch-Jones波士顿大学医学院 法医毒理学家/助理教授11:07--11:32纳米材料检测和职业风险防护标准示例及应用研究郭玉婷国家纳米科学中心 高级工程师11:32--12:08圆桌讨论报告嘉宾、现场听众五、 联系方式 欢迎从事新污染检测技术开发、应用专家、企业、用户等报名参会。 参会报名:https://accsi.instrument.com.cn 论坛联系:刘编辑,13717560883,liuh@instrument.com.cn
  • 863计划:“优控污染物监测新技术与质控产品研制”课题申请指南
    关于发布863计划资源环境技术领域优控污染物监测技术研究重点项目 “优控污染物监测新技术与质控产品研制”课题申请指南的通知 各有关单位: 环境污染控制将从传统污染物总量控制向同时重视微量优控污染物控制方向发展。针对我国优控污染监测技术基础薄弱,大量样品制备和快速分析产品主要依赖进口的问题,本领域启动了“优控污染物监测技术研究”重点项目。该项目下设3个课题,其中“优控污染物的采样和样品制备新设备”和“优控污染物的监测技术系统”2个课题已经公开发布课题申请指南方式确定了课题承担单位。 现发布“优控污染物监测新技术与质控产品研制”课题申请指南,课题国拨经费控制额为700万元,要求配套经费不低于300万元。本课题的承担单位在完成本课题研究目标的同时,有义务与其他2个课题一起完成该重点项目的总体目标。 一、申请资格与要求 课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn,有关申请的程序要求和注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。项目申请受理的截止日期为2008年9月6日24时。 课题指南具体要求见附件。 二、咨询方式 联系人: 王 磊 张书军 梁鹏 联系电话:010-58884866,58884867,58884869 Email: wanglei@acca21.org.cn zhshujun@acca21.org.cn; liangpeng@acca21.org.cn.   863计划资源环境技术领域办公室 二00八年七月十六日
  • 圆满落幕!环境新污染物分析检测创新技术论坛!
    3月2日,天津分析测试协会与仪器信息网联合主办的环境新污染物分析检测创新技术论坛,圆满结束,现场讨论氛围热烈。来自中海油天津化工研究设计院有限公司的王琪主任作为特邀嘉宾,主持出席了本次大会,与此同时,6所天津知名高校的权威专家进行了报告分享。报告嘉宾:汪磊 (南开大学环境科学与工程学院 教授/博士生导师)9:00-9:30,汪磊教授就微纳塑料的检测方法进行了分享,系统介绍了环境微塑料的检测方法开发与应用,并分享了课题组最新的科研进展。 报告亮点:微、纳塑料的定量检测方法缺乏是长期制约其环境行为与风险研究的瓶颈问题。被广泛采纳的“消解-分离-显微计数”检测方法仅能提供微塑料的数量丰度,并且难于对微塑料污染水平和传输通量进行量化。相比之下,质谱检测方法可提供更为准确的质量浓度信息。“原位化学解聚-单体小分子质谱检测-聚合物总量回溯”就是这样一种可准确定量环境中痕量微塑料聚合物的质谱检测新方法。报告结束后,汪磊教授与各位线上听众进行了热烈的现场互动,部分问答如下:Q:汪老师好,食品中微塑料和环境中微塑料检测的差异点有哪些呢,谢谢。A:食品中微塑料如果来源于包装材料,可考虑直接检测包装材料的释放,要简单很多。