微聚焦荧光仪

仪器信息网微聚焦荧光仪专题为您提供2024年最新微聚焦荧光仪价格报价、厂家品牌的相关信息, 包括微聚焦荧光仪参数、型号等,不管是国产,还是进口品牌的微聚焦荧光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微聚焦荧光仪相关的耗材配件、试剂标物,还有微聚焦荧光仪相关的最新资讯、资料,以及微聚焦荧光仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

微聚焦荧光仪相关的厂商

  • 悦为生物拥有一支来自世界 500 强的精英管理团队,公司专注于为国内生命科学、医药、食品等领域的客户提供最先进的技术设备、试剂耗材及技术服务产品。公司业务范围广泛,立足山东覆盖全国,并在济南和青岛分别设立了办事处。公司主要聚焦于生命科学、生物医药和食品检验三大核心市场,客户群体涵盖高等院校、研究所、制药企业、食品企业以及政府平台等。主营产品主要有:e-BLOT电子压片化学发光成像仪、瑞芯智造纳米库尔特粒度分析仪、山东优尼维森微生物浓度分析仪、平生科技小动物X射线成像仪/细胞辐照仪/Micro-CT/PET-CT/SPECTCT/骨密度仪、杰莱美荧光定量PCR仪/考种仪、纬冉科技流式细胞分选仪/纳米流式分析仪、泉诚光学激光共聚焦显微镜、匈牙利3D HISTECH数字切片扫描仪、瑞士比欧/上海百仑生物反应器、英国Ruskinn厌氧/低氧工作站和楚天源创匀流泵/层析/超滤等。我们专注于为客户提供高性价比产品和专业技术解决方案,期待与广大客户进行深入交流合作,共同开创未来!
    留言咨询
  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年 徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案 徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询
  • 我司专业生产各种光学镜片、窄带滤光片、带通滤光片,长短波通滤光片,激光保护镜片、激光切割机镜片、激光焊接机镜片、聚焦镜、双复合聚焦镜、舞台灯光滤光片 反射镜、3D打印镜片、无人机ND镜片、衰减片、分光镜、增透镜片、45度折射镜、1064半反射镜、美容仪器滤光片、黑脸娃娃镜片、洗眉机镜片、OPT波片、半透半反镜、有色玻璃、酶标仪滤光片、红外截止滤光片、四轮定位仪滤光片、荧光检测仪滤光片、烟感测量计镜片、激光打标机镜片、光纤场镜、紫外场景、CO2场镜、二氧化碳聚焦镜、激光清洗机镜头 振镜、镀金反射镜、镀铝反射镜、蓝膜反射镜、四轮定位仪滤光片、荧光检测仪滤光片、烟感测量计镜片 以及各种透镜 、棱镜。
    留言咨询