Q:汪教授好,微塑料的溯源您有研究吗? A:溯源目前没有太成熟的方法,我们做了一个微塑料成分指纹谱用于灰尘中微塑料溯源的工作,正在投稿,但也仅能针对行业溯源,也就是说来自纺织业的和非纺织业的。Q:汪教授您好,可以检测植物的根系和叶片中的微塑料吗?A:可以,但限定聚合物种类。实际环境样品很难测到,通常浓度不高,这部分我们是用的实验室培养的拟南芥,是不同剂量的胁迫,现在用的是荧光微塑料,但是还是想再进一步的进行定量检测。Q:汪老师好,做PLA微纳米塑料的定量时,怎么去考虑纳米塑料与环境微生物或者微生物的作用?以及这种作用对检出值的影响。A:最主要困难是乳酸背景值高,其他的影响不太大;因为加热碱消解加SPE。报告嘉宾:张晓丹 (安捷伦 分子光谱应用工程师)9:30-10:00 , 安捷伦张晓丹老师分享了安捷伦8700 LDIR 激光红外成像——生物体中微塑料全自动快速定性及定量分析,主要介绍了安捷伦公司利用8700LDIR激光红外成像技术。据介绍,该技术开发了专门的微塑料测试全自动解决方案,用户仅需将处理好的样品滴至标准的反射窗片后,软件即可自动完成颗粒的识别、定性测试统计以及粒径统计等。报告嘉宾:刘青 (天津科技大学 博士后/助理研究员)10:00-10:30,刘青老师为我们介绍了植物对有机磷酸酯的转化途径及机理研究,利用高分辨UHPLC-orbitrap-HRMS-MS进行非靶标分析识别了OPEs在植物体内的转化产物。3种OPEs共检测出25种产物,包括羟基化产物、水解产物、还原产物,以及多种结合态产物。Q:刘青博士,有机磷酸酯测定的质量控制如何把控,背景干扰的去除?A:有机磷酸酯的前处理过程尽量避免接触塑料制品,如果是环境样品 我们是有个专门的实验室只做环境样品的分析 前处理的质控我们会用氘代物质做一个回收率的监控。Q:刘青博士,对于低于检出限的有机磷酸酯测定结果,如何定值?A:如果是环境样品监测低于LOD 一般我们就认为是未检出;如果出于统计的目的当 检测值低于MDL时 用 MDL的值 除以 2代替。报告嘉宾:刘宪华 (天津大学 教授)10:30-11:00,刘宪华教授为我们分享了微塑料的分析测试及其环境影响研究。报告亮点:在实际环境中,微塑料和其他污染物的复合污染是普遍存在的环境污染现象,因而研究环境中微塑料介导的复合污染物质与生物体之间的相互作用具有重要现实意义,本报告以微塑料、抗生素和重金属在土壤、水体和沉积物等典型介质中的复合污染为研究背景,介绍了其中涉及的分析测试方法和环境影响表征手段。报告嘉宾:穆莉 (农业农村部环境保护科研监测所 副研究员)11:00-11:30 ,穆莉老师分享了典型纳米材料的环境识别技术及植物风险效应研究报告亮点:针对纳米材料分类、用途及存在的环境问题,介绍典型纳米材料的环境识别技术,包括分离提取技术以及相关的多种检测表征手段,进一步,介绍典型纳米材料属性对植物毒性影响的组学分析技术,为纳米材料科学合理应用提供科学技术支持。报告嘉宾:王捷 (天津工业大学 副院长/教授)11:30-12:00,天津工业大学的王捷副院长,为我们带来了关于膜基微流控耦合系统应用于痕量污染物检测研究的报告内容。报告亮点: 用于监测水中痕量污染物的传统技术存在例如检测成本高、周期长,技术门槛高等问题。因此迫切需要开发简单、廉价和灵敏度高的方法实现环境中有毒环境污染物的高效检测。基于微流控芯片的传感检测平台是近年新兴的检测技术。本报告围绕膜基微流控耦合系统展开研究,通过将不同的功能膜与微流控芯片合理的设计耦合实现不同的检测功能,具有所需样品少、测试时间短、灵敏度高的特点。本会议回放视频将在会议结束后1-3天内上线,可添加助教微信进入交流群。微信:13260310733

污染物监测新技术相关的方案

污染物监测新技术相关的论坛

  • 【原创大赛】关于空气污染物监测技术的总结

    【原创大赛】关于空气污染物监测技术的总结

    一、空气污染物监测技术发展1、气体污染物监测技术http://ng1.17img.cn/bbsfiles/images/2013/07/201307211618_452835_2678779_3.jpg光学和光谱学遥感技术优点: 大范围、多组分连续自动实时监测,可以在同一光波波段同时监测几种污染物浓度,实现完全非接触在线自动监测;灵敏度高。同单种污染物监测仪器比也存在不足。1.1几种主要单种污染物监测方法(1)SO2分析方法是紫外荧光法(2)NOX分析方法是化学发光法(3)CO分析方法有非分散红外法和气体相关滤光红外吸收法,其中红外吸收法是非分散红外法的一种改进。(4)O3分析方法是紫外光度法 以上几种气态污染物分析方法线性良好,响应快,检出限低,不受天气状况影响,稳定。1.2光学和光谱学遥感技术监测方法(1)紫外可见光波段的差分吸收光谱法,仅限于对紫外可见光波段的窄吸收光谱线的气体(SO2、NOX、O3、苯系物和甲醛等)成分。(2)傅立叶变换红外光谱法,该方法特别适用于测量和鉴别污染严重的空气成分。(3)可调谐二极管激光光谱法,该方法调谐范围限制了可测气体的范围。(4)差分吸收激光雷达法,一般运用空基平台,对大气平流层和对流层的痕量气体成分,如O3、SO2、CL2、CO、NO2等经行测量。2、TSP、PM10、PM2.5、PM1、PMCOARSE颗粒物监测技术监测方法有人工和自动法两种。 人工法即通常说的大流量和中流量、小流量法。 自动法发展由70年代的压电晶体法和光散射法,80年代的bate射线法,到90年代的微量震荡天平法。其中bate射线法仪器设备稳定可靠,维护、质控方便。天平法维护质控麻烦,操作复杂。二、空气质量连续监测系统概述1、系统特点在某一区域内设置若干个固定监测点,组成对环境空气进行连续自动实时监测的完整网络。一般具有如下特点:(1)系统由若干个子站组成,各子站具有基本相同的监测项目及相同类型的仪器。如果子站点位经过较好的优化设计,则可以对该区域空气污染状况获得较好的空间分辨率。(2)系统实时监测(3)具有迅速收集数据处理数据、分析能力(4)严格的质量控制,具有自动(手动)校准和自动(手动)修正功能[

  • 工业区大气特征污染物监测技术与仪器

    围绕石化、化工、煤化工、钢铁和垃圾填埋等行业的VOCs、SVOC、重金属和恶臭等大气特征污染物自动监测技术以及系统集成,标准化监测站房(车)以及特征污染物系统分析软件在国内外工业区大气自动监测中的应用情况等主题,参会的19家仪器厂商/系统集成商一一介绍了自己的“拿手绝活”,并解答了现场提问。 这次集中探讨工业大气特征物监测技术与仪器,意欲何为?!