微聚焦荧光仪相关的仪器

  • LSM 880 with Airyscan 快速低光毒性的共聚焦成像新标准您检测分析的样品往往结构非常小、移动速度非常快或极易受光漂白作用的影响。或者,同时兼具上述三个特征。为能从活细胞或其他采用微弱光信号标记的样品中获取无偏差的数据,则要求显微系统拥有更高的灵敏度、更出色的分辨率或更快的速度。样品发出的每一个信号都十分的宝贵。在样品采集方案的选择上, Airyscan 技术将助您一臂之力:同时拥有快速的超高分辨率成像,以及高灵敏度的图像采集。可以使用任意标记的样品进行多色成像,并同时获得优异的图像质量。与传统共聚焦检测器成像质量相比,这种新型检测器设计优良,即使是厚样本也能获得分辨率为120nm( x, y)和350nm( z)的一个完美的光学切面,并能将信噪比( SNR)提升4–8倍。在您进行单光子或多光子实验时,使用这种新颖的探测器设计获得更高的灵敏度,分辨率和速度,27fps(480 x 480像素)。一切都取决于您。共聚焦成像新世界提高所有实验的灵敏度,分辨率和速度。 成像时几乎没有光毒性或漂白现象 - 不改变您的工作流程,样本标记或系统操作。Airyscan独特的快速模式可以将您的成像速度提高四倍。 这相当于共振扫描共聚焦显微镜的速度,却又不牺牲灵敏度或分辨率。Airyscan在横向120nm和轴向350nm的尺度上提供了高灵敏度的完美光学截面和超高分辨率。这超越了去卷积方法,保留了在封闭针孔中通常被屏蔽了的宝贵的发射光信号,并实现了更高的分辨率。提高实验的重复性将Airyscan的快速模式与Z-Stacks及拼图结合起来,可对大样本做高质量成像。一次性收集所有荧光信号。 并行采集可让您在较短的时间内检测多个荧光标记物,并配备更多数量的共聚焦探测器。利用并行光谱采集和高速GPU去卷积的独特组合,提高图像质量。以最大的视野和最高的线速扫描共聚焦 - 蔡司LSM 880 with Airyscan在快速模式下以480x480像素采集速度高达27 fps。选择灵活的共聚焦根据您的研究需求,选择超高分辨率模式,灵敏度模式或新的快速模式。去除自发荧光,并在单次扫描中区分荧光信号高度重叠的部分。 这将减小样品中的光毒性。与单分子技术共聚焦成像获得流动性/浓度/寡聚状态信息(FCS / FCCS / RICS / PCH)。选择Airyscan的快速模式,可以在样品深处多光子成像
    留言咨询
  • RTS系列拉曼光谱仪RTS-II多功能激光共聚焦显微拉曼光谱系统RTS-II 多功能激光共聚焦显微拉曼光谱系统,基于新一代显微共焦技术,具有良好扩展性,可根据需求拓展为以拉曼为主要功能的显微光谱工作站,是您科学研究的最佳选择 ! 采用未经任何改造的科研级正置Leica显微镜,可保留显微镜一切功能 采用紧凑稳定的拉曼光路,减小光程,提高系统稳定度和重复性 内置532,638,785常用激光器,激光光路固定无需调节,可外置扩展其他激光器 采用最新的四光栅光谱仪,专利的自动聚焦,在轴扫描等多项最新技术 采用深制冷的拉曼专用光谱CCD相机,峰值量子效率QE90%。并可扩展EMCCD,ICCD,SCMOS, InGaAs阵列,PMT等探测器,扩展系统功能RTS-II多功能激光共聚焦显微拉曼光谱系统功能扩展: 显微共振拉曼可在标准RTS-II 系统基础上,通过升级可调谐的CW 激光器(调谐范围275- 1100nm),升级光谱仪为三级联谱仪,可实现真正意义上的可调谐显微共振拉曼 时间分辨光谱系统可扩展与低重频皮秒及纳秒激光器+ICCD 联用,实现微区时间分辨荧光光谱及瞬态拉曼功能利用ICCD 独有的fast kinectic 功能,可以对不可重复的现象进行最快25000 帧/ 秒的采集速度,获得约40us 的时间分辨率 宽场显微光谱由于显微镜可以保留所有原始功能,因此只要在标准的RTS-II 系统上升级即可实现如暗场散射,微区透射反射谱等功能。TCSPC 系统可扩展与可调谐超连续白光激光或高重频皮秒/ 飞秒激光联用,实现微区荧光寿命及FLIM定制类服务开放式显微镜,正置+ 倒置显微镜利用倒置显微镜的无限远光路,可以实现正置和倒置共用同一个光路可以在标准倒置显微镜的基础上升级正置部分,做到双向激发双向收集,适用于光波导传输特性对的研究多功能激光共聚焦显微拉曼光谱系统升级服务开放式的设计可以满足基于客户的显微镜升级为RTS-II 的需求开放式的设计可以满足基于客户的光谱仪升级为RTS-II 的需求RTS-mini 一体式拉曼机顶盒RTS-mini 是我司最新研发的光纤耦合的共聚焦拉曼系统。与RTS-II 共享光谱仪配置, 采用激光器内置,光纤耦合入光谱仪的方式,提高系统的灵活性。并可与样品无法移动的实验环境,如低温探针台,DSC 等能极其便利的耦合起来。小巧的体积可用于手套箱,工业在线监测等应用。另外由于配置了标准的接口,可与任何主流正置显微镜搭配,做共聚焦显微升级,可获得同样的性能。测试实例:硅样品, 减背底的三阶峰拉曼光谱图,计算信噪比:62.9:1 测试实例:硫样品; 测试条件:镜头下激光功率;10mw,积分时间,0.1s
    留言咨询
  • [ 产品简介 ] 蔡司激光共聚焦显微镜LSM 900 ,用于材料的三维微观结构和表面形貌的表征,具备光学显微镜的常规观察模式的同时也能够对样品进行三维表面形貌表征,同时也能够与扫描电镜进行关联显微分析,实现样品的多尺度和多维度表征。是实验室和检测平台用于表面形貌分析的理想的综合型解决方案。[ 产品特点 ]&bull 横向分辨率为120nm,轴向分辨率为10nm&bull 灵活的成像方式,宽场光学显微镜的观察方式(明场,暗场,偏光,荧光,微分干涉)以及共聚焦成像方式(表面形貌和荧光3D)&bull 向导式工作流程使得操作简单快捷&bull 关联显微镜成像分析,可与蔡司其他显微镜进行关联成像,实现样品的多尺度和多维度原位分析[ 应用领域 ]&bull 材料性能表征&bull 表面粗糙度分析&bull 金相研究&bull 涂层厚度测量&bull 岩石研究和岩相分析&bull 生物材料和医学应用流体通道(颜色编码高度图),10X物镜磨损实验后金属表面磨损体积测量
    留言咨询