污染物监测新技术相关的资料

污染物监测新技术相关的仪器

  • 清洁排放污染物控制过程及监测方案 赛默飞世尔科技严格契合国家和地方日益严格的法规标准,推出了为中国客户量身定制的固定污染源清洁排放监测方案,精确测量低浓度烟气条件下的组份。SO2可监测到10mg/m3, NOx可监测到5mg/m3,颗粒物浓度可以准确测量到3mg/m3以下。另外我们还提供烟气汞连续监测系统,全方位为客户做出有力支持和保障。 对低浓度气态污染物监测,通常直接抽取法CEMS受方法限制,最低量程的误差难以满足精度要求。赛默飞采用稀释法,从根本上保障了系统测量的准确性。 l 稀释法可以彻底解决凝结水问题,可以适应高温、高尘或高湿低温等恶劣工况l 恒定的稀释比例;温度、压力的变化不会影响稀释比l 高精度的分析仪和系统保证测量的精度和准确性,可以测量烟尘、SO2,NOx,NH3,Hg和SO3采用:? 43i型二氧化硫分析仪? 42i型氮氧化物分析仪? 48i一氧化碳分析仪? 410i二氧化碳分析仪? 17i氨分析仪? 颗粒物连续排放监测系统(PM CEMS)? 汞连续排放监测系统 (Mercury FreedomTM)l 全系统校准,确保测量准确l 用于脱硫、脱硝、汞等清洁排放连续监测;低浓度条件下获得理想精度,准确测量
    留言咨询
  • 陆源入海污染物在线监测系统一、概述朗诚陆源入海污染物在线监测系统采用先进的水质分析技术、智能化的中央控制技术及多参数、多功能、一体化、信息化的系统集成技术,以设于入海口的不同类型监测站房为基础,搭载可监测多种污染参数的分析仪器及水样采集、预处理、水样分配、数据通讯、安全监控等配套设备,实现对主要陆源入海污染物种类及排海通量的连续实时监测;同时,通过系统监控管理平台软件及数据模型,实现陆源入海排污状况的综合分析评价与业务化应用。陆源入海污染物在线监测站主要由监测站房、采配水系统、中央控制系统、在线监测仪器、流量监测系统、站房综合监控系统等六大部分组成。技术特点:1、适应海水/淡水交汇区的化学分析技术2、创新的多参数一体化监测仪器技术3、高度集成与智能化的水样自动采集与分配单元4、实时高效的污染物能量计算模型5、功能完善的系统管理应用平台6、成熟的运维服务体系和业务化应用模式二、采配水系统采配水系统由采水单元、配水单元及预处理单无组成。通过采配水系统可连续、稳定、可靠的进行水样采集并向各个测试设备分配样品。技术特点:1、可靠的采水方式,结构简单,易维护。2、科学的采水管路设计:双泵双管,一用一备,管路均使用优质PVC管,采水管路具有防腐、防爆、防压、保湿等严密保护措施。3、完善的配水单无和预处理单元确保水样符合在线监测仪器要求。4、备有清洗和加药除藻单元,对管路、容器、设备进行彻底清洗并有效制藻类滋生。三、中央控制系统中央控制系统是整个监测站的控制中心,该控制系统主要由PLC和工控机等组成。PLC负责对采配水、预处理、水样检测、数据处理上传、管路清洗、自动除藻等单元的控制,对系统的状态实时监控,并根据状态及时进行动作调整;工控机通过下发指令给PLC,负责数据采集、存储、上传,通过无线或者有线的通讯方式将数据发送给监控中心,可实现远程控制,实时监控系统运行状态。四、在线监测信息监控管理平台陆源入海污染物在线监测信息监控管理平台通过对多源数据进行信息化处理,将陆源入海污染物监测信息数据模块化和数字化,结合数学模型的静、动态模拟分析及地理信息系统技术手段,形成区域性的海洋陆源入海污染物管理及业务化应用服务系统。数据产品:
    留言咨询
  • 概述:空气分子污染物(AMC)对于高科技生产过程是关键性因素,特别是微电子行业,有机污染物是生产过程中的消极因素,会导致高科技公司因产品质量问题而产生的成本增加。无空气分子污染物生产是理想的生产目标,通过污染物源头控制、传播控制,实时监控污染物浓度并结合多级过滤器以及新风系统来实现,持久监测AMC浓度,有助于掌握污染物源头、稳定生产、预防过滤器突发性寿命减少等。阿瑞斯-μVOC提供给客户一个实时快捷持续的在线空气分子污染物AMC监测方案,不需要采样,离线测量。检测限达到sub-ppb级洁净室环境中的空气分子污染物AMC,内部来自建筑材料释出、设备和材料释出、腐蚀和光刻等工艺过程中化学药品逸散、人员产生、管路泄露、设备维护修理时散发等,外部来自环境空气中存在的气相污染物,以及洁净室的废气排放重新送回洁净室。一旦AMC空气分子污染物超标会引起一系列严重后果,比如晶圆废弃、停产、重新净化洁净室等。可测组份2-氨基乙醇 CH3NH2CH2OH(t-乙酸丁脂)二羟基甲苯 H3CC6H3(t-C4H9)2OH2-氨基丙醇 CH3NH2C2H4OH六甲基二硅胺烷(CH3 ) 3SiNHSi(CH3)3异丙醇(CH3 ) 2CHOH二乙氨基乙醇(C2H5)2NC2H5OH乙醇胺 H2NCH2CH2OH邻苯二甲酸二辛酯C6H4(C=OOC8H15)2环己胺C6H11NH2邻苯二甲酸二乙酯C6H4(C=OOC2H5)2环聚二甲基硅氧烷(-Si(CH3)2O-)n邻苯二甲酸二丁酯 C6H4(C = OOC4H9)2对二氯苯CIC6H4CL三乙胺(C2H5 ) 3N邻苯二甲酸二壬酯C6H4(C=OOC9H19)2邻苯二甲酸二环己酯C6H4(C=OOC6H11)2邻苯二甲酸二癸酯 C6H4(C=OOC10H21)2磷酸三乙酯(C2H5O ) 3P=0十甲基环五硅氧烷(-Si(CH3)2O-)5十二甲基环五硅氧烷(-Si(CH3)2O-)6二甲苯(CH3)2C6H4三甲酚磷酸酯(CH3C6H4O ) 3P=0三甲基硅醇C3H10OSi......亮点一般特点:在线连续质量监测全部自动化系统低浓度VOC监测独立分开测量有机物成份Sub-ppb检测限集成计算机和控制软件以及数据采集与处理功能 应用洁净间污染物监测过滤器状态监测加工过程全组份测量诊断污染物
    留言咨询