微聚焦荧光仪相关的资讯

  • 普迈精医 | 您的荧光显微镜可以变身共聚焦了
    一台简单的倒置荧光显微镜,搭配CSIM 100单点扫描模块,就可以快速升级为共聚焦成像系统,实现高分辨率共聚焦成像。 对,是共聚焦,您没有看错!让您实验室的显微镜大-变-身!轻松获取高端大气上档次的照片!快来看看是如何实现的吧! CSIM 100是一款单点扫描模式的共聚焦产品,可通过C接口与任意品牌的荧光显微镜连接,将原有的宽场荧光成像方式升级为共聚焦成像方式,全面提升成像质量。Coherent OBIS激光器使用相干公司OBIS LX系列激光器,相比于普通的半导体激光器,在波长稳定性、功率稳定性、光束质量上有明显优势。可提供高质量、高品质的光源。优点:最多可同时配置4个激光器固体或半导体激光器长寿命,可达10000小时稳定性好,8小时功率变化<2%即开即用,操作方便Hamamatsu滨松PMT使用目前的新一代高性能产品:R10699多碱PMT,相比国外品牌的上一代共聚焦产品使用的R928,灵敏度提高超过一倍。可升级为磷砷hua镓(GaAsP),进一步提高了图像的信噪比: GaAsP 的量子效率达到45%。优点:高性能多碱PMT*光谱响应范围185nm~900nmQE 25%@500nm20%@600nm* 可升级为GaAsPSunny XY高速扫描振镜搭载Sunny XY高速扫描振镜后,单向扫描512*512成像速度可达4fps,适用于多细胞大视野的检测应用。*已经为zeiss OCT项目供货。优点:响应时间快重复精度高发热量低温度漂移小其它配件共聚焦/宽场切换接口接口可同时连接共聚焦和相机,可自由选择共聚焦成像或相机成像电动Z轴马达使手动显微镜实现自动调焦功能,实现XYZ三维扫描软件功能全中文界面,简单易用全软件控制完成多维图像采集,实现多通道扫描、时间序列和Z轴序列成像可在用户自定义的ROI(感兴趣区域)内进行成像、光漂白和光刺激全软件控制数据记录,支持成像参数管理导出支持多种图像输出格式
  • 程琳教授团队:毛细管聚焦的微束X射线荧光谱仪及其应用研究
    毛细管聚焦的微束X射线荧光谱仪及其应用研究邵金发,侯禹存,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着科技的发展,人们对物质的分析慢慢深入到微区领域。而微束能量色散X射线荧光作为一种高灵敏、高精度的元素分析技术,已然成为物质微区分析的有利工具。本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该谱仪在利用毛细管X光透镜的特点将X射线源发出的X射线束会聚到微米量级的同时,基于激光位移传感器开发了自动调整样品测量点到透镜出口端距离的闭环控制系统,有效的减少由于样品表面不平整或弧度带来的测量误差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,该微束X射线荧光谱仪为表面不平整文物样品的无损微区元素分析提供了解决方案。1. 引言微束能量色散X射线荧光光谱(Micro-energy dispersive X-ray fluorescence, µ-EDXRF)分析技术因其快速、准确、无损分析等优点,被广泛应用在考古、地质、环境、材料、生物等科学领域[1-8]。目前,基于实验室光源以获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线荧光谱仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但与此同时,入射光束的强度会因为物理阻挡而降低,从而导致获得的特征X射线信息减弱。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于焦点。因此可以实现以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[9],且具有低的发散度。同时,可以将基于毛细管聚焦的微束能量色散X射线荧光分析技术与大面积扫描相结合,实现微米级表面结构和元素分布的分析测定。目前国内外存在部分商业化的微束X射线荧光谱仪,其中美国EDAX公司生产的Orbis系列微束X射线荧光谱仪,适用于部分地质和考古样品测试的[10];德国Bruker公司生产的M4 Tornado可移动式微束X射线荧光谱仪,适用于实验室或博物馆内各类样品的研究[11]。但由于部分文物样品表面并不平整或存在较大的弧度,若不对相对位置进行修正,这将使得样品测量点与毛细管X光透镜出口端的距离在测量过程中发生改变,从而影响测量结果的准确性和元素区域扫描的分辨率[12]。为解决上述问题,本实验室自行设计和开发一种新型的微束X射线荧光谱仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线荧光谱仪结构示意图如图1所示,其主要由微焦斑X射线管(Mo靶,焦斑大小50μm×50μm,德国Röntgen公司)、毛细管X光透镜(Mo-Kα能量处束斑大小为31µm)、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25mm2)和PX5多道分析器、精度为20µm的激光位移传感器、激光笔、具有20倍放大功能的1400万像素固定焦距CCD摄像头、高精度XYZ三维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。仪器控制软件主要包括探测系统控制界面、X射线源高压控制界面、机械运动系统控制界面、CCD图像采集控制界面和氦气控制界面构成。其中主界面包含了各个控制功能系统的一些主要控制命令及输出,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-EDXRFF分析的需求,以便实现对感兴趣区域内元素分布的分析。图1 微束X射线荧光谱仪的结构示意图图2 微束X射线荧光谱仪控制程序主界面3. 实验分析3.1 清代红绿彩瓷的分析为了评估本仪器对样品微区进行元素二维扫描分析的能力,选取一片清代红绿彩瓷的残片作为研究对象(图3)。选取图3中A(白釉)、B(红彩)、C(绿彩)进行微区的元素组成分析。实验测量时,X射线管电压40 kV,电流0.6 mA,探测活时间300 s。样品A(白釉)、B(红彩)、C(绿彩)三点的微束X射线荧光分析的能谱如图4所示,彩料中各元素化学成分采用基本参数法进行定量分析,所得的数据如表1所示。图3 清代红绿彩瓷残片与感兴趣区域图片图4 红绿彩中白釉、红彩和绿彩的μ-EDXRF光谱表1 白釉、红彩和绿彩的化学成分(质量分数,%)此外,选择如图3中2mm×2mm的感兴趣区域,使用微束X射线荧光谱仪进行µ-EDXRF二维扫描分析。进行µ-EDXRF二维扫描分析时,X射线管电压为40 kV,电流为0.6 mA,扫描步距为30 µm,每个点探测时间为1.5 s,扫描数据经软件处理得到如图5所示的元素分布图。图5 扫描区域内Pb、K、Fe、Ca、Cu、Al、Mn、Si元素的分布3.2 吉州窑古陶瓷的分析为评估本仪器对表面存在大弧度的样品进行微区元素二维扫描分析的能力,选取一片吉州窑古陶瓷的残片作为研究对象(图6)。实验开始前调节平移台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域。选取图6中大小为10mm×10mm的区域进行元素二维扫描分析。µ-EDXRF二维扫描分析的测量条件与上文相同。同时,为验证本仪器“源-样”距离自动控制系统对测量结果的影响,分别在开启和关闭“源-样”距离自动控制系统的条件下进行元素二维扫描分析,扫描数据经软件处理得到如图7所示的元素分布图。图6 吉州窑古陶瓷样品与扫描区域图片图7 扫描区域内K、Ca、Zn、Fe元素分布图。a)关闭“源-样”距离自动控制系统,b)开启“源-样”距离自动控制系统通过图7与图6的比较可知,在关闭“源-样”距离自动控制系统的情况下进行µ-EDXRF二维扫描时,由于样品表面的弯曲,样品测量点与毛细管X光透镜出口端之间的距离发生变化,使得X射线光束的焦点无法与样品测量点重合。这导致测得元素分布图空间分辨率变差,同时生成的图像发生了扭曲。相反,当打开“源-样”距离自动控制系统进行测量时,由于该系统可实时调整平移台使X射线束准确照射在样品测量点上,显著降低由于样品表面弯曲带来的偏差。极大的改善了测量结果,表明该仪器在不平整样品的µ-EDXRF二维扫描中具有重要的应用价值。4. 结论本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,设计和研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该微束X射线荧光谱仪在具备无损分析微小样品和样品微区的元素分布能力的同时,其基于激光位移传感器开发的“源-样”距离自动控制系统可实时调整样品测量点到透镜出口端距离,显著降低了由样品表面不平整或弧度带来的测量偏差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。参考文献[1] 戴珏,吴奕阳,张元璋,等.能量色散X射线荧光光谱法在检测仿真饰品中有害元素的应用[J].上海计量测试,2018,45(04):34-35.[2] 陈吉文,倪子月,程大伟,等.基于EDXRF的土壤中痕量镉的快速检测方法研究[J].光谱学与光谱分析,2018,38(08):2600-2605.[3] 陈曦,周明慧,伍燕湘,等.能量色散X射线荧光光谱仪在稻米中镉含量测定的应用研究[J].食品安全质量检测学报,2018,9(10):2331-2338.[4] 蒯丽君. 化学前处理—能量色散X射线荧光光谱法应用于矿石及水体现场分析[D].中国地质科学院,2013.[5] Rathod T, Tiwari M, Maity S , et al. Multi-element detection in sea water using preconcentration procedure and EDXRF technique [J]. Applied Radiation & Isotopes, 2018, 135.[6] Figueiredo E, M F, Araújo, Silva R J C, et al. Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2011, 69(9):1205-1211.[7] Natarajan V, Porwal N K, Babu Y, et al. Direct determination of metallic impurities in graphite by EDXRF. [J]. Appl Radiat Isot, 2010, 68(6):1128-1131.[8] Li L, Huang Y, Sun H Y, et al. Study on the property of the production for Fengdongyan kiln in Early Ming dynasty by INAA and EDXRF [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 381:52-57.[9] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405.[10] Moradllo M K, Sudbrink B, Hu Q, et al. Using micro X-ray fluorescence to image chloride profiles in concrete[J]. Cement & Concrete Research, 2016:S0008884615300636.[11] Ramos I. Pataco I M, Mourinho M P, et al. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016.[12] Ricciardi P,Legrand S,Bertolotti G, et al. Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges[J]. Microchemical Journal, 2016, 124:785-791.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 激光共聚焦荧光显微镜 活体荧光物质检查
    激光共聚焦荧光显微镜 活体荧光物质检查激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:&bull 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)&bull 控制景深的能力。&bull 能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾”,非共焦荧光显微镜下无法检测到。(最重要的特点)&bull 从厚试样收集连续光学切片的能力。&bull 通过三维物体收集一系列图像,用于二维或三维重建。&bull 收集双重和三重标签,精确的共定位。&bull 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。&bull 有能力补偿自发荧光。耐可视共聚焦成像效果图 尼康共聚焦成成像效果图NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;2、生物化学:酶、核酸、FISH、受体分析3、药理学:药物对细胞的作用及其动力学;4、生理学:膜受体、离子通道、离子含量、分布、动态;5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;7、微生物学和寄生虫学:细菌、寄生虫形态结构;8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;9、生物学、免疫学、环境医学和营养学。NCF950激光共聚焦显微镜配置NCF950激光共聚焦配置表激光器激光405 nm、488 nm、561 nm、640 nm探测器波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道扫描头最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°扫描模式X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T针孔无级变速六边形电动针孔;调节范围:0-1.5毫米共焦视场φ18mm内接正方形图像位深12bits配套显微镜NIB950全电动倒置显微镜光学系统NIS60无限远光学系统(F200)目镜(视野)10×(25),EP17.5mm,视度可调-5~+5,接口Φ30观察镜筒铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜NIS60物镜10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.1720×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.1760×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜物镜转换器电动六孔转换器(扩展插槽),M25×0.75聚光镜6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)DIC(10X,20X/40X)选配.空孔照明系统透射柯拉照明,10W LED照明;落射照明:宽场光纤照明6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换手动1X,1.5X、共焦切换机身端口分光比:左侧:目视=100:0;右侧:目视=100:0;平台电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板调焦系统同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;DIC插板10X,20X,40X插板;可放置于转换器插槽;选配控制摇杆,控制盒,USB连接线软件软件:NOMIS Advanced C图像显示/图像处理/分析2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像