污染物监测新技术相关的耗材

  • 颇尔黑白箱HPCA-2污染检测仪
    HPCA-2污染度检测仪颇尔HPCA-2 便携式污染检测仪颇尔黑白箱 显微镜法颗粒计数器 颗粒度计数器 颗粒度仪 NAS1638 HPCA-2 便携式污染检测仪颇尔黑白箱适合于DL432-92方法要求 精确目测5~150μm颗粒污染情况 颗粒成份一目了然,快速分析污染级别 操作方便,快捷适用 颇尔便携式污染检测仪(有称黑白箱)的设计使你进行: ? 现场检测并且测出系统液压的清洁度等级; ? 并能看到颇尔过滤滤材在去除系统中污染颗粒的效率。 1.开始 1.1 含元件请参见图,元件型号请见附录。在使用该仪器前请熟悉元件型号及其名称。 1.2 检查一下未用过的分析膜片,使膜片盒保持清洁和足够的溶剂并在出差前检测电筒是否可用 1.3 将箱中的一个取样瓶定为废液收集瓶并贴上标签,此瓶用于收集在油箱中取样前冲洗软管用的废弃流体。 1.4 箱中应保留一份油液污染度比较样本和操作指南,这些就放在泡沫塑料和后面。 2. 获取油样 2.1 液样的获取必须从系统要在系统的操作温度下取样,即在系统操作过程中或系统刚刚停止即刻取样。 在取样阀取样 在用取样阀之前,要把阀外面的脏物擦掉,打开阀让足够的液体(大约500ml通过阀门流进废弃容器或流回油箱,这样在你取样前会先冲掉存在阀中的污染物,把液样收集到干净的瓶中后把瓶盖盖好关上取样阀,当灌取样品时请勿调节取样阀)
  • HPCA-2 便携式污染检测仪
    HPCA-2污染度检测仪颇尔HPCA-2 便携式污染检测仪颇尔黑白箱 显微镜法颗粒计数器 颗粒度计数器 颗粒度仪 NAS1638 HPCA-2 便携式污染检测仪颇尔黑白箱适合于DL432-92方法要求 目测5~150μm颗粒污染情况 颗粒成份一目了然,快速分析污染级别 操作方便,快捷适用 颇尔便携式污染检测仪(有称黑白箱)的设计使你进行: ? 现场检测并且测出系统液压的清洁度等级; ? 并能看到颇尔过滤滤材在去除系统中污染颗粒的效率。 1.开始 1.1 含元件请参见图,元件型号请见附录。在使用该仪器前请熟悉元件型号及其名称。 1.2 检查一下未用过的分析膜片,使膜片盒保持清洁和足够的溶剂并在出差前检测电筒是否可用 1.3 将箱中的一个取样瓶定为废液收集瓶并贴上标签,此瓶用于收集在油箱中取样前冲洗软管用的废弃流体。 1.4 箱中应保留一份油液污染度比较样本和操作指南,这些就放在泡沫塑料和后面。 2. 获取油样 2.1 液样的获取必须从系统要在系统的操作温度下取样,即在系统操作过程中或系统刚刚停止即刻取样。 在取样阀取样 在用取样阀之前,要把阀外面的脏物擦掉,打开阀让足够的液体(大约500ml通过阀门流进废弃容器或流回油箱,这样在你取样前会先冲掉存在阀中的污染物,把液样收集到干净的瓶中后把瓶盖盖好关上取样阀,当灌取样品时请勿调节取样阀) 油箱中取样 当从油箱或集油槽中取样时,先把软管的一端插入真空泵突起的圆口内,将软管一直推进直到从真空泵底部伸出并拧紧端盖(顺时针),再将集液瓶旋拧到真空泵上,把软管的另一端插进油液中液位的一半开始操作真空泵,当达到瓶中的2/3液位时,把瓶子从真空泵上拧下,把液体倒入集液槽然后拧上第二取样瓶抽取第二个液样,取下取样瓶盖上瓶盖。 2.2 不要破坏软管连接或管件进行取样 2.3 要保持取样瓶清洁,取样前再打开,取样后立即盖上。 2.4 液样不要取得过满,取样在1/2至2/3液位之间即可,距瓶口不高于1/2英寸。 2.5 若取油样较多时,则需贴清标签。 3. 准备抽取油样 3.1 将溶剂过滤器插到冲洗瓶嘴上,溶剂过滤器开口较大的一端插到冲洗瓶嘴上,确保通过过滤器的正确流向并使溶剂不含污染颗粒。 3.2 支起真空泵,集液瓶及如图2所示漏斗套件。 3.3 所有与油样接触的元件和容器须在通过分析膜片前完全用过滤的溶剂冲洗一下(要有一个容器盛接)。冲洗后的漏斗要用铝泊盖住。 3.4 根据液体的种类选择合适的膜片和溶剂。 分析膜片 a) 1.2微米带格膜片用于除磷酸脂,酒精和燃料。这些应该用PALL 1.2微米无格尼龙膜片(兼容性)。 b) 对于污染严重的液体。这需要抽取25ml,1.2微米膜片使用起来有些困难,如有可能,则用PALL 的5.0 微米的膜片。
  • 瑞思泰康 Rtx-502.2 挥发性有机污染物专用柱
    Rtx-502.2气相色谱柱(熔融石英)(专利Crossbond技术键合二苯基/二甲基聚硅氧烷固定相)对挥发性有机污染物有独特选择性的专用色谱柱。美国EPA方法502.2和多数监测地下储藏灌的汽油类有机物(GRO)方法都引用了Rtx-502.2柱。可对三卤甲烷进行极好的分离;理想的极性可用于分析轻烃类和芳香烃。温度稳定至 270 °C。类似固定相:DB-502.2订货信息:IDdf温度限30米60米75米105米0.25 mm1.40 μm-20 to 250/270 °C10915109160.32 mm1.80 μm-20 to 250/270 °C1091910920109210.45 mm2.55 μm-20 to 250/270 °C109860.53 mm3.00 μm-20 to 250/270 °C109081090910910IDdf温度限20米40米0.18 mm1.00 μm-20 to 250/270 °C4091440915
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制