微聚焦荧光仪相关的方案

微聚焦荧光仪相关的资料

微聚焦荧光仪相关的论坛

微聚焦荧光仪相关的耗材

  • 上海晶安玻璃底35mm共聚焦细胞培养皿 玻底直径10mm14mm20mm荧光显微镜玻底微孔小皿
    概况和特点:标准细胞培养皿、板和高质量玻璃底的结合。革新设计提供了一个独立、平整的底部。在体外培养环境下,为高分辨率显微镜提供更清晰的视野。共聚焦培养皿由高质量的聚苯乙烯和高透明度硼硅酸盐玻璃制成。具有高光学性能的玻璃材料保证了底部的平整度,从而避免了光的去偏振化。高透明度硼硅酸盐玻璃,玻璃底厚度:0.17mm+-0.02mm,超平界面。应用范围: 相差显微镜 荧光显微镜 激光共聚焦显微镜 活细胞成像 相差干涉显微镜 激光发射显微镜 荧光原位杂交技术(FISH)目录编号玻底直径形状共聚焦器皿表面处理灭菌包装规格J4010110mm圆形35mm皿TC处理伽马辐照10个/包,100个/盒J4014114mm圆形35mm皿10个/包,100个/盒J4020120mm圆形35mm皿10个/包,100个/盒J4020420mm圆形四分格共聚焦皿10个/包,100个/盒
  • 爱必信 全黑底透6孔共聚焦培养板(玻底直径20mm) 培养板/微孔板/滴定板
    "公告提醒:爱必信所有产品和服务仅用于科学研究,不用于临床应用及其他用途提供产品和服务(也不为任何个人提供产品和服务)! 产品描述:产品名称:全黑底透6孔共聚焦培养板(玻底直径20mm)描述: 概况和特点:1、标准细胞培养皿、板和高质量玻璃底的完美结合。革新设计提供了一个独立、平整的底部。2、在体外培养环境下,为高分辨率显微镜提供更清晰的视野。3、共聚焦培养皿由高质量的聚苯乙烯和高透明度硼硅酸盐玻璃制成。4、具有高光学性能的玻璃材料保证了底部的最佳平整度,从而避免了光的去偏振化。 玻璃底特征:1、高透明度硼硅酸盐玻璃。2、玻璃底厚度:0.17mm+-0.02mm。3、最大的光透过范围,无法荧光。4、 超平界。技术指标: 玻底直径:φ20mm形状:圆形共聚焦器皿:全黑6孔板,避光应用: 1、相差显微镜。2、荧光显微镜。3、激光共聚焦显微镜。4、活细胞成像。5、相差干涉显微镜。6、激光发射显微镜。7、荧光原味杂交技术(FISH)产品信息订购: 产品货号 产品名称 规格价格大包装及货期 abs7024 全黑底透6孔共聚焦培养板(玻底直径20mm) 5个/盒 1250.00 立即咨询产品更多信息请进入爱必信网站咨询 "
  • Confocal共聚焦显微镜纳米标尺
    产品特点:GATTA-Confocal 系列的纳米标尺为传统显微镜使用者设计,它有两个荧光标记端,均含有量子效率高的染料分子。标记点的距离为350nm。GATTA-Confocal纳米标尺有如下颜色可选:红色(ATTO 647N),黄色(Alexa Fluor 568),绿色(ATTO 532)或蓝色(Alexa Fluor 488),或者红/黄/蓝组合(ATTO 647N/ Alexa Fluor 568/ Alexa Fluor 488),红/绿/蓝组合(ATTO 647N/ ATTO 532/ Alexa Fluor 488)纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